RU2777650C1 - Способ моделирования процесса тепло- и массообмена при испарении жидкости из прозрачной емкости и устройство для его реализации - Google Patents

Способ моделирования процесса тепло- и массообмена при испарении жидкости из прозрачной емкости и устройство для его реализации Download PDF

Info

Publication number
RU2777650C1
RU2777650C1 RU2021118526A RU2021118526A RU2777650C1 RU 2777650 C1 RU2777650 C1 RU 2777650C1 RU 2021118526 A RU2021118526 A RU 2021118526A RU 2021118526 A RU2021118526 A RU 2021118526A RU 2777650 C1 RU2777650 C1 RU 2777650C1
Authority
RU
Russia
Prior art keywords
impact
temperature
energy
condition
initial
Prior art date
Application number
RU2021118526A
Other languages
English (en)
Inventor
Валерий Иванович Трушляков
Алексей Алексеевич Новиков
Иван Юрьевич Лесняк
Алексей Васильевич Паничкин
Вардан Артурович Севоян
Артем Павлович Аверченко
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Омский государственный технический университет"
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Омский государственный технический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Омский государственный технический университет"
Application granted granted Critical
Publication of RU2777650C1 publication Critical patent/RU2777650C1/ru

Links

Images

Abstract

Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий. Предлагается способ моделирования процесса тепло- и массообмена при испарении модельной жидкости (МЖ) из экспериментального образца (ЭО), основанный на энергетическом воздействии с заданными параметрами на ЭО с МЖ, проведении измерений температуры в различных точках ЭО, в качестве энергетического воздействия на МЖ, размещённую в ЭО, используют лазерное излучение (ЛИ) в заданном диапазоне длин волн, первоначально определяют температуры МЖ в плоскости индикатора, перпендикулярной оси ЛИ в направлении от центра луча ЛИ до стенки ЭО, одним датчиком измерения температуры, определяют распределение величин температуры в зависимости от удаленности от центра ЛИ, определяют количество датчиков измерения температуры в радиальном направлении из условия разности температур МЖ, которая должна превышать величину двойного отклонения используемого датчика измерения температуры, и в процессе ЛИ измеряют параметры воздействия ЛИ, используя прозрачную ёмкость, в том числе диаметр луча ЛИ путём определения диаметров прожигаемых отверстий от воздействия проекции луча на поверхность тонкой плёнки, изготовленной из материала с минимальной теплоёмкостью, на различных расстояниях от головки лазерного излучателя как при наличии МЖ, так и без МЖ, результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ, количество пузырьков внутри МЖ, скорость и направление их движения в МЖ, определяют путём проведения скоростной съёмки, мощность ЛИ, мощность энергетического воздействия ЛИ, начальное расстояние от поверхности излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальной массы выброса МЖ в процессе эксперимента, осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительности импульсами и интервалом времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ и начальная масса МЖ одинаковы, длительность импульса и время между импульсами определяют из условия минимального нагрева МЖ в объёме ЭО. Также заявлено устройство для реализации способа. Технический результат - снижение энергетических затрат, упрощение экспериментальных исследований испарения модельной жидкости с использованием лазерного излучения. 2 н.п. ф-лы, 4 ил.

