RU2769970C1 - Способ поляриметрической селекции ложных воздушных целей - Google Patents

Способ поляриметрической селекции ложных воздушных целей Download PDF

Info

Publication number
RU2769970C1
RU2769970C1 RU2020143283A RU2020143283A RU2769970C1 RU 2769970 C1 RU2769970 C1 RU 2769970C1 RU 2020143283 A RU2020143283 A RU 2020143283A RU 2020143283 A RU2020143283 A RU 2020143283A RU 2769970 C1 RU2769970 C1 RU 2769970C1
Authority
RU
Russia
Prior art keywords
target
targets
doppler
portraits
polarimetric
Prior art date
Application number
RU2020143283A
Other languages
English (en)
Inventor
Дмитрий Валерьевич Амбросов
Николай Александрович Меньших
Виктор Андреевич Кузнецов
Игорь Сергеевич Веретенников
Эдуард Викторович Молодцов
Original Assignee
Федеральное государственное автономное учреждение "Военный инновационный технополис "ЭРА"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное учреждение "Военный инновационный технополис "ЭРА" filed Critical Федеральное государственное автономное учреждение "Военный инновационный технополис "ЭРА"
Priority to RU2020143283A priority Critical patent/RU2769970C1/ru
Application granted granted Critical
Publication of RU2769970C1 publication Critical patent/RU2769970C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к методам селекции автономных ложных воздушных целей и может быть использовано для селекции ложных воздушных целей по поляризационным характеристикам отраженных сигналов в многоканальных импульсно-доплеровских радиолокационных системах обнаружения и сопровождения. Техническим результатом изобретения является повышение вероятности правильной селекции автономных ложных воздушных целей типа MALD за счет дополнительного учета поляризационных отличий при возникновении эффекта вторичной доплеровской модуляции зондирующего сигнала, отраженного от авиационной силовой установки, а также применения алгоритма кластеризации, например k-means или Fuzzy C-means, при принятии решения об истинности воздушной цели. В заявленном способе в направлении каждой выбранной цели излучают поочередно приемопередающими каналами радиолокационной станции с двумя активными фазированными антенными решетками с горизонтальной и вертикальной поляризациями электромагнитных волн по две импульсные последовательности: первая со ступенчатой частотной модуляцией для формирования дальностного портрета высокого разрешения и вторая с линейной частотной модуляцией для формирования спектрально-доплеровского портрета m-й цели. При этом ведут одновременное сопровождение М целей методом последовательного обращения лучей двух активных фазированных антенных решеток с горизонтальной и вертикальной поляризациями электромагнитных волн к каждой цели. Двумя каналами одновременно принимают отраженные от m-й цели импульсные последовательности со ступенчатой частотной модуляцией и с линейной частотной модуляцией, амплитуды и доплеровские частоты которых запоминают в оперативном запоминающем устройстве в соответствующих частных двумерных массивах данных. Из частных массивов для отдельных m-х целей формируют трехмерный генеральный массив W, из которого для каждой m-й цели получают дальностные портреты высокого разрешения и спектрально-доплеровские портреты на четырех поляризациях (двух коллинеарных и двух ортогональных), на основании которых формируют многочастотные поляриметрические дальностно-доплеровские радиолокационные портреты. Далее определяют в каждом элементе разрешения оценки суммарной разности многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов, вычисляют их средние величины для m-й цели в пределах частных массивов данных и принимают решение об истинности воздушной цели. При этом используют алгоритм кластеризации, например k-means, в котором начальные центры кластеров истинной и ложной цели задают как максимум и минимум всей выборки средних величин суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов М целей, распределяют их средние величины на два кластера - истинных и ложных воздушных целей - по критерию наименьшего расстояния до центров масс кластеров, пересчет центров кластеров производят итеративно до тех пор, пока они не станут постоянными величинами. 3 ил.

