RU2777678C1 - Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям - Google Patents

Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям Download PDF

Info

Publication number
RU2777678C1
RU2777678C1 RU2021134464A RU2021134464A RU2777678C1 RU 2777678 C1 RU2777678 C1 RU 2777678C1 RU 2021134464 A RU2021134464 A RU 2021134464A RU 2021134464 A RU2021134464 A RU 2021134464A RU 2777678 C1 RU2777678 C1 RU 2777678C1
Authority
RU
Russia
Prior art keywords
servomotor
disk
video camera
ice
climatic chamber
Prior art date
Application number
RU2021134464A
Other languages
English (en)
Inventor
Александр Михайлович Емельяненко
Людмила Борисовна Бойнович
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН)
Application granted granted Critical
Publication of RU2777678C1 publication Critical patent/RU2777678C1/ru

Links

Images

Abstract

Изобретение относится к области исследования материалов. Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям содержит серводвигатель, защитный кожух, диск для размещения тестируемых образцов, регистратор температуры, стробоскопический осветитель, две цифровые видеокамеры, видеорегистратор, монитор, блок управления серводвигателем и климатическую камеру. Серводвигатель размещен внутри климатической камеры, внутри которой закреплены стробоскопический осветитель и первая видеокамера. На оси серводвигателя установлен диск для тестируемых образцов. На диске имеются отверстия для крепления тестируемых образцов с намороженными пластинками льда. Первая видеокамера соединена с видеорегистратором, объектив которой направлен на диск для размещения тестируемых образцов. Снаружи климатической камеры размещены видеорегистратор с монитором, блок управления серводвигателем с индикатором частоты вращения. Объектив второй видеокамеры направлен на блок управления серводвигателем с индикатором частоты вращения. Повышается достоверность результатов. 4 з.п. ф-лы, 2 ил., 1 табл.