Description

Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий, в частности, к отработке технологий использования лазерного излучения (ЛИ) для испарения модельных жидкостей (МЖ) из экспериментальных образцов (ЭО).
Известны методы осушки, основанные на длительном конвективном тепловом воздействии, вакуумировании, соответственно, известны и методы их моделирования, например, кн. 1 (Прусова О.Л. Методы испарения жидкости на основе акустико-вакуумного и теплового воздействий (обзор)/ Омский научный вестник. Серия Авиационно-ракетное и энергетическое машиностроение. 2020. Т. 4. № 1. С. 60-73, кн. 2 (ОСТ 92-0019-78. Методы и режимы сушки изделий перед испытаниями на герметичность. Введ. 1979 - 10 - 01).
Наиболее близким по технической сущности к предлагаемому техническому решению является «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации» по патенту РФ № 2474816 G01N 29/02, B64G 7/00, основанный на введении в экспериментальную установку теплоносителя (ТН) с заданными параметрами, обеспечении заданных условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры и давления в различных точках экспериментальной установки, жидкий газифицируемый компонент ракетного топлива подвергают ультразвуковому воздействию, при этом параметры ТН и генерируемых ультразвуковых колебаний выбирают из условия минимизации критериев процесса газификации: времени процесса газификации, энергомассовых затрат и количества поданной в бак теплоты.
К недостаткам этого технического решения при приложении к отработке технологии использования ЛИ для испарения жидкости являются:
- использование конвективного способа подачи энергии (подача теплоносителя в виде горячего газа) как на испаряемую жидкость, так и на конструкцию, содержащую жидкость, соответственно, осуществляется «паразитный» нагрев конструкции ЭО;
- наличие ультразвуковых колебаний;
- отсутствие измерения текущей массы жидкости.
Техническим результатом предлагаемого решения является снижение энергетических затрат, упрощение экспериментальных исследований испарения модельной жидкости с использованием лазерного излучения.
Указанный технический результат достигается за счет того, что в известном способе моделирования, основанном на энергетическом воздействии с заданными параметрами на ЭО с МЖ, при обеспечении заданных условий взаимодействия в зоне контакта с поверхностью МЖ, проведении измерений температуры в различных точках ЭО, выбора из условия минимизации параметров подаваемого энергетического воздействия, предлагается ввести следующие действия:
1) в качестве энергетического воздействия на МЖ, размещённую в ЭО, используют ЛИ с заданной длинной волны,
2) воздействуют на индикатор, погружённый в МЖ на заданных глубинах, измеряющий параметры воздействия ЛИ (диаметр прожигаемого отверстия и температуры) в точках, расположенных на оси луча ЛИ и на заданных расстояниях от оси ЛИ в плоскости индикатора, перпендикулярной оси ЛИ,
3) результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ и выброс массы МЖ из ЭО определяют путём непрерывного взвешивания,
4) мощность энергетического воздействия ЛИ, начальное расстояние головки излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальной массы выброса МЖ в процессе эксперимента,
5) осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительности импульсов и интервалов времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ и начальная масса МЖ одинаковы,
6) длительность импульса и время между импульсами определяют из условия минимального нагрева МЖ в объёме ЭО.
Для пояснения действий способа приведены следующие иллюстрации.
На фиг. 1 приведена схема экспериментального образца в виде прозрачной емкости с МЖ, штативом на которой закреплены индикатор и датчики измерения температур: 1 - ЭО; 2 - МЖ; 3 - штатив; 4 - кабель, для соединения датчиков измерения температуры с измерителем температуры; 5 - индикатор; 6 - датчики измерения температуры; 7 - луч ЛИ.
На фиг. 2 приведена схема экспериментального стенда: 1 - ЭО; 2 - МЖ; 3 - штатив; 4 - кабель, для соединения датчиков измерения температуры 6 с измерителем температуры 8; 5 - индикатор; 6 - датчики измерения температуры; 7 - луч ЛИ; 8 - измеритель температуры; 9 - энергетическая установка с лазерным излучателем; 10 - головка лазерного излучателя; 11 - лабораторные весы; 12 - скоростная видеокамера.
На фиг. 3 приведен вид сверху схемы расположения датчиков измерения температуры МЖ: 1 - ЭО; 2 - МЖ; 3 - штатив; 4 - кабель, для соединения датчиков измерения температуры с измерителем температуры; 5 - индикатор; 6 - датчики измерения температуры; 7 - луч ЛИ.
На фиг. 4 изображен график изменения температуры МЖ в плоскости индикатора от луча ЛИ до стенки ЭО: T - температура МЖ в плоскости индикатора; δ - двойное отклонение показаний используемого датчика измерения температуры; R - радиальное расстояние от центра луча ЛИ; T0, T1, T2, T3, T4, T5 - датчики температуры.
Описание реализация способа
1) В качестве энергетического воздействия на МЖ, размещённой в ЭО, используют ЛИ с заданной длинной волны, в процессе ЛИ измеряют параметры воздействия ЛИ, используя прозрачную ёмкость, в том числе диаметр луча ЛИ путём определения диаметров прожигаемых отверстий от воздействия проекции луча на поверхность индикатора в виде тонкой, изготовленной из материала с минимальной теплоёмкостью, на различных расстояниях от головки лазерного излучателя, как при наличии МЖ, так и без МЖ, результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ, количество пузырьков внутри МЖ, скорость и направление их движения в МЖ, определяют путём проведения съёмки скоростной видеокамерой, температуру МЖ в точках, расположенных на оси луча ЛИ и на заданных расстояниях от оси ЛИ в плоскости, перпендикулярной оси ЛИ.
В соответствии с кн. 3 (Взаимодействие лазерного излучения с веществом: учебное пособие. - M.: МИИГАиК, 2014. - 108 с.) ЛИ связано с локальным нагревом, т.е. с передачей энергии от электромагнитной волны в нагреваемое вещество. В этой связи выдвигается гипотеза, что испарение МЖ с применением воздействия ЛИ (далее и исследования с использованием сверхвысокочастотным излучением) будет более эффективно, чем другие методы, например, конвективное, акустико-конвективное, акустико-вакуумное осуществляющие воздействия на всю систему МЖ + ЭО (см. кн.1, кн. 2).
2) Мощность ЛИ, начальное расстояние от головки излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальных затрат энергии ЛИ при испарении заданной массы МЖ и отсутствия расплескивания МЖ в процессе эксперимента.
3) Осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительностью импульсов и интервалом времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ, начальные массы МЖ одинаковы.
4) Расположение и количество датчиков измерения температуры МЖ определяется из условия разности температур МЖ, которая должна превышать величину двойного отклонения показаний используемого датчика измерения температуры, например, на фиг. 4 изображен график изменения температуры МЖ в плоскости индикатора от луча ЛИ до стенки ЭО. Указанное условие выполняется для датчиков T0, T1, T2, T5, при этом использовать датчики T3, T4 не целесообразно, поскольку двойное отклонение показаний этих датчиков превышает значение разности температур МЖ.
Устройство для реализации способа
Предлагаемый способ реализован устройством по изобретению «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации» по патенту РФ № 2474816 G01N 29/02, B64G 7/00:
Устройство для моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя, включающее в свой состав экспериментальную установку в виде модельного бака, содержащего поддон для жидкого компонента ракетного топлива, датчики температуры, давления, входной и выходной патрубки, содержит два дополнительных входных патрубка, причем в один из входных патрубков экспериментальной установки установлен газоструйный излучатель, съемный поддон механически связан с пьезоэлектрическим излучателем.
К недостаткам этого технического решения при проведении экспериментальных исследований процесса испарения МЖ относятся:
- «паразитный» нагрев конструкции ЭО за счёт используемых видов воздействия;
- отсутствие измерения текущей массы жидкости.
Техническим результатом предлагаемого решения является снижение энергетических затрат, упрощение экспериментальных исследований испарения МЖ с использованием ЛИ.
Указанный технический результат в части устройства достигается за счет того, что в известное устройство, содержащее экспериментальную установку, ЭО, содержащего МЖ, датчик температуры, введены энергетическая установка с лазерным излучателем, весы, индикатор в виде тонкой пленки и штатив для закрепления индикатора и датчиков измерения температуры и их перемещения в МЖ в вертикальной плоскости для изменения расстояния от головки лазерного излучателя, а ЭО выполнен с прозрачными стенками и датчики измерения температуры МЖ расположены в плоскости индикатора и закреплены на определенном расстоянии от центра луча ЛИ.
Последовательность работы с устройством соответствует последовательности действий способа.
Предлагаемый способ и устройство позволяют отработать методы исследования испарения МЖ, направления увеличения эффективности испарения МЖ с использованием ЛИ.

