RU2776155C1 - Фазовый пеленгатор - Google Patents
Фазовый пеленгатор Download PDFInfo
- Publication number
- RU2776155C1 RU2776155C1 RU2021116209A RU2021116209A RU2776155C1 RU 2776155 C1 RU2776155 C1 RU 2776155C1 RU 2021116209 A RU2021116209 A RU 2021116209A RU 2021116209 A RU2021116209 A RU 2021116209A RU 2776155 C1 RU2776155 C1 RU 2776155C1
- Authority
- RU
- Russia
- Prior art keywords
- input
- output
- inputs
- phase
- outputs
- Prior art date
Links
- 238000001514 detection method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
Images
Abstract
Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой, а также в головках самонаведения (антирадарах) в качестве датчика углового положения. Достигаемый технический результат - повышение чувствительности (дальности обнаружения) и точности пеленгации. Указанный результат достигается применением усилителя высокой частоты (УВЧ) в фазовых каналах и конформной антенной системы с расположенными по окружности антеннами, а также расположенного в центре антенной системы дополнительного датчика, подключенного к доводочному каналу, информация об угловых координатах с выхода которого используется в ближней зоне пеленгации. 1 ил.
Description
Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой, а также в головках самонаведения (антирадарах) в качестве датчика углового положения.
Известно построение фазового пеленгатора (ФП) в котором фазовый метод пеленгации реализуется многоканальным супергетеродинным приемником с двумя преобразованиями по частоте, с грубым и точным вычислением пеленгов, но с расположением антенны опорного канала в центре антенной системы (АС). (Фазовый пеленгатор. RU2682165).
Приемник этого ФП обладает повышенной помехозащищенностью и помехоустойчивостью на зеркальной и комбинационных частотах в большом динамическом диапазоне входных сигналов. Кроме этого, благодаря грубому и точному вычислению пеленга и дополнительной коррекции фазовых ошибок возможно дополнительное повышение точности пеленгации. Но пассивный фазовый пеленгатор бессилен в случае, когда отсутствует излучение источника, то есть когда, например, РЛС выключается или переходит в паузный режим работы. И даже наличие пролонгации не гарантирует достаточную точность углового сопровождения источника излучения и высокую вероятность поражения цели (для случая антирадара).
Известно также, что фазовые ошибки, то есть фазовая неидентичность каналов приемника, зависят от изменения поляризации электромагнитного излучения. То есть существуют поляризационные фазовые ошибки, которые могут существенно повлиять на точность углового сопровождения ФП.
Целью изобретения является повышение чувствительности в широком частотном диапазоне и повышение точности в ближней зоне излучения, а также при выключении излучения на пеленгуемом объекте.
Поставленная цель достигается тем, что в фазовый пеленгатор, содержащий N+1 антенну, N+1 смеситель высокой частоты (СмВЧ), усилитель высокой частоты (УВЧ), полоснопропускающий фильтр высокой частоты (ППФВЧ), N+1 предварительный усилитель промежуточной частоты (ПУПЧ), (N+2) полоснопропускающих фильтров первой промежуточной частоты (ППФПЧ1), N смесителей промежуточной частоты (СмПЧ), N полоснопропускающих фильтров второй промежуточной частоты (ППФПЧ2), причем последовательно соединенные первые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют первый фазовый приемный канал, последовательно соединенные вторые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют второй фазовый приемный канал, последовательно соединенные N-e СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют N-ый фазовый приемный канал, последовательно соединенные УВЧ, ППФВЧ, (N+1)-e СмВЧ, ПУПЧ, ППФПЧ1 образуют опорный приемный канал. Фазовый пеленгатор содержит также два перестраиваемых гетеродина (ПГ), блок управления частотой гетеродина (БУЧГ), усилитель промежуточной частоты с логарифмическим видеовыходом (УПЧЛ), два пороговых устройства (ПУ), амплитудный детектор (АД), частотный дискриминатор (ЧД), два блока аналого-цифровых преобразователей (АЦП), вычислитель промежуточной частоты (ПЧ), двухвходовую схему совпадений, электронно-программируемое постоянное запоминающее устройство (ЭППЗУ), формирователь отсчетов АЦП, вычислитель разностей фаз, блок коррекции, вычислитель несущей частоты (ВНЧ). Выходы ППФПЧ2 каждого из N фазовых приемных каналов через N входов и N выходов 1-го блока АЦП, формирователя отсчетов АЦП, вычислителя разности фаз соединены с N входами блока коррекции. Выход первого ПГ соединен с вторыми входами СмВЧ каждого фазового канала, первый выход БУЧГ соединен с входом первого ПГ, второй выход БУЧГ через второй ПГ соединен с вторым входом (N+1)-го СмВЧ опорного канала, третий выход БУЧГ соединен с первым входом ВНЧ и с первым входом ЭППЗУ. Выход вычислителя ПЧ соединен с вторым входом ВНЧ и вторым входом ЭППЗУ. (N+1)-ый выход вычислителя разности фаз соединен с третьим входом ЭППЗУ, выход которого соединен с (N+1)-м входом блока коррекции. Выход ППФПЧ1 опорного канала соединен через УПЧЛ, (N+2)-ой ППФПЧ1, АД, первый ПУ соединен с первым входом схемы совпадений, второй выход УПЧЛ через второе ПУ соединен с вторым входом двухвходовой схемы совпадений. Первый выход УПЧЛ соединен также с входом ЧД, два выхода которого через два входа и два выхода второго блока АЦП соединены с двумя входами вычислителя ПЧ, выход которого соединен с вторым входом вычислителя несущей частоты. В ФП дополнительно введены датчик доводочного канала, вычислитель пеленгов доводочного канала (ВПДК), вычислитель пеленгов фазовых каналов (ВПФК), блок управления коммутатором (БУК) и коммутатор пеленгов, два выхода которою являются выходами устройства. При этом N выходов блока коррекции соединены с соответствующими входами ВПФК, два выхода которого соединены с двумя входами коммутатора и двумя входами блока управления коммутатором, датчик доводочного канала своим выходом соединен с входом вычислителя пеленгов доводочного канала, два выхода которого соединены соответственно с третьим и четвертым входами коммутатора пеленгов и третьим и четвертым входами блока управления коммутатором, пятый вход которого соединен с вторым выходом УПЧЛ, а выход БУК соединен с пятым входом коммутатора.
На рис. 1 приведена структурная схема пеленгатора.
Фазовый пеленгатор содержит (N+1) антенн 11, …, 1N, 10 расположенных в одной плоскости, по окружности, N из которых 11, …, 1N образуют конформную антенную систему, а антенна 10 расположена в месте наименьшего затемнения. Датчик 22 доводочного канала, расположен в центре антенной системы. (N+1) УВЧ 21, …, 2N, 11, N из которых входят в фазовые приемные каналы, (N+1)-ый входит в опорный канал, (N+1) СмВЧ 31, …, 3N, 14, (N+1) ПУПЧ 41, …, 4N, 15, (N+2) ППФПЧ1 51, …, 5N, 16, 29, N СмПЧ 61, …, 6N, N ППФПЧ2 71, …, 7N, два перестраиваемых гетеродина 8,13, БУЧГ 9, ППФВЧ 12, УПЧЛ 27, два ПУ 28, 34, ЧД 30, АД 31, два блока АЦП 17, 32, вычислитель ПЧ 35, двухвходовую схему совпадений 33, ЭППЗУ 21, вычислитель несущей частоты 36, формирователь отсчетов частоты 18, вычислитель разностей фаз 19, блок коррекции 20, ВПФК 23, датчик доводочного канала 22, вычислитель пеленгов доводочного канала 24, блок управления коммутатором 25, коммутатор 26. Выход каждой антенны 11, …, 1N, 10 соединен соответственно с входами УВЧ 21, …, 2N, 11, последовательно соединенные антенна 11, УВЧ 21, СмВЧ 31, ПУПЧ 41, ППФПЧ1 51, СмПЧ 61, ППФПЧ2 71, образуют первый приемный фазовый канал, последовательно соединенные антенна 12, УВЧ 22, СмВЧ 32, ПУПЧ 42, ППФПЧ1 52, СмПЧ 62, ППФПЧ2 72, образуют второй приемный фазовый канал, последовательно соединенные антенна 1N, УВЧ 2N, СмВЧ 3N, ПУПЧ 4N, ППФПЧ1 5N, СмПЧ 6N, ППФПЧ2 7N, образуют N-ый