Description

Изобретение относится к методам селекции автономных ложных воздушных целей и может быть использовано для селекции ложных воздушных целей по поляризационным характеристикам отраженных сигналов в многоканальных импульсно-доплеровских радиолокационных системах обнаружения и сопровождения.
Наиболее близким по технической сущности к заявленному способу (прототип) является способ поляриметрической селекции ложных воздушных целей (пат. РФ 2709630 Рос. Федерация: МПК G01S 13/52 Лихачев В.П., Кузнецов В.А., Амбросов Д.В., Дятлов Д.В.; заявитель и патентообладатель Федеральное государственное казенное военное образовательное учреждение высшего образования «Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж) Министерства обороны Российской Федерации, заявл. 14.11.18; опубл. 19.12.19, Бюл. №35), заключающийся в том, что с помощью радиолокационной станции (РЛС) в течение интервала времени Δt излучают в направлении выбранной цели импульсные зондирующие сигналы, причем в направлении каждой выбранной цели в качестве импульсных зондирующих сигналов излучают импульсные последовательности поочередно приемо-передающими каналами с двумя активными фазированными антенными решетками (АФАР) с горизонтальной и вертикальной поляризациями электромагнитных волн (ЭМВ), принимают отраженные от цели импульсные последовательности, амплитуды которых запоминают в оперативном запоминающем устройстве и формируют из запомненных амплитуд массив данных, ведут одновременное сопровождение М целей методом последовательного обращения лучей двух АФАР с вертикальной и горизонтальной поляризациями ЭМВ к 1-й, 2-й, …, m-й, … и М-й цели, так что длительность одного цикла обращения к М целям составляет M×Δt, для полученного в течение интервала Δt целого числа K'N - частотных импульсных последовательностей вычисляют максимально возможный период повторения импульсов в РЛС Ти макс = 0,5(Δt/N), находят число импульсных последовательностей K'=2(ƒ*и макси мин)), запоминание амплитуд отраженных от m-й цели сигналов на четырех поляризациях (двух коллинеарных и двух ортогональных) осуществляют в соответствующем m-м частном двумерном массиве данных Wm размером N×K', из частных массивов Wm для отдельных m-х целей формируют генеральный массив W, содержащий информацию об отраженных сигналах всех М целей, сопровождаемых РЛС, при этом определяют оценки поимпульсной суммарной разности амплитуд сигналов, отраженных от m-й цели на четырех поляризациях - двух коллинеарных и двух ортогональных, производят вычисления по формуле
Figure 00000001
где
Figure 00000002
- амплитуда n-го импульса, полученная при излучении в направлении выбранной m-й цели последовательности радиоимпульсов каналом с АФАР с горизонтальной поляризацией ЭМВ и приеме отраженной последовательности радиоимпульсов от m-й цели каналом с АФАР с горизонтальной поляризацией ЭМВ,
Figure 00000003
- амплитуда n-го импульса, полученная при излучении в направлении выбранной m-й цели последовательности радиоимпульсов каналом с АФАР с вертикальной поляризацией ЭМВ и приеме отраженной последовательности радиоимпульсов от m-й цели каналом с АФАР с горизонтальной поляризацией ЭМВ,
Figure 00000004
- амплитуда n-го импульса, полученная при излучении в направлении выбранной m-й цели последовательности радиоимпульсов каналом с АФАР с горизонтальной поляризацией ЭМВ и приеме отраженной последовательности радиоимпульсов от m-й цели каналом с АФАР с вертикальной поляризацией ЭМВ,
Figure 00000005
- амплитуда n-го импульса, полученная при излучении в направлении выбранной m-й цели последовательности радиоимпульсов каналом с АФАР с вертикальной поляризацией ЭМВ и приеме отраженной последовательности радиоимпульсов от m-й цели каналом с АФАР с вертикальной поляризацией ЭМВ, рассчитывают средние значения суммарно-разностных амплитуд поляризационной матрицы, для чего определяют для m-й цели среднее значение отраженного поляризационного сигнала в пределах частного массива Wm по формуле