Claims (2)

1. Способ моделирования процесса тепло- и массообмена при испарении модельной жидкости (МЖ) из экспериментального образца (ЭО), основанный на энергетическом воздействии с заданными параметрами на ЭО с МЖ, проведении измерений температуры в различных точках ЭО, отличающийся тем, что в качестве энергетического воздействия на МЖ, размещённую в ЭО, используют лазерное излучение (ЛИ) в заданном диапазоне длин волн, первоначально определяют температуры МЖ в плоскости индикатора, перпендикулярной оси ЛИ в направлении от центра луча ЛИ до стенки ЭО, одним датчиком измерения температуры, определяют распределение величин температуры в зависимости от удаленности от центра ЛИ, определяют количество датчиков измерения температуры в радиальном направлении из условия разности температур МЖ, которая должна превышать величину двойного отклонения используемого датчика измерения температуры, и в процессе ЛИ измеряют параметры воздействия ЛИ, используя прозрачную ёмкость, в том числе диаметр луча ЛИ путём определения диаметров прожигаемых отверстий от воздействия проекции луча на поверхность тонкой плёнки, изготовленной из материала с минимальной теплоёмкостью, на различных расстояниях от головки лазерного излучателя как при наличии МЖ, так и без МЖ, результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ, количество пузырьков внутри МЖ, скорость и направление их движения в МЖ, определяют путём проведения скоростной съёмки, мощность ЛИ, мощность энергетического воздействия ЛИ, начальное расстояние от поверхности излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальной массы выброса МЖ в процессе эксперимента, осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительности импульсами и интервалом времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ и начальная масса МЖ одинаковы, длительность импульса и время между импульсами определяют из условия минимального нагрева МЖ в объёме ЭО.
2. Устройство для реализации способа по п.1, включающее в свой состав экспериментальную установку, ЭО, содержащий МЖ, датчик температуры, отличающееся тем, что в его состав введены скоростная камера для проведения скоростной съемки, энергетическая установка с лазерным излучателем, весы, индикатор в виде тонкой пленки и штатив для закрепления индикатора и датчиков измерения температуры и их перемещения в МЖ в вертикальной плоскости для изменения расстояния от головки ЛИ, а ЭО выполнен с прозрачными стенками и датчики измерения температуры МЖ расположены в плоскости индикатора, закреплены на определенном расстоянии от центра ЛИ и перемещаются вместе со штативом.
RU2021118526A 2021-06-25 Способ моделирования процесса тепло- и массообмена при испарении жидкости из прозрачной емкости и устройство для его реализации RU2777650C1 (ru)