приемный фазовый канал, последовательно соединенные антенна 10, УВЧ 11, ППФВЧ 12, СмВЧ 14, ПУПЧ 15, ППФПЧ1 16 образуют опорный приемный канал. Выход первого ПГ 8, соединен с вторыми входами СмВЧ 31 … 3N каждого приемного фазового канала. Вход первого ПГ 8 соединен с первым выходом БУЧГ 9, второй выход которого соединен через второй ПГ 13 с вторым входом (N+1)-го СмВЧ 14, третий выход БУЧГ 9 соединен с первым входом ЭППЗУ 21 и первым входом вычислителя несущей частоты 36, выход которого соединен с (N+2)-м входом блока коррекции 20, (N+1)-й вход которого соединен с выходом ЭППЗУ 21. Выход (N+1)-го ППФПЧ1 16 через УПЧЛ 27, (N+1)-й ППФПЧ1 29, АД 31, первый ПУ 34 соединен с первым входом схемы совпадений 33. Второй выход УПЧЛ 27 через второе ПУ 28 соединен с вторым входом схемы совпадений 33, выход которой соединен с (N+2)-м входом формирователя отсчетов АЦП 18 и третьим входом второго блока АЦП 32. Первый выход УПЧЛ 27 соединен также с входом ЧД 30, два выхода которого через два входа и два выхода блока АЦП 32 соединены соответственно с двумя входами вычислителя ПЧ 35, выход которого соединен с вторым входом ЭППЗУ 21 и вторым входом вычислителя несущей частоты 36. Выходы ППФПЧ2 71, … 7N каждого фазового канала соединены соответственно через N входов и N выходов первого блока АЦП 17, формирователя отсчетов АЦП 18, вычислителя разностей фаз 19 с N входами блока коррекции 20, (N+1) выход вычислителя разностей фаз 19 соединен с третьим входом ЭППЗУ21. N выходов блока коррекции 20 соединены соответственно с N входами вычислителя пеленгов 23, выход датчика доводочного канала 22 соединен с входом вычислителя пеленгов доводочного канала 24, два выхода которого соединены соответственно с первым и вторым входами коммутатора 26 и первым, вторым входами блока управления коммутатором 25. Два выхода вычислителя пеленгов 23 соединены соответственно с третьим и четвертым входами коммутатора пеленгов 26 и третьим и четвертым входами БУК 25, второй выход УПЧЛ 27 соединен с пятым входом БУК 25, выход которого соединен с пятым входом коммутатора 26, два выхода которого являются выходами устройства.
В основе работы пеленгатора заложен комплексированный метод пеленгации: фазовый на большой дальности, когда источник излучения работает стабильно, с достаточно большой мощностью, а когда излучение источника пеленгации прерывается пеленгация осуществляется доводочным каналом, который в принципе может быть выполнен в различных вариантах, например в виде активного пеленгатора или в виде теплового, реагирующего на тепловое излучения.
Особенностью комплексированного метода является то, что середина плоскости, в которой находятся антенны фазового пеленгатора занята доводочным каналом, чтобы обеспечить хорошие характеристики по точности и дальности доводочного канала. В связи с этим возникают особенности формирования и вычисления пеленгационной характеристики ФП, а также расположение антенн в антенной системе ФП. А именно в ФП применяется конформная антенная система, в которой допускается произвольное, не оптимальное с точки зрения достоверности устранения неоднозначности фазовых вычислений при формировании пеленгационной характеристики (ПХ) ФП. Под конформностью понимается достаточно произвольное расположение антенн по остаточному принципу, без соблюдения классических целочисленных соотношений проекций баз. ПХ ФП строится при настройке, формированием таблицы, а в рабочем режиме методом перебора осуществляется отыскание максимума функции правдоподобия при значениях комплексных чисел, соответствующих определенному направлению, то есть пеленгу цели (ИИ). Комплексность чисел, то есть фазовых и амплитудных величин, формируемых блоком АЦП, предполагается на линейном участке динамического диапазона приемника. Когда приемник входит в ограничение, пеленгация осуществляется только по фазовым отсчетам.
