RU2771553C1 - Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов - Google Patents

Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов Download PDF

Info

Publication number
RU2771553C1
RU2771553C1 RU2021112925A RU2021112925A RU2771553C1 RU 2771553 C1 RU2771553 C1 RU 2771553C1 RU 2021112925 A RU2021112925 A RU 2021112925A RU 2021112925 A RU2021112925 A RU 2021112925A RU 2771553 C1 RU2771553 C1 RU 2771553C1
Authority
RU
Russia
Prior art keywords
heat
layers
shielding
coating
airframe
Prior art date
Application number
RU2021112925A
Other languages
English (en)
Inventor
Фарид Хабибуллович Абдрахманов
Станислав Анатольевич Койтов
Дмитрий Владимирович Лейман
Владимир Николаевич Мельников
Артем Анатольевич Трофимов
Анна Игоревна Бекетова
Original Assignee
Акционерное общество "Опытное конструкторское бюро "Новатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Опытное конструкторское бюро "Новатор" filed Critical Акционерное общество "Опытное конструкторское бюро "Новатор"
Priority to RU2021112925A priority Critical patent/RU2771553C1/ru
Application granted granted Critical
Publication of RU2771553C1 publication Critical patent/RU2771553C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/58Thermal protection, e.g. heat shields

Abstract

Изобретение относится к авиационной и ракетной технике, в частности для наружной тепловой защиты. Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов включает несколько теплоизоляционных слоёв. Один слой выполнен из органического или неорганического композиционного материала с тугоплавким наполнителем из неорганических газонаполненных или вакуумированных микросфер, обладающий низкой плотностью. Другой теплозащитный слой выполнен из эрозионно-стойкого абляционного армированного композиционного материала, состоящего из полимерного связующего и двух видов тугоплавких наполнителей, волоконного наполнителя, образующего ткань объемного плетения, и нанодисперсного порошка оксидов или карбидов переходных металлов, на который нанесено защитное лакокрасочное покрытие интумесцентного типа. Слои прочно соединены между собой. Достигается снижение массы. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к авиационной и ракетной технике и может быть использовано для наружной тепловой защиты элементов планера высокоскоростных летательных аппаратов в условиях аэродинамического нагрева и высоких скоростных потоков, реализующихся при движении в плотных слоях атмосферы.
Одним из вариантов обеспечения тепловой защиты является нанесение на защищаемую поверхность теплозащитного покрытия (ТЗП) в виде слоя композиционного материала, содержащего разлагаемый наполнитель (патент РФ №2400396 «Способ тепловой защиты передней кромки летательного аппарата» МПК В64С 1/38, опубл. 27.09.2010 г. Бюл. №27) или, наоборот, композиционного материала, содержащего наполнитель из ткани объемного плетения, на основе тугоплавкого волокна, и органической разлагаемой матрицы (патент РФ №2593184 «Теплозащитное покрытие корпуса летательного аппарата» МПК B64G 1/00, B64G 1/58, опубл. 27.07.2016 г. Бюл. №21). Однако подобные однородные покрытия в настоящее время работают на пределе своих физических возможностей и дальнейшее увеличение теплозащитной способности и эрозионной стойкости связано с увеличением толщины покрытия, что неизбежно приводит к увеличению массы ТЗП.
Расширением функциональных возможностей теплозащитного покрытия является многослойная конструкция, где слои обладают индивидуальными теплофизическими характеристиками и несут различную функциональную нагрузку в общей схеме защиты планера от внешнего воздействия.
По такой схеме решено теплозащитное покрытие, защищенное патентом РФ №2249785 «Активное теплозащитное покрытие динамического объекта от поражающих потоков большой плотности» (МПК F42В 12/76, B64G 1/58, В32В 15/16, опубл. 10.04.2005 г. Бюл. №10).