Publications (1)

Publication Number Publication Date
RU2777650C1 true RU2777650C1 (ru) 2022-08-08

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251852A (en) * 1991-09-06 1993-10-12 General Electric Company Thermal fuel transfer and tank isolation to reduce unusable fuel
RU2461890C2 (ru) * 2010-10-08 2012-09-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Способ моделирования процесса газификации остатков жидкого ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации
RU2474816C2 (ru) * 2010-11-30 2013-02-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации
RU2605073C1 (ru) * 2015-06-23 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации
RU2677868C1 (ru) * 2018-01-10 2019-01-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251852A (en) * 1991-09-06 1993-10-12 General Electric Company Thermal fuel transfer and tank isolation to reduce unusable fuel
RU2461890C2 (ru) * 2010-10-08 2012-09-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Способ моделирования процесса газификации остатков жидкого ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации
RU2474816C2 (ru) * 2010-11-30 2013-02-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации
RU2605073C1 (ru) * 2015-06-23 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации
RU2677868C1 (ru) * 2018-01-10 2019-01-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Similar Documents

Publication Publication Date Title
Hannoun et al. Turbulence structure near a sharp density interface
JP2017511701A (ja) 超音波試験のための装置
Supponen et al. Detailed experiments on weakly deformed cavitation bubbles
JP2017511701A5 (ru)
RU2777650C1 (ru) Способ моделирования процесса тепло- и массообмена при испарении жидкости из прозрачной емкости и устройство для его реализации
Liu et al. Bubble dynamics and pressure field characteristics of underwater detonation gas jet generated by a detonation tube
CN110160917B (zh) 接触熔化过程中表面张力及反冲力的间接测量装置及方法
Young et al. Vapor-liquid interaction in a high velocity vapor jet condensing in a coaxial water flow
Mukhopadhyay et al. Evolution of droplets of perfectly wetting liquid under the influence of thermocapillary forces
Cieslinski et al. Flow field around growing and rising vapour bubble by PIV measurement
RU2719264C1 (ru) Устройство для определения скорости испарения капли
CN114252376A (zh) 气溶胶多种单项性迁移机制的试验系统及方法
Adomeit Ignition of gases at hot surfaces under nonsteady-state conditions
Lesnyak et al. Effect of Laser Radiation on Liquid Evaporation from a Bounded Cavity
Henkes et al. Flow characterization of a detonation gun facility and first coating experiments
RU2745967C1 (ru) Способ измерения температуропроводности псевдоожиженного слоя в направлении, поперечном потоку ожижающего газа
Arkhipov et al. Special aspects of the drop evaporation during radiant heating
EROZIJE Experimental investigation of the cavitation erosion of a flat aluminum part using a sonotrode test device
RU2743936C1 (ru) Способ моделирования процесса очистки поверхности и устройство для его реализации
Piskunov et al. The features of heterogeneous water droplet evaporation in high-temperature combustion products of typical flammable liquids
Muller et al. Shock waves and cavitation bubbles in water and isooctane generated by Nd: YAG laser: experimental and theoretical results
Trushlyakov et al. Effect of laser radiation on liquid evaporation from a bounded cavity
KR101056626B1 (ko) 하이브리드 로켓 연료의 국부 후퇴율 측정방법
DK157157B (da) Fremgangsmaade til optisk bestemmelse af maetningstemperaturen for en oploesning af en given substans samt apparat til udoevelse af fremgangsmaaden
Garg Studies of the heat exchange process associated with the nucleate boiling of a liquid