Figure 00000006
принимают значение σm за оценку средней суммарно-разностной амплитуды m-й цели, сравнивают величину σm с заранее установленным пороговым значением σпор и в случае превышения пороговой величины принимают окончательное решение об отнесении m-й цели к классу реальных целей, в противном случае принимают окончательное решение об отнесении m-й цели к классу ложных воздушных целей.
Основным недостатком данного способа является низкая вероятность правильной селекции автономных ложных воздушных целей (АЛВЦ) типа MALD в том случае, если с помощью АЛВЦ имитируются отраженные эхо-сигналы от реальной воздушной цели, содержащие информацию о ее эффективной площади рассеяния и спектре вторичной доплеровской модуляции на круговой поляризации ЭМВ, тогда σm станет непостоянной величиной, а сравнение с заранее установленным порогом σпор будет не эффективным. Кроме того, в случае применения на истинной воздушной цели (ИВЦ) технологии маскирования своей эффективной площади рассеяния в мирное время, например, с помощью линз Люнеберга, подвесных средств поражения или топливных баков, оказывается невозможным рассчитать и установить пороговое значение σпор, вследствие чего в военное время истинное значение эффективной площади рассеяния неизвестно, а вероятность правильной селекции оказывается низкой.
Техническим результатом изобретения является повышение вероятности правильной селекции АЛВЦ типа MALD за счет дополнительного учета поляризационных отличий при возникновении эффекта вторичной доплеровской модуляции зондирующего сигнала, отраженного от авиационной силовой установки, а также применения алгоритма кластеризации, например, k-means или Fuzzy C-means, при принятии решения об истинности воздушной цели.
Указанный технический результат достигается тем, что в известном способе поляриметрической селекции ложных воздушных целей, заключающемся в том, что в направлении каждой выбранной цели с помощью РЛС в течение интервала времени Δt излучают импульсные последовательности поочередно, приемо-передающими каналами с двумя АФАР с горизонтальной и вертикальной поляризациями ЭМВ, принимают отраженные от цели импульсные последовательности, амплитуды которых запоминают в оперативном запоминающем устройстве и формируют из запомненных амплитуд массив данных, ведут одновременное сопровождение М целей методом последовательного обращения лучей двух АФАР с вертикальной и горизонтальной поляризациями ЭМВ к 1-й, 2-й, …, m-й, … и М-й цели, так что длительность одного цикла обращения к М целям составляет M×Δt, согласно предлагаемому изобретению, в направлении каждой выбранной цели излучают двумя приемо-передающими каналами РЛС с двумя АФАР с горизонтальной и вертикальной поляризациями ЭМВ, поочередно, по две импульсные последовательности: первая со ступенчатой частотной модуляцией (СЧМ) для формирования дальностного портрета высокого разрешения и вторая с линейно-частотной модуляцией (ЛЧМ) для формирования спектрально-доплеровского портрета m-й цели, двумя каналами одновременно принимают отраженные от m-й цели импульсные последовательности с СЧМ и ЛЧМ, амплитуды и доплеровские частоты которых запоминают в оперативном запоминающем устройстве в соответствующих частных двумерных массивах данных, из частных массивов для отдельных m-х целей формируют трехмерный генеральный массив W, содержащий информацию об отраженных сигналах всех М целей, сопровождаемых РЛС, из генерального массива данных W для каждой m-й цели получают на четырех поляризациях (двух коллинеарных и двух ортогональных) дальностные портреты высокого разрешения и