В доводочном канале (ДК) ПХ формируется в отсутствие излучения, то есть в отсутствие сигнала цели, например по тепловому излучению ИИ. Переход на ПХ доводочного канала осуществляется коммутацией с ПХ ФП на ПХ ДК по принципу: угловые координаты по ПХ ФП и по ПХ ДК близки между собой и мощность сигнала, оцениваемая по логарифмическому выходу УПЧЛ, достаточно велика, что свидетельствует о близости ФП к ИИ по дальности или по мощности, оцениваемой по доводочному каналу, если радиоизлучение от ИИ отсутствует. В любом случае на ближнем участке пеленгация осуществляется по доводочному каналу, так как его характеристики по точности и достоверности сопровождения выше, чем собственно ФП.
В основе работы фазового пеленгатора заложен фазовый метод пеленгации, но с особенностями построения ПХ. На этапе настройке ФП осуществляется с определенным дискретом по углам в вертикальной и горизонтальной плоскостях отклонение антенной системы (АС) вместе с ФП (АС неподвижна) по растровому принципу с запоминанием пространственного углового положения и амплитудно-фазового состояния в ЭППЗУ 21, а также вычисленной несущей частоты сигнала. Таким образом, при настройке формируется мощная (огромная) многомерная таблица состояний по амплитуде, фазе, частоте сигнала и по угловому положению ИИ, используемого при настройке. Пеленгатор доводочного канала настраивается по соответствующему его типу источнику излучения (тепловому, визуальному и т.д.) и соответственно строится ПХ ДК.
В качестве приемного устройства в составе пеленгатора используется супергетеродинный приемник с двумя преобразованиями частоты гетеродинами, частоты которых разнесены на величину второй промежуточной частоты. Особенностью такого приемника является высокая помехоустойчивость и помехозащищенность в частотном и динамическом диапазонах входного сигнала и защитой от приема на зеркальной частоте. Двойное преобразование на фиксированную ПЧ позволяет упростить цифровые преобразования в АЦП.
Фазовый пеленгатор работает следующим образом. Электромагнитная волна преобразуется входными антеннами 11, …, 1N, 10 в гармонические когерентные колебания, разности фаз между которыми зависят от направления на ИИ по формуле:
Δϕ=(2πД)/λsinα, где α - расстояние между антеннами, λ - угловое направление на пеленгуемый ИИ.
В случае применения конформной АС целесообразно использовать не только фазу, но и амплитуду сигнала. В этом случае повышается достоверность и точность пеленгации. С выходов антенн 1i фазовых каналов сигналы усиливаются УВЧ 2i, преобразуются по частоте на первую ПЧ в СмВЧ 3i, усиливаются ПУПЧ 4i, фильтруются ППФПЧ1 5i, преобразуются в СмПЧ 6i на вторую ПЧ и фильтруются ППФПЧ2 7i с узкой полосой пропускания. С выхода антенны 10 опорного канала сигнал усиливается УВЧ 11, фильтруется ППФВЧ 12, преобразуется по частоте в СмВЧ 14 на ПЧ сдвинутую относительно ПЧ фазовых каналов на величину ПЧ2, усиливается ПУПЧ 15 и фильтруются ППФПЧ1 16 с соответствующей полосой пропускания. Гетеродины ПГ1 8 и ПГ2 13 управляются БУЧГ 9, кроме этого с третьего выхода БУЧГ 9 код частоты гетеродина поступает на вход ЭППЗУ 21 для фиксации записи амплитуды и фазы векторов по фазовым каналам и вычисления несущей частоты как при настройке ФП, так и в рабочем режиме при обнаружении сигнала.