Теплозащитное покрытие выполнено из трех слоев, внешний слой выполнен из герметика, наполненного микробаллонами, среднего слоя, выполненного в виде абляционного покрытия с микробаллонами, армированного сеткой базальтового волокна и нижнего слоя, выполненного в виде сотовой структуры из медной фольги. Главной целью покрытия является защита головной части от поражающих высокоэнергетических факторов, а не обеспечение заданного теплового режима внутри изделия при его работе по прямому назначению. Именно для демпфирования возможного удара применяются соты из меди. Однако медь имеет большую плотность (8,92 г/см3) и теплопроводность, что приводит к большой массе теплозащитной системы и снижает ее эффективность при длительном полете с гиперзвуковыми скоростями в атмосфере - по мере разрушения абляционных слоев сотовая медная структура быстро прогреется и начнет нагревать корпус изделия, что может привести как к потере механической прочности корпуса, так и к отказу оборудования при росте температуры внутри отсеков.
Наиболее близким по технической сущности и достигаемому результату (рассматривается как прототип) является патент РФ №2724188 «Теплозащитное покрытие корпуса высокоскоростного летательного аппарата (варианты)» МПК В64С 1/38, B64G 1/58, F42B 15/34, опубл. 22.06.2020 г., Бюл. №18.
Теплозащитное покрытие корпуса высокоскоростного летательного аппарата в патенте РФ №2724188 предлагается выполнять многослойным, состоящим из композиционного материала, одного и более слоев теплоизоляционного материала, причем теплозащитный и теплоизоляционный слои могут быть размещены с зазором как между собой, так и с силовым корпусом. В зазоре могут быть расположены один и более металлических экранов с высокой отражательной и низкой излучательной способностями. Основная цель предлагаемого теплозащитного покрытия корпуса высокоскоростного летательного аппарата (ВЛА) или возвращаемого космического аппарата состоит в обеспечении заданного теплового режима, прочностных характеристик и работоспособности ВЛА без введения дополнительных сложных систем охлаждения и без увеличения толщины пакета тепловой защиты.
Однако выполнение пакета тепловой защиты высокоскоростного летательного аппарата, движущегося в плотных слоях атмосферы, с зазором между слоями неизбежно приведет к перегреву наружных теплозащитных слоев пакета из-за замедленной теплопередачи через воздушную прослойку, что будет способствовать увеличению скорости термоэрозионного разрушения внешних слоев с перспективой прорыва раскаленных газов в зазор между слоями и перегреву несущего корпуса. Перегрев не позволит сохранить благоприятный тепловой режим внутреннему оборудованию, а также может привести к разрушению летательного аппарата.
Заявляемое изобретение направлено на решение следующей задачи -обеспечение температурного режима работоспособности несущей конструкции и оборудования высокоскоростного летательного аппарата в условиях интенсивного аэродинамического нагрева и высоких скоростных потоков при минимально возможной массе теплозащитного покрытия.
Минимизация массы комплексного теплозащитного покрытия позволяет увеличить полезную нагрузку или количество топлива, что приведет к увеличению времени работы летательного аппарата или его эффективности при применении.
Поставленная задача решается применением многослойного теплозащитного покрытия, состоящего из следующих слоев:
- внутренний теплоизоляционный слой низкой плотности (менее 1 г/см3), состоящий из органического или неорганического композиционного материала с тугоплавким наполнителем из неорганических газонаполненных или вакуумированных микросфер. Представителем данной группы материалов является теплозащитное покрытие плотностью (0,55-10,6) г/см3 на основе силоксанового каучука блок-сополимера лестосила СМ ТУ 20.17.10-216-00151963-2017 с наполнением микросферами МС-ВП-А9 ТУ 6-48-91-92;
- наружный эрозионно-стойкий абляционный теплозащитный материал (плотностью не более 2 г/см3), состоящий из полимерного связующего и двух видов тугоплавких наполнителей - волоконного, образующего ткань объемного плетения и нанодисперсного порошка оксидов или карбидов переходных металлов. Примерами абляционных теплозащитных материалов являются стеклопластики типа ТЗМКТ-1 и ТЗМКТ-8, плотностью от 1,45 до 1,65 г/см3, изготавливаемые на основе прошивных полотен и многослойных тканей из кремнеземных нитей и полимерных связующих ФН и ЭДТ-10 на основе фенолформальдегидных и эпоксидных смол;