спектрально-доплеровские портреты, на основании которых формируют многочастотные поляриметрические дальностно-доплеровские радиолокационные портреты, определяют оценки суммарной разности многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов в каждом элементе разрешения, рассчитывают средние величины суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов для m-й цели в пределах частных массивов данных, принимают решение об истинности воздушной цели, при этом используют алгоритм кластеризации, например k-means, в котором начальные центры кластеров истинной и ложной цели задают как максимум и минимум всей выборки средних величин суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов М целей, распределяют средние величины суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов М целей на два кластера: истинных и ложных воздушных целей по критерию наименьшего расстояния до центров масс кластеров, пересчет центров кластеров производят итеративно до тех пор, пока они не станут постоянными величинами.
За счет этого происходит повышение вероятности правильной селекции ложных воздушных целей.
Сущность заявленного способа заключается в том, что с помощью РЛС с двумя приемо-передающими каналами с двумя АФАР с горизонтальной и вертикальной поляризациями ЭМВ (см., например, Нечаев Е.Е., Дерябин К.С. Современные бортовые радиолокационные станции и антенные решетки многофункциональных авиационных комплексов военного назначения // Научный Вестник МГТУ ГА. 2015. №221. С. 90-105) в течение интервала времени At излучают в направлении каждой выбранной цели, поочередно, по две импульсные последовательности: первая с СЧМ (см., например, Канащенков А.И., Меркулов В.И., Герасимов А.А. и др. Радиолокационные системы многофункциональных самолетов. Т.1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов / под ред. А.И. Канащенкова и В.И. Меркулова. - М.: Радиотехника, 2006 - 656 с.) для формирования дальностного портрета высокого разрешения и вторая с ЛЧМ (см., например, Антипов В.Н., Колтышев Е.Е., Кондратенков Г.С. и др. Многофункциональные радиолокационные комплексы истребителей / под ред. В.Н. Лепина. - М.: Радиотехника, 2014 - 296 с.) для формирования спектрально-доплеровского портрета m-й цели, ведут одновременное сопровождение М целей методом последовательного обращения лучей двух АФАР с горизонтальной и вертикальной поляризациями ЭМВ к каждой цели, так что длительность одного цикла обращения к М целям составляет M×Δt, причем при зондировании импульсных последовательностей с СЧМ применяют поимпульсную перестройку частоты на F/N от ƒ0 до ƒ0+F, где F - диапазон перестройки частоты, N - количество импульсов в импульсной последовательности k, так что n-й сигнал N - импульсной последовательности излучают на частоте ƒn0+(n-1)F/N, зондирующие сигналы с ЛЧМ излучают в виде последовательностей (импульсных последовательностей) коротких импульсов с высокой частотой следования, когда частота следования превышает максимальную доплеровскую частоту сближения с целью и обеспечивает однозначность по скорости, также последовательно принимают отраженные от m-й цели импульсные последовательности с СЧМ и ЛЧМ, амплитуды [q] и доплеровские частоты {ƒдвдм} которых запоминают в оперативном запоминающем устройстве, запоминание амплитуд {q} и доплеровских частот {ƒдвдм} отраженных от m-й цели сигналов на четырех поляризациях (двух коллинеарных и двух ортогональных) осуществляют в соответствующих q-м и ƒ-м частных двумерных массивах данных
Figure 00000007
и
Figure 00000008
, размером
Figure 00000009
и
Figure 00000010
, где K' - количество импульсных последовательностей, из частных массивов
Figure 00000011
и
Figure 00000012