С выхода ППФПЧ1 16 сигнал ПЧ, совпадающий по времени прихода с сигналами в фазовых каналах, усиливается УПЧЛ 27 и поступает на вход ЧД 30 и на вход ППФПЧ1 29 для фильтрации по ПЧ после ограничения, затем поступает на гетеродинные входы СмПЧ 6i всех фазовых приемных каналов и на вход АД 31, а затем на вход ПУ 34. С детекторного видеовыхода УПЧЛ 27 видеосигнал поступает на вход ПУ 28. При превышении порогов в ПУ 28 и ПУ 34 в схеме совпадений происходит формирование логического сигнала обнаружения и синхронизация в формирователе отсчетов АЦП 17 и в блоке АЦП 32. В ЧД 30 формируются импульсные аналоговые сигналы, пропорциональные и , а в вычислителе ПЧ 35 в цифровом виде формируется, с использованием октантной логики и вычисления , линейная характеристика измерителя ПЧ, однозначная во всей полосе пропускания ППФПЧ1 16.
Формирование ПХ собственно фазового пеленгатора происходит следующим образом.
С выходов ППФПЧ2 71, … 7N каждого фазового приемного канала фильтрованные ПХ сигналы поступают на входы блока АЦП 17, где с определенной тактовой частотой преобразуются в цифровые сигналы, а затем в формирователе отсчетов АЦП 18 запоминаются по импульсу синхронизации, формируемую на выходе схемы совпадений 33, для вычисления разностей фаз Δϕij в блоке вычисления разностей фаз 19 по кольцу, образованному конформной АС. Далее в блоке коррекции 20 осуществляется в разнофазном направлении формирование кодов коррекции и их запоминание в ЭППЗУ 21. Затем в режиме настройки осуществляется в растровом формате в необходимом секторе углов в передней полусфере прохождение с определенным дискретом углового пространства и запоминание в ЭППЗУ 21 задаваемых пеленгов, несущей частоты и состояний векторов, определяющих фазовые пространства.
В рабочем режиме осуществляется дискретная перестройка гетеродинов по частоте, обнаружение сигнала, остановка гетеродинов, формирование на выходах АЦП 18 отсчетов, вычисление Δϕ в вычислителе разностей фаз 19, их коррекция в блоке коррекции 20, затем перебор значений и сравнение с запомненной таблицей (вычисление функции правдоподобия) и формирование пеленгов в соответствующих угловым координатам, соответствующих максимальному значению и достигшему порогового значения но функции правдоподобия. При достоверном формировании функции правдоподобия точность пеленгации будет определяться примерно половиной дискрета растровой развертки по пеленгам, с которым осуществляется формирование таблицы при настройке пеленгатора в вычислитель пеленга 23.
Задача доводочного канала - сформировать пеленги в вертикальной и горизонтальной плоскостях в ближней зоне и с достаточно высокой точностью (по крайней мере, выше, чем точность ФП). В качестве доводочного канала можно использовать лазерный, оптический, с активным каналом пеленгатор, а также с тепловой головкой определения координат. Соответствующий типу пеленгатора датчик располагается в центре АС ФП, что дает возможность получить максимальную точность пеленгации доводочным каналом. С датчика доводочного канала 22 сигнал поступает на вычислитель пеленга доводочного канала 24, который формирует угловые координаты в виде отклонения от центральной оси ФП в вертикальной и горизонтальной плоскостях. Эти координаты юстируются при настройке ФП по ПХ. Угловые координаты вычислителя пеленгов 23 и ВПДК 24 поступают на соответствующие входы БУК 25 и коммутатора 26. БУК 25 формирует команду, по которой на выходы коммутатора 26 проходят угловые координаты вычислителя 23 или ВПДК 24. Для предотвращения перехода на формирование по доводочному каналу на пятый вход БУК приходит сигнал с логарифмического видеовыхода УПЧЛ 27.