Description

Изобретение относится к области исследования материалов путем определения их физических свойств. Конкретно, предлагаемое устройство предназначено для измерения адгезионной прочности контакта льда с поверхностью испытуемого образца при разрушении этого контакта под действием сдвиговой нагрузки, приложенной в направлении, параллельном плоскости контакта.
Адгезионная прочность контакта льда с твердыми поверхностями количественно характеризует силу, которую нужно затратить для разделения единицы площади такого контакта. Знание этой характеристики весьма важно во многих отраслях промышленности, в частности, в авиации и электроэнергетике для оценки эффективности мер, принимаемых для борьбы с обледенением поверхностей самолетов, аэронавигационного оборудования, проводов и конструкций воздушных линий электропередач.
Из существующего уровня техники известны центробежный метод и устройство для измерения адгезионной прочности льда (С. Laforte and А. Beisswenger, Icephobic material centrifuge adhesion test. Proceedings of International Workshop on Atmospheric Icing of Structures (I WAIS XI), Montreal, QC, Canada 2005, pp. 12-16), включающее термостатируемую комнату, в которой размещен двигатель с возможностью линейного изменения скорости вращения, закрепляемая на оси двигателя алюминиевая консоль, металлический кожух с пьезодатчиками ударных вибраций, и компьютер для управления запуском двигателя, фиксации момента разрушения адгезионного контакта и обработки полученных результатов измерений. В данном устройстве лед формируется на одном конце алюминиевой консоли в отдельно расположенной камере ледяного дождя, после чего взвешивается и на другом конце консоли устанавливается противовес, подобранный соответственно весу сформированного льда; консоль со льдом переносится в испытательную камеру и фиксируется на оси электродвигателя внутри металлического кожуха, на стенках которого установлены 2 пьезоэлектрических датчика, чувствительных к вибрациям; под управлением компьютера запускается двигатель с известным законом линейного во времени увеличения скорости и фиксируется момент срабатывания пьезоэлемента на удар оторвавшегося образца льда о стенку металлического кожуха; на основании определенного времени от момента запуска двигателя до момента отрыва льда рассчитывается скорость вращения двигателя в момент отрыва и соответствующие ей центробежная сила и прочность адгезионного контакта. Недостатком рассматриваемого устройства является сложность и длительность подготовки образцов, в том числе необходимость отдельной камеры для нанесения льда на поверхность, высокая доля неудачных испытаний, связанных с когезионным разрушением образца льда.
Известно также другое устройство (Патент CN 108181233 Material surface dynamic ice formation adhesion determination method and device thereof), которое включает в себя двигатель, консоль, устройство определения скорости вращения, дисплей скорости вращения и высокоскоростную видеокамеру, а испытуемые образцы поверхностей со сформированным льдом расположены на двух концах консоли. В данном устройстве в одном эксперименте возможно тестирование сразу двух образцов; достоинством метода также является прямое определение скорости вращения консоли в момент разрушения контакта льда с образцом тестируемой поверхности. Недостатком рассматриваемого устройства является высокая стоимость высокоскоростной видеокамеры, а также, при существующем уровне развития техники, ограниченная скоростью передачи и объемом носителя информации доступная продолжительность непрерывной записи видеопотока, что накладывает дополнительные ограничения на условия проведения измерений.
Технический результат заявленного изобретения является упрощение процедуры подготовки образцов для проведения измерений прочности адгезии льда, повышение статистической достоверности получаемых результатов за счет увеличения количества образцов, тестируемых в одном эксперименте, обеспечение возможности прямого сравнения величин прочности адгезии льда к разным материалам и/или покрытиям в одинаковых условиях в рамках одного эксперимента.
Технический результат заявленного изобретения достигается тем, что центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям содержит серводвигатель, защитный кожух, диск для размещения тестируемых образцов, регистратор температуры, стробоскопический осветитель, первую цифровую видеокамеру, вторую цифровую видеокамеру, видеорегистратор, монитор, блок управления серводвигателем и климатическую камеру, при этом серводвигатель размещен внутри климатической камеры, также внутри климатической камеры закреплены стробоскопический осветитель и первая цифровая видеокамера, на вертикально ориентированной оси серводвигателя установлен диск для размещения тестируемых образцов, на поверхности диска для размещения тестируемых образцов выполнены резьбовые отверстия для крепления тестируемых образцов с намороженными пластинками льда, первая цифровая видеокамера соединена с видеорегистратором, объектив которой направлен на диск для размещения тестируемых образцов, снаружи климатической камеры размещены видеорегистратор с монитором, блок управления серводвигателем с цифровым индикатором частоты вращения серводвигателя, вторая цифровая видеокамера, соединенная с видеорегистратором, и объектив которой направлен на блок управления серводвигателем с цифровым индикатором частоты вращения серводвигателя. Кабели питания и управления к серводвигателю, осветителю и первой цифровой видеокамере подведены через порт доступа в верхней стенке климатической камеры. Серводвигатель закреплен в защитный кожух. Внутри климатической камеры дополнительно закреплен демпфирующий кожух для гашения импульса отрывающегося льда и защиты стенок климатической камеры от повреждения пластинками льда при работе устройства. В центре диска для размещения тестируемых образцов закреплен регистратор температуры.
Предлагаемое решение базируется на использовании стробоскопического эффекта, состоящего в том, что при освещении вращающегося объекта световыми вспышками с частотой, равной или кратной частоте вращения, объекта представляется наблюдателю (и фиксируется видеокамерой) как неподвижный.
Сущность заявленного изобретения дальнейшем поясняется детальным описанием, примерами и иллюстрацией, на которой изображено следующее:
на фиг. 1 - принципиальная схема центробежного устройства для измерения сдвиговой прочности адгезии льда к твердым поверхностям, где:
1 - серводвигатель;
2 - защитной кожух;
3 - диск для размещения тестируемых образцов;
4 - тестируемые образцы;
5 - намороженная пластинка льда;
6 - регистратор температуры;
7 - стробоскопический осветитель;
8 - первая цифровая видеокамера;
9 - вторая цифровая видеокамера;
10 - видеорегистратор;
11 - монитор;
12 - блок управления серводвигателем (сервопривод);
13 - климатический камера;
14 - демпфирующий кожух;
на фиг. 2 - пример размещения тестируемых образцов.
Устройство поясняется фиг. 1, на которой изображена принципиальная схема центробежного устройства для измерения сдвиговой прочности адгезии льда к твердым поверхностям.
На вертикально ориентированной оси серводвигателя 1, закрепленного в защитном кожухе 2, установлен диск для размещения тестируемых образцов 3. На поверхности диска выполнены резьбовые отверстия для крепления тестируемых образцов 4 с намороженными пластинками льда 5. Для контроля температуры поверхности диска с образцами используется регистратор температуры 6. Серводвигатель с кожухом и диском размещены внутри рабочей зоны 13 климатической камеры. Также внутри рабочей зоны закреплены стробоскопический осветитель 7, первая цифровая видеокамера 8 и демпфирующий кожух 14 для гашения импульса отрывающегося льда и защиты стенок климатической камеры от повреждения пластинками льда при работе устройства. Кабели питания и управления к серводвигателю, осветителю и видеокамере подведены через порт доступа в верхней стенке рабочей зоны климатической камеры. Снаружи климатической камеры размещены видеорегистратор 10 с монитором 11, блок управления серводвигателем 12 с цифровым индикатором частоты вращения серводвигателя, а также вторая цифровая видеокамера 9 для регистрации показаний индикатора частоты.
Устройство работает следующим образом. На поверхности диска 3 с помощью подходящих зажимов равномерно размещаются тестируемые образцы 4. Равномерность размещения необходима для соблюдения балансировки диска при вращении. Пример размещения представлен на фиг. 2. На поверхности образцов помещаются втулки, в которые заливается вода. Климатическая камера закрывается и включается охлаждение рабочей зоны. Первая цифровая видеокамера 8, соединенная с видеорегистратором 10 позволяет наблюдать на мониторе 11 процесс охлаждения и регистрировать момент кристаллизации льда на всех образцах, после чего образовавшиеся пластинки льда выдерживаются требуемое условиями эксперимента время при заданной отрицательной температуре. После указанной выдержки серводвигатель приводится во вращение путем подачи управляющего напряжения на блок управления серводвигателем 12, причем частота вращения пропорциональна управляющему напряжению. На цифровом индикаторе блока управления отражается частота вращения серводвигателя, одновременно управляющий сигнал такой же частоты подается на стробоскопический осветитель 7. Благодаря стробоскопическому эффекту изображение диска 3 с образцами 4, записываемое видеокамерой 8 на диск видеорегистратора 10 и отображаемое на мониторе 11, выглядит неподвижным, что позволяет четко фиксировать момент отрыва каждой втулки со льдом с поверхностей образцов. Одновременно вторая цифровая видеокамера 9 передает на видеорегистратор для записи и отображения на мониторе показания цифрового индикатора блока управления. Сопоставление каждому событию отрыва (непосредственно в процессе эксперимента или при последующем просмотре видеозаписей) частоты вращения серводвигателя позволяет вычислить прочность адгезионного контакта по формуле
F=m×R×(2πν/60)2/S, где
F- прочность адгезионного контакта, Па;
m - масса ледяной пластинки с втулкой, кг;
R - расстояние от центра диска до центра ледяной пластинки в момент отрыва, м;
ν - частота вращения серводвигателя в момент отрыва, об/мин;
S - площадь контакта ледяной пластинки с образцом, м2.
Предлагаемое в заявляемой модели техническое решение является новым и имеет следующие существенные отличия от известных решений:
- центробежное устройство для измерения адгезии льда размещено внутри климатической камеры, что позволяет проводить формирование адгезионного контакта лед - тестируемый образец и его разрушение в одном месте, без перемещения образцов и при хорошо контролируемой температуре;
- тестируемые образцы размещаются не на консоли, а на диске, что позволяет проводить одновременное тестирование большого количества образцов, и повышает статистическую достоверность получаемых результатов;
- для фиксирования моментов разрушения адгезионного контакта и определения скорости вращения диска с тестируемыми образцами в эти моменты используется стробоскопический эффект, что упрощает наблюдение за большим количеством образцов и расшифровку экспериментальных результатов;
- регистрация процесса испытания производится с помощью стандартного видеозаписывающего оборудования - бытовых видеокамер и видеорегистратора, что обеспечивает существенное снижение затрат на подготовку и проведение измерений.
Таким образом, вся совокупность существенных признаков изобретения ранее неизвестна и приводит к новому техническому результату - снижению материальных и трудовых затрат на экспериментальное определение адгезии льда к тестируемым материалам и повышение статистической достоверности получаемых результатов.
Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы стандартное оборудование, приспособления и материалы.
Примером реализации заявляемого технического решения является центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям, в котором в качестве серводвигателя и блока управления серводвигателем используются соответственно двигатель EMJ-010ASA и сервопривод Servo ЕР-4 (Estun, Китай), в качестве стробоскопического осветителя - электронный тахометр Testo 477 (Testo, Германия), в качестве климатической камеры - камера Binder MK-53 (Binder, Германия), в качестве видеорегистратора с видеокамерами - готовый комплект IP видеонаблюдения с двумя уличными камерами PST IPK02CF (PST Ltd, Китай), в качестве регистратора температуры - регистратор DS1922L-F5 (Maxim Integrated, США).
В качестве примера измерения адгезии льда в Таблице 1 представлено сравнение величины адгезии льда при температуре -5°С к полированным и неполированным пластинам из сплава АМг2.
Figure 00000001
Figure 00000002