для отдельных m-х целей формируют трехмерный генеральный массив W, содержащий информацию об отраженных сигналах всех М целей, сопровождаемых РЛС, из генерального массива данных W, для каждой m-й цели получают дальностные портреты высокого разрешения и спектрально-доплеровские портреты на четырех поляризациях (двух коллинеарных и двух ортогональных), на основании которых формируют многочастотные поляриметрические дальностно-доплеровские радиолокационные портреты
Figure 00000013
где w, v - вид поляризации ЭМВ при излучении и приеме соответственно, определяют оценки суммарной разности
Figure 00000014
многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов в каждом элементе разрешения по формуле вычисляют средние величины суммарно-разностных значении многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов
Figure 00000015
для m-й цели в пределах частных массивов
Figure 00000016
и
Figure 00000017
по формуле
Figure 00000018
Figure 00000019
где Q=size({q}), F=size({ƒдвдм}), size(*) - функция вычисления длины вектора, принимают решение об истинности воздушной цели, при этом используют алгоритм кластеризации, например k-means, в котором начальные центры кластеров истинной и ложной цели задают как максимум и минимум всей выборки {σm} М целей: ξИВЦ=max{σm} и ξЛВЦ=min{σm}, распределяют средние величины суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов М целей {σm} на два кластера истинных {σИВЦ} и ложных {σЛВЦ} воздушных целей по критерию наименьшего расстояния до центров масс кластеров ξИВЦ и ξЛВЦ:
Figure 00000020
центры кластеров пересчитывают по формулам
Figure 00000021
Figure 00000022
пересчет центров кластеров производят итеративно до тех пор, пока ξИВЦ = const и ξЛВЦ = const.
Сущность изобретения поясняют фиг. 1-3.
На фиг. 1 представлены многочастотные поляриметрические дальностно-доплеровские радиолокационные портреты ИВЦ и АЛВЦ типа MALD, имитирующей ИВЦ, сформированные на четырех поляризациях ЭМВ с помощью приведенного выше алгоритма.
В результате определения оценок суммарной разности многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов ИВЦ и АЛВЦ типа MALD, имитирующей ИВЦ (фиг. 1) в каждом элементе разрешения будут наблюдаться существенные отличия, как показано на фиг. 2. При имитации АЛВЦ отраженных эхо-сигналов от реальной воздушной цели, содержащих информацию о ее эффективной площади рассеяния и спектре вторичной доплеровской модуляции на круговой поляризации ЭМВ, в случае ИВЦ значения суммарно-разностных многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов ИВЦ стремятся к максимальному значению, в случае АЛВЦ типа MALD, имитирующей ИВЦ - к минимальному значению, что обеспечит высокую вероятность правильной селекции ЛВЦ.
По средним значениям оценок суммарно-разностных амплитуд многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов М целей с помощью алгоритма кластеризации k-means принимается решение о распределении множества {σm} на два кластера: истинных {σИВЦ} и ложных {σЛВЦ} воздушных целей (фиг. 3) без необходимости введения пороговой обработки. В военное время при неизвестном истинном значении эффективной площади рассеяния вероятность правильной селекции окажется высокой.
Этим достигается указанный в изобретении результат.
Таким образом, определение оценок суммарной разности многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов ИВЦ и АЛВЦ типа MALD, имитирующей ИВЦ в каждом элементе разрешения по дальности и частоте, а также кластеризация средних значений оценок суммарно-разностных амплитуд многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов обеспечит повышение вероятности правильной селекции АЛВЦ типа MALD.
Предлагаемый способ поляриметрической селекции ложных воздушных целей практически применим, так как для его реализации могут быть использованы типовые элементы, широко распространенные в области электроники и электротехники.