Claims (1)
- Фазовый пеленгатор, содержащий N+1 антенн, N+1 смесителей высокой частоты (СмВЧ), N+1 предварительных усилителей промежуточной частоты (ПУПЧ), N+2 полоснопропускающих фильтров первой промежуточной частоты (ППФПЧ1), усилитель высокой частоты (УВЧ), полоснопропускающий фильтр высокой частоты (ППФВЧ), N смесителей промежуточной частоты (СмПЧ), N полоснопропускающих фильтров второй промежуточной частоты (ППФПЧ2), причем последовательно соединенные первые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют первый фазовый приемный канал, последовательно соединенные вторые СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют второй фазовый приемный канал, последовательно соединенные N-e СмВЧ, ПУПЧ, ППФПЧ1, СмПЧ, ППФПЧ2 образуют N-й фазовый приемный канал, последовательно соединенные УВЧ, ППФВЧ, (N+1)-e СмВЧ, ПУПЧ, ППФПЧ1 образуют опорный приемный канал, а также содержащий два перестраиваемых гетеродина (ПГ), блок управления частотой гетеродина (БУЧГ), усилитель промежуточной частоты с логарифмическим видеовыходом (УПЧЛ), два пороговых устройства (ПУ), частотный дискриминатор (ЧД), два блока аналого-цифровых преобразователей (АЦП), вычислитель промежуточной частоты (ПЧ), амплитудный детектор (АД), двухвходовую схему совпадений, два блока АЦП, формирователь отсчетов АЦП, вычислитель разностей фаз, вычислитель несущей частоты (ВНЧ), электронно-программируемое постоянное запоминающее устройство (ЭППЗУ), блок коррекции, причем выходы ППФПЧ2 каждого из N фазовых приемных каналов через N входов и N выходов 1-го блока АЦП, формирователя отсчетов АЦП, вычислителя разности фаз соединены с N входами блока коррекции, первый выход БУЧГ соединен с входом первого ПГ, второй выход БУЧГ через второй ПГ соединен с вторым входом (N+1)-го СмВЧ опорного канала, третий выход БУЧГ соединен с первым входом ВНЧ и первым входом ЭППЗУ, первый выход УПЧЛ через первый ПУ соединен с первым входом схемы совпадений, второй выход УПЧЛ через (N+2)-й ППФПЧ1, АД и второе ПУ соединен с вторым входом схемы совпадений, выход (N+2)-го ППФПЧ1 дополнительно соединен с вторыми входами СмПЧ каждого из N фазовых приемных каналов, второй выход УПЧЛ соединен также с входом ЧД, два выхода которого через два входа и два выхода второго блока АЦП соединены с двумя входами вычислителя ПЧ, выход которого соединен с вторым входом ЭППЗУ и вторым входом ВНЧ, выход двухвходовой схемы совпадений соединен с (N+1)-м входом формирователя отсчетов АЦП и третьим входом второго блока АЦП, (N-1)-й выход вычислителя разности фаз соединен с третьим входом ЭППЗУ, выход которого соединен с (N+1)-м входом блока коррекции, отличающийся тем, что дополнительно введены вычислитель пеленгов (ВП), блок управления коммутатором (БУК), датчик доводочного канала, расположенный в центре антенной системы ФП, вычислитель пеленгов доводочного канала (ВПДК), коммутатор, два выхода которого являются выходами устройства, при этом N выходов блока коррекции соединены с N входами вычислителя пеленгов, два выхода которого соединены соответственно с двумя входами БУК и двумя входами коммутатора, датчик доводочного канала соединен с входом ВПДК, два выхода которого соединены соответственно с третьим и четвертым входами коммутатора и с третьим и четвертым входами БУК, выход которого соединен с пятым входом коммутатора, а пятый вход БУК соединен с первым выходом УПЧЛ.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2776155C1 true RU2776155C1 (ru) | 2022-07-14 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117826071A (zh) * | 2024-03-06 | 2024-04-05 | 成都大公博创信息技术有限公司 | 基于中频触发实现多采集模块宽带校准的测向系统及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6262278A (ja) * | 1985-09-11 | 1987-03-18 | Japan Radio Co Ltd | 方向探知機 |
US5148180A (en) * | 1991-07-15 | 1992-09-15 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for passive direction finding with sideband determination |
RU2282872C1 (ru) * | 2005-03-21 | 2006-08-27 | Государственное образовательное учреждение высшего профессионального образования Военный институт радиоэлектроники | Фазовый пеленгатор |