- защитный слой лакокрасочного покрытия (ЛКП) вспучивающегося (интумесцентного) типа. Подобные покрытия марок НЕОФЛЭЙМ® ТУ, 20.30.22-063-66828143-2020, ВУП-2 ТУ 2316-002-66828143-2016 повышают огнестойкость металлических конструкций до 60-90 минут при воздействии открытого пламени.
Крепление отдельных частей многослойного теплозащитного покрытия осуществляется как через термостойкие клеевые составы, так и механически.
На фиг. 1 представлена схема комплексного теплозащитного покрытия, где
1 - защищаемая поверхность (металлический корпус изделия),
2 - теплоизоляционный композиционный материал низкой плотности,
3 - эрозионно-стойкий абляционный армированный теплозащитный материал,
4 - защитное лакокрасочное покрытие интумесцентного типа.
Принцип работы комплексного теплозащитного покрытия следующий:
- теплоизоляционный материал низкой плотности 2 снижает скорость распространения теплового фронта к металлическому корпусу 1;
- эрозионно-стойкий абляционный армированный теплозащитный материал изолирует теплоизоляционный материал от воздействия высокотемпературного потока, возникающего в условиях интенсивного аэродинамического нагрева и высоких скоростных напоров при полете аппарата в плотных слоях атмосферы;
- ЛКП интумесцентного типа увеличивает длительность работы эрозионно-стойкого абляционного армированного теплозащитного материала на начальном участке полета в плотных слоях атмосферы за счет образования, последующего разрушения и уноса негорючего и твердого вспененного слоя (кокса) с коэффициентом теплопередачи, близкому к данному показателю для воздуха, который действует подобно физическому барьеру для продвижения теплового фронта от раскаленного газа к нижележащим слоям теплозащитного покрытия и защищаемой поверхности, при этом происходит уменьшение теплопередачи приблизительно в 100 раз.
Снижение интенсивности теплового потока, воздействующего на поверхность аппарата, в процессе прогрева и вспучивания интумесцентного ЛКП увеличивает время накопления теплоты в поверхностном слое теплозащитного покрытия, а. также замедляет развитие и скорость абляционных процессов в эрозионно-стойком абляционном теплозащитном материале, что позволяет сделать данный слой тоньше.
Одновременное уменьшение толщины эрозионно-стойкого абляционного армированного теплозащитного материала и применение теплоизоляционного материала низкой плотности позволяет уменьшить общую массу теплозащитной системы при увеличении ее общей эффективности, что существенно увеличивает время работы высокоскоростного аппарата при одновременном обеспечении температурного режима работоспособности несущей конструкции и внутреннего оборудования.
Таким образом, по отношению к прототипу (патент РФ №2724188) заявляемое изобретение при наличии общих признаков (многослойность, наличие теплозащитного и теплоизоляционного слоев) обладает рядом отличительных, уникальных признаков, обеспечивающих работоспособность летательного аппарата именно в плотных слоях атмосферы - наличие внешнего слоя интумесцентного типа, снижающего тепловую нагрузку, замедляющего развитие абляционных процессов в теплозащитном слое и повышающего его жизнеспособность; снижение удельной массы покрытия за счет перераспределения толщин слоев в сторону материала малой плотности; прочное соединение слоев между собой, обеспечивающее стойкость многослойного покрытия к высоким динамическим нагрузкам (скоростному напору набегающего воздушного потока).
Промышленная применимость заявляемого изобретения, а именно комплексного теплозащитного покрытия металлических конструкций планера высокоскоростных летательных аппаратов, подтверждена при испытаниях образцов наружной тепловой защиты изделий на плазмотроне и аэродинамической трубе с моделированием натурных тепловых потоков, а также успешными летными испытаниями.