Claims (10)

  1. Способ поляриметрической селекции ложных воздушных целей, заключающийся в том, что с помощью радиолокационной станции в течение интервала времени Δt излучают в направлении выбранной цели импульсные зондирующие сигналы, отличающийся тем, что в направлении каждой выбранной цели излучают поочередно приемопередающими каналами радиолокационной станции с двумя активными фазированными антенными решетками с горизонтальной и вертикальной поляризациями электромагнитных волн по две импульсные последовательности: первая со ступенчатой частотной модуляцией для формирования дальностного портрета высокого разрешения и вторая с линейной частотной модуляцией для формирования спектрально-доплеровского портрета m-й цели, ведут одновременное сопровождение М целей методом последовательного обращения лучей двух активных фазированных антенных решеток с горизонтальной и вертикальной поляризациями электромагнитных волн к каждой цели, так что длительность одного цикла обращения к М целям составляет M×Δt, двумя каналами одновременно принимают отраженные от m-й цели импульсные последовательности со ступенчатой частной модуляцией и с линейной частной модуляцией, амплитуды [q] и доплеровские частоты {ƒдвдм) которых запоминают в оперативном запоминающем устройстве в соответствующих q-м и ƒ-м частных двумерных массивах данных
    Figure 00000023
    и
    Figure 00000024
    размером
    Figure 00000025
    и
    Figure 00000026
    соответственно, где N - количество импульсов в импульсной последовательности, K' - количество импульсных последовательностей, из частных массивов
    Figure 00000027
    и
    Figure 00000028
    для отдельных m-х целей формируют трехмерный генеральный массив W, содержащий информацию об отраженных сигналах всех М целей, сопровождаемых радиолокационной станцией, из генерального массива данных W для каждой m-й цели получают на четырех поляризациях (двух коллинеарных и двух ортогональных) дальностные портреты высокого разрешения и спектрально-доплеровские портреты, на основании которых формируют многочастотные поляриметрические дальностно-доплеровские радиолокационные портреты
    Figure 00000029
    где w, v - вид поляризации электромагнитных волн при излучении и приеме соответственно, определяют оценки суммарной разности многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов в каждом элементе разрешения по формуле
  2. Figure 00000030
  3. вычисляют средние величины суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов для m-й цели в пределах частных массивов
    Figure 00000031
    и
    Figure 00000032
    по формуле
  4. Figure 00000033
  5. где Q=size({q}), F=size({ƒдвдм}), size(*) - функция вычисления длины вектора, принимают решение об истинности воздушной цели, при этом используют алгоритм кластеризации, например k-means, в котором начальные центры кластеров истинной и ложной цели задают как максимум и минимум всей выборки {σm} М целей: ξИВЦ=max{σm} и ξлвц=min{σm}, распределяют средние величины суммарно-разностных значений многочастотных поляриметрических дальностно-доплеровских радиолокационных портретов М целей {σm} на два кластер -: истинных {σИВЦ} и ложных {σЛВЦ} воздушных целей - по критерию наименьшего расстояния до центров масс кластеров ξИВЦ и ξлвц:
  6. Figure 00000034
  7. центры кластеров пересчитывают по формулам
  8. Figure 00000035
  9. Figure 00000036
  10. пересчет центров кластеров производят итеративно до тех пор, пока ξИВЦ = const и ξлвц = const.
RU2020143283A 2020-12-25 2020-12-25 Способ поляриметрической селекции ложных воздушных целей RU2769970C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020143283A RU2769970C1 (ru) 2020-12-25 2020-12-25 Способ поляриметрической селекции ложных воздушных целей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020143283A RU2769970C1 (ru) 2020-12-25 2020-12-25 Способ поляриметрической селекции ложных воздушных целей