RU2450283C1 (ru) * | 2011-02-08 | 2012-05-10 | Открытое акционерное общество "Авангард" | Фазовый способ пеленгации и фазовый пеленгатор для его осуществления |
RU2518428C2 (ru) * | 2012-06-26 | 2014-06-10 | Закрытое акционерное общество "Комплексный технический сервис" | Фазовый способ пеленгации и фазовый пеленгатор для его осуществления |
RU2526533C2 (ru) * | 2012-12-03 | 2014-08-27 | Открытое акционерное общество "Омский научно-исследовательский институт приборостроения" (ОАО "ОНИИП") | Фазовый пеленгатор |
RU2618522C1 (ru) * | 2016-03-29 | 2017-05-04 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Фазовый пеленгатор |
RU2682165C1 (ru) * | 2018-02-14 | 2019-03-15 | Акционерное общество "Центральное конструкторское бюро автоматики" | Фазовый пеленгатор |
CN209659271U (zh) * | 2019-03-13 | 2019-11-19 | 广州市传洲电子科技有限公司 | 锁相环无线电测向机 |
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6262278A (ja) * | 1985-09-11 | 1987-03-18 | Japan Radio Co Ltd | 方向探知機 |
US5148180A (en) * | 1991-07-15 | 1992-09-15 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for passive direction finding with sideband determination |
RU2282872C1 (ru) * | 2005-03-21 | 2006-08-27 | Государственное образовательное учреждение высшего профессионального образования Военный институт радиоэлектроники | Фазовый пеленгатор |
RU2450283C1 (ru) * | 2011-02-08 | 2012-05-10 | Открытое акционерное общество "Авангард" | Фазовый способ пеленгации и фазовый пеленгатор для его осуществления |
RU2518428C2 (ru) * | 2012-06-26 | 2014-06-10 | Закрытое акционерное общество "Комплексный технический сервис" | Фазовый способ пеленгации и фазовый пеленгатор для его осуществления |
RU2526533C2 (ru) * | 2012-12-03 | 2014-08-27 | Открытое акционерное общество "Омский научно-исследовательский институт приборостроения" (ОАО "ОНИИП") | Фазовый пеленгатор |
RU2618522C1 (ru) * | 2016-03-29 | 2017-05-04 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Фазовый пеленгатор |
RU2682165C1 (ru) * | 2018-02-14 | 2019-03-15 | Акционерное общество "Центральное конструкторское бюро автоматики" | Фазовый пеленгатор |
CN209659271U (zh) * | 2019-03-13 | 2019-11-19 | 广州市传洲电子科技有限公司 | 锁相环无线电测向机 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117826071A (zh) * | 2024-03-06 | 2024-04-05 | 成都大公博创信息技术有限公司 | 基于中频触发实现多采集模块宽带校准的测向系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4328499A (en) | Radio direction finding systems | |
US4789861A (en) | Method and apparatus for detecting an out of beam condition in a monopulse radar receiver | |
US4264907A (en) | Rolling dual mode missile | |
US7466262B2 (en) | Positioning system with a sparse antenna array | |
US5572213A (en) | Parameter encoder architecture | |
KR100979294B1 (ko) | 전자전 수신기, 전자전 수신 시스템 및 레이더 신호의 탐색방법 | |
US5448248A (en) | Adaptive radio direction finding system | |
WO2001059474A2 (en) | Precision radar altimeter with terrain feature coordinate location capability | |
RU2434240C1 (ru) | Способ определения направления на источник радиоизлучения и пеленгатор | |
RU2315332C1 (ru) | Радиолокационная станция | |
US4591862A (en) | Monopulse receiver for a four arm log spiral antenna | |
RU2776155C1 (ru) | Фазовый пеленгатор | |
RU2449306C1 (ru) | Фазовый пеленгатор | |
GB2064257A (en) | Radio direction finders | |
CA1159934A (en) | Cancellation of group delay error by dual speed of rotation | |
RU2317562C2 (ru) | Способ измерения угловых координат цели и устройство для его осуществления | |
US2593071A (en) | Object motion indicating system | |
RU2267137C1 (ru) | Моноимпульсная рлс | |
RU2505831C2 (ru) | Радиопеленгатор | |
RU2543065C1 (ru) | Фазовый пеленгатор | |
RU2682165C1 (ru) | Фазовый пеленгатор | |
RU2386977C1 (ru) | Способ пеленгации и пеленгатор для его осуществления | |
US5160934A (en) | Cross-switched MICRAD seeker | |
RU2321015C1 (ru) | Способ пеленгации и пеленгатор для его осуществления | |
US3971019A (en) | Receiver apparatus |