Claims (2)

1. Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов, включающее теплоизоляционный и теплозащитный слои, отличающееся тем, что теплоизоляционный слой выполнен из органического или неорганического композиционного материала с тугоплавким наполнителем из неорганических газонаполненных или вакуумированных микросфер и обладает низкой плотностью, а теплозащитный слой выполнен из эрозионно-стойкого абляционного армированного композиционного материала, состоящего из полимерного связующего и двух видов тугоплавких наполнителей, волоконного, образующего ткань объемного плетения, и нанодисперсного порошка оксидов или карбидов переходных металлов, дополнительно на теплозащитный слой нанесено защитное лакокрасочное покрытие интумесцентного типа, при этом слои прочно соединены между собой.
2. Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов по п. 1, отличающееся тем, что слои соединены между собой либо через термостойкие клеевые составы, либо механически.
RU2021112925A 2021-05-04 2021-05-04 Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов RU2771553C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021112925A RU2771553C1 (ru) 2021-05-04 2021-05-04 Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021112925A RU2771553C1 (ru) 2021-05-04 2021-05-04 Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов

Publications (1)

Publication Number Publication Date
RU2771553C1 true RU2771553C1 (ru) 2022-05-05

Family

ID=81458971

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021112925A RU2771553C1 (ru) 2021-05-04 2021-05-04 Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов

Country Status (1)

Country Link
RU (1) RU2771553C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547628A (en) * 1993-03-09 1996-08-20 Societe Europeenne De Propulsion Method of manufacturing thermal shielding elements for space planes
US9283711B1 (en) * 2009-08-31 2016-03-15 The Boeing Company Hybrid ablative thermal protection systems and associated methods
RU2679530C1 (ru) * 2018-05-04 2019-02-11 Александр Владимирович Шатов Многофункциональная комбинированная теплоизоляционная система
RU2724188C1 (ru) * 2019-08-07 2020-06-22 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Теплозащитное покрытие корпуса высокоскоростного летательного аппарата (варианты)
RU2728049C1 (ru) * 2019-09-13 2020-07-28 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Теплозащитное покрытие корпуса высокоскоростного летательного аппарата

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547628A (en) * 1993-03-09 1996-08-20 Societe Europeenne De Propulsion Method of manufacturing thermal shielding elements for space planes
US9283711B1 (en) * 2009-08-31 2016-03-15 The Boeing Company Hybrid ablative thermal protection systems and associated methods
RU2679530C1 (ru) * 2018-05-04 2019-02-11 Александр Владимирович Шатов Многофункциональная комбинированная теплоизоляционная система
RU2724188C1 (ru) * 2019-08-07 2020-06-22 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Теплозащитное покрытие корпуса высокоскоростного летательного аппарата (варианты)
RU2728049C1 (ru) * 2019-09-13 2020-07-28 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Теплозащитное покрытие корпуса высокоскоростного летательного аппарата

Similar Documents

Publication Publication Date Title
US7866248B2 (en) Encapsulated ceramic composite armor
Christiansen et al. Ballistic limit equations for spacecraft shielding
Schonberg Protecting Earth-orbiting spacecraft against micro-meteoroid/orbital debris impact damage using composite structural systems and materials: An overview
US4428998A (en) Laminated shield for missile structures and substructures
US8590437B2 (en) Blast effect mitigating assembly using aerogels
Zhang et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields
Lambert Hypervelocity impacts and damage laws
EP3668795B1 (en) Multi-functional protective assemblies, systems including protective assemblies, and related methods
US11192667B2 (en) Multi-layered self-healing material system towards impact mitigation
JP3732126B2 (ja) 熱防御構造体
Koo et al. Silicone polymer composites for thermal protection system: fiber reinforcements and microstructures
Christiansen et al. Penetration equations for thermal protection materials
Pai et al. Advances in the whipple shield design and development: A brief review
RU2771553C1 (ru) Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов
Ren et al. A reactive material double-bumper shield for centimeter sized projectile
RU2310588C1 (ru) Активное теплозащитное покрытие корпуса летательного аппарата для защиты от воздействия объемных источников тепла и высокоскоростных кинетических ударников
Ellis et al. Ballistic impact resistance of SMA and spectra hybrid graphite composites
Schonberg et al. Spacecraft wall design for increased protection against penetration by orbital debris impacts
RU2759035C1 (ru) Двухслойное теплозащитное покрытие из композиционных материалов для защиты металлических конструкций планеров гиперзвуковых летательных аппаратов
RU2622181C1 (ru) Тепловая защита негерметичного отсека двигательной установки летательного аппарата
Schonberg Using composite materials to protect spacecraft against orbital debris impact damage
WO2008097375A2 (en) Encapsulated ceramic composite armor
Klinkrad et al. Hypervelocity impact damage assessment and protection techniques
Lewis et al. Effects of melt-layer formation on ablative materials exposed to highly aluminized rocket motor plumes
CN216770350U (zh) 一种复合填充的空间点阵激光防护结构