Claims (5)

1. Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям содержит серводвигатель, защитный кожух, диск для размещения тестируемых образцов, регистратор температуры, стробоскопический осветитель, первую цифровую видеокамеру, вторую цифровую видеокамеру, видеорегистратор, монитор, блок управления серводвигателем и климатическую камеру, при этом серводвигатель размещен внутри климатической камеры, также внутри климатической камеры закреплены стробоскопический осветитель и первая цифровая видеокамера, на вертикально ориентированной оси серводвигателя установлен диск для размещения тестируемых образцов, на поверхности диска для размещения тестируемых образцов выполнены резьбовые отверстия для крепления тестируемых образцов с намороженными пластинками льда, первая цифровая видеокамера соединена с видеорегистратором, объектив которой направлен на диск для размещения тестируемых образцов, снаружи климатической камеры размещены видеорегистратор с монитором, блок управления серводвигателем с цифровым индикатором частоты вращения серводвигателя, вторая цифровая видеокамера, соединенная с видеорегистратором, объектив которой направлен на блок управления серводвигателем с цифровым индикатором частоты вращения серводвигателя.
2. Центробежное устройство по п. 1, в котором кабели питания и управления к серводвигателю, осветителю и первой цифровой видеокамере подведены через порт доступа в верхней стенке климатической камеры.
3. Центробежное устройство по п. 1, в котором серводвигатель закреплен в защитный кожух.
4. Центробежное устройство по п. 1, в котором внутри климатической камеры дополнительно закреплен демпфирующий кожух для гашения импульса отрывающегося льда и защиты стенок климатической камеры от повреждения пластинками льда при работе устройства.
5. Центробежное устройство по п. 1, в котором в центре диска для размещения тестируемых образцов закреплен регистратор температуры.
RU2021134464A 2021-07-12 Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям RU2777678C1 (ru)

Publications (1)