Publications (1)

Publication Number Publication Date
RU2769970C1 true RU2769970C1 (ru) 2022-04-12

Family

ID=81212601

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020143283A RU2769970C1 (ru) 2020-12-25 2020-12-25 Способ поляриметрической селекции ложных воздушных целей

Country Status (1)

Country Link
RU (1) RU2769970C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800494C1 (ru) * 2022-12-14 2023-07-21 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией миграций целей по дальности и чм доплеровских сигналов за один период излучения и приема пачки радиоимпульсов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2139553C1 (ru) * 1998-02-23 1999-10-10 Военная академия противовоздушной обороны сухопутных войск Российской Федерации Многополяризационный способ распознавания воздушных целей
RU2280263C1 (ru) * 2005-01-31 2006-07-20 Дмитрий Геннадьевич Митрофанов Способ селекции ложных воздушных целей
RU2476903C2 (ru) * 2011-03-09 2013-02-27 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
CN104765020A (zh) * 2015-04-12 2015-07-08 西安电子科技大学 有源假目标干扰的极化鉴别方法
RU2709630C1 (ru) * 2018-11-14 2019-12-19 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ поляриметрической селекции ложных воздушных целей
CN112068119A (zh) * 2020-07-28 2020-12-11 中国人民解放军63892部队 一种被动雷达导引头对雷达和诱饵干扰的识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2139553C1 (ru) * 1998-02-23 1999-10-10 Военная академия противовоздушной обороны сухопутных войск Российской Федерации Многополяризационный способ распознавания воздушных целей
RU2280263C1 (ru) * 2005-01-31 2006-07-20 Дмитрий Геннадьевич Митрофанов Способ селекции ложных воздушных целей
RU2476903C2 (ru) * 2011-03-09 2013-02-27 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
CN104765020A (zh) * 2015-04-12 2015-07-08 西安电子科技大学 有源假目标干扰的极化鉴别方法
RU2709630C1 (ru) * 2018-11-14 2019-12-19 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ поляриметрической селекции ложных воздушных целей
CN112068119A (zh) * 2020-07-28 2020-12-11 中国人民解放军63892部队 一种被动雷达导引头对雷达和诱饵干扰的识别方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800494C1 (ru) * 2022-12-14 2023-07-21 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Устройство цифровой обработки сигналов в импульсно-доплеровской рлс с компенсацией миграций целей по дальности и чм доплеровских сигналов за один период излучения и приема пачки радиоимпульсов

Similar Documents

Publication Publication Date Title
US8299958B2 (en) Airborne radar having a wide angular coverage, notably for the sense-and-avoid function
Kingsley et al. Understanding radar systems
EP3039447B1 (en) Radar system and associated apparatus and methods
US20170045613A1 (en) 360-degree electronic scan radar for collision avoidance in unmanned aerial vehicles
RU2280263C1 (ru) Способ селекции ложных воздушных целей
Abdalla et al. Overview of frequency diverse array in radar ECCM applications
Skolnik Attributes of the ubiquitous phased array radar
RU2711115C1 (ru) Радиолокационный способ обнаружения малозаметных целей в импульсно-доплеровской РЛС с ФАР
RU2646847C2 (ru) Способ обзора пространства радиолокационными станциями с фазированными антенными решетками
RU2139553C1 (ru) Многополяризационный способ распознавания воздушных целей
Le Chevalier Space-time transmission and coding for airborne radars
RU2419107C1 (ru) Способ селекции движущихся целей в режиме поимпульсной перестройки несущей частоты
RU2709630C1 (ru) Способ поляриметрической селекции ложных воздушных целей
Bacci et al. Joint STAP-ISAR for non-cooperative target imaging in strong clutter
Matuszewski The specific radar signature in electronic recognition system
RU2769970C1 (ru) Способ поляриметрической селекции ложных воздушных целей
RU2741057C1 (ru) Способ радиолокационного распознавания классов воздушно-космических объектов для многодиапазонного разнесенного радиолокационного комплекса с фазированными антенными решетками
Fabrizio High frequency over-the-horizon radar
RU2392640C1 (ru) Способ выявления параметров траекторных нестабильностей малоразмерного воздушного объекта в виде радиального ускорения движения для режима сопровождения с использованием сигналов с поимпульсной перестройкой несущей частоты
Lin et al. A deceptive jamming suppression approach for SAR imaging using frequency diverse array
Xie et al. Ground moving target detection technique for airborne fire-control radar
RU2525829C1 (ru) Радиолокационный способ выявления закона изменения угловой скорости поворота сопровождаемого воздушного объекта по последовательно принятым отражениям сигналов с перестройкой несущей частоты
Le Chevalier Wideband wide beam motion sensing
Gersone et al. Simulations of l-band staring radar moving target integration efficiency
RU2740296C1 (ru) Способ высокоточной пеленгации постановщика многократной ответно-импульсной помехи