Publication Number Publication Date
RU2777678C1 true RU2777678C1 (ru) 2022-08-08

Family

ID=

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116136484A (zh) * 2023-03-28 2023-05-19 东北农业大学 翼型叶片结冰粘结强度测量机构、装置及试验方法
CN116973018A (zh) * 2023-09-15 2023-10-31 中国空气动力研究与发展中心高速空气动力研究所 一种新型持续表面剪切力光学测量方法
CN117451620A (zh) * 2023-12-25 2024-01-26 华能科尔沁右翼前旗新能源有限公司 一种风力发电叶片结冰附着强度测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202033278U (zh) * 2011-05-06 2011-11-09 吉林大学 一种冰黏附强度测试装置
RU125342U1 (ru) * 2012-09-18 2013-02-27 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук Устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям
RU2522818C1 (ru) * 2012-12-11 2014-07-20 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук Способ измерения адгезии льда на сдвиг к другим материалам
CN104897565B (zh) * 2015-06-09 2017-05-24 哈尔滨工程大学 一种冰粘附剪切强度测量装置
CN108181233A (zh) * 2018-01-09 2018-06-19 四川大学 一种材料表面动态成冰粘附力测定方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202033278U (zh) * 2011-05-06 2011-11-09 吉林大学 一种冰黏附强度测试装置
RU125342U1 (ru) * 2012-09-18 2013-02-27 Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук Устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям
RU2522818C1 (ru) * 2012-12-11 2014-07-20 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук Способ измерения адгезии льда на сдвиг к другим материалам
CN104897565B (zh) * 2015-06-09 2017-05-24 哈尔滨工程大学 一种冰粘附剪切强度测量装置
CN108181233A (zh) * 2018-01-09 2018-06-19 四川大学 一种材料表面动态成冰粘附力测定方法及其装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116136484A (zh) * 2023-03-28 2023-05-19 东北农业大学 翼型叶片结冰粘结强度测量机构、装置及试验方法
CN116973018A (zh) * 2023-09-15 2023-10-31 中国空气动力研究与发展中心高速空气动力研究所 一种新型持续表面剪切力光学测量方法
CN117451620A (zh) * 2023-12-25 2024-01-26 华能科尔沁右翼前旗新能源有限公司 一种风力发电叶片结冰附着强度测试装置

Similar Documents

Publication Publication Date Title
US4524620A (en) In-flight monitoring of composite structural components such as helicopter rotor blades
US3952566A (en) Bearing and lubricant film test method and apparatus
CN108181233B (zh) 一种材料表面动态成冰粘附力测定方法及其装置
NO881262L (no) Anordning for aa paavise inntak av fremmedlegemer i en motor
RU2777678C1 (ru) Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям
EP2240753B1 (en) System and method for testing of transducers
Joshi et al. Ultrasonic detection of fatigue damage
US3667280A (en) Method for determining the freezing point of a hydrocarbon
US4232554A (en) Thermal emission flaw detection method
US4231259A (en) Method and apparatus for non-destructive evaluation utilizing the internal friction damping (IFD) technique
CN114878457B (zh) 一种测量固体材料表面切向冰黏附强度的试验装置和方法
US9204109B1 (en) IR detection of small cracks during fatigue testing
Blanc et al. Infrared stroboscopy—a method for the study of thermomechanical behaviour of materials and structures at high rates of strain
Aatola et al. Cepstrum analysis predicts gearbox failure
RU216048U1 (ru) Устройство для измерения силы адгезии льда
Stahle et al. Ground vibration testing of complex structures
Edward et al. Ontario Hydro live-line vibration recorder for transmission conductors
RU2227282C1 (ru) Установка для испытаний листовых материалов на растяжение
JPH08136406A (ja) 高速回転振動試験装置
RU2530457C1 (ru) Устройство для измерения вязкости материала
CN211061414U (zh) 一种采用红外技术的快速水分测定仪
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
CN215952620U (zh) 用于检定温湿度计的转动式检定箱
RU2399417C1 (ru) Способ для определения силы связи зерна с растениями сельскохозяйственных культур и устройство для его осуществления
RU2659193C1 (ru) Способ вибрационной диагностики процессов разрушения конструкций