RU2766308C1 - Беспилотный комплекс химической разведки грунта - Google Patents

Беспилотный комплекс химической разведки грунта Download PDF

Info

Publication number
RU2766308C1
RU2766308C1 RU2020129280A RU2020129280A RU2766308C1 RU 2766308 C1 RU2766308 C1 RU 2766308C1 RU 2020129280 A RU2020129280 A RU 2020129280A RU 2020129280 A RU2020129280 A RU 2020129280A RU 2766308 C1 RU2766308 C1 RU 2766308C1
Authority
RU
Russia
Prior art keywords
gas analyzer
soil
aerial vehicle
unmanned aerial
operator
Prior art date
Application number
RU2020129280A
Other languages
English (en)
Inventor
Алексей Викторович Великанов
Жанна Юрьевна Кочетова
Алексей Викторович Павлович
Альберт Сергеевич Григорян
Дмитрий Сергеевич Григорьев
Алексей Викторович Шишкин
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2020129280A priority Critical patent/RU2766308C1/ru
Application granted granted Critical
Publication of RU2766308C1 publication Critical patent/RU2766308C1/ru

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

Изобретение относится к аналитической химии, а именно к измерительным устройствам, оснащенным беспилотным летательным аппаратом (БПЛА), позволяющим дистанционно идентифицировать и количественно определять в грунте летучие вещества различной природы, в том числе отравляющие. Беспилотный комплекс содержит БПЛА мультироторного типа, видеокамеру, связанную с пультом управления оператора, газоанализатор, модуль связи с оператором, аналитическую камеру, модуль питания газоанализатора, модули для считывания информации и управления питанием газоанализатора. БПЛА дополнительно оснащается телескопическими опорными стойками, оборудованными датчиками контакта с поверхностью места приземления и устройством выдвижения штоков, позволяющим производить в автоматическом режиме удлинение опорных стоек при посадке на неровную поверхность анализируемого грунта. Газоанализатор содержит сенсоры пьезосорбционного типа, устойчивые к вибрации, аналитическую камеру открытого типа с заостренными краями для плотного прилегания к грунту. Повышается точность измерений концентрации отравляющих веществ в грунте. 5 ил.

Description

Изобретение относится к аналитической химии, а именно к измерительным устройствам, оснащенным беспилотным летательным аппаратом, позволяющим дистанционно идентифицировать и количественно определять в грунте летучие вещества различной природы, в том числе отравляющие.
Известны устройства наземной химической разведки, предназначенные для определения в воздухе, на местности и на технике отравляющих веществ [Юртушкин В.И. Чрезвычайные ситуации: защита населения и территорий: учеб. пособие для воен. каф. хим. и хим.-технол. вузов Рос. Федерации / В.И. Юртушкин. - М.: Кнорус, 2008. - 362 с.].
Принцип действия наиболее распространенного современного прибора войсковой химической разведки основан на прокачивании через индикаторные трубки анализируемого воздуха. При наличии отравляющих веществ происходит изменение окраски наполнителя трубок, по которому приблизительно определяют концентрацию отравляющих веществ.
В патентах [Murray George М. et al. Polymer based lanthanide luminescent sensors for the detection of organophosphorous compounds. Patent US 20050019218, 2005; Гришин B.B. и др. Устройство для определения в воздухе химических веществ, химический сенсор и способ его изготовления. Патент РФ 2377558, 2009] представлены измерительные устройства на основе единичных селективных пьезосенсоров для измерения индивидуальных отравляющих веществ в воздухе.
К основным недостаткам рассматриваемых устройств наземной химической разведки для полуколичественного и точного анализа отравляющих веществ в объектах окружающей среды относятся: ограниченные размеры районов, которые могут быть охвачены средствами разведки; длительное время на проведение анализа и обработку информации; невозможность ведения химической разведки в районах, занятых противником; привлечением транспортных средствах и личного состава и, как следствие возможность отравления личного состава, проводящего разведку; необходимость отдельных датчиков (индикаторных трубок, сенсоров) для определения индивидуальных отравляющих веществ.
Наиболее близким к заявленному устройству является газоанализатор на основе полупроводниковых сенсоров, размещенный на борту беспилотного летательного аппарата мультироторного типа и предназначенный для идентификации двухсот химических соединений в воздухе на различном расстоянии от земной поверхности (от 2 до 15 м) [Болясов Д.А., Эль-Салим С.З., Черемисина О.В. Применение БпЛА для решения задач дистанционного контроля. Режим доступа: http://rl-omega.ru/docs/Phantom_Gas.pdf].
Газоанализатор включает: модуль газового анализа, модуль связи с оператором, аналитическую камеру, модуль управления питанием газоанализатора, устройство отбора проб. К беспилотному летательному аппарату мультироторного типа газоанализатор крепится с помощью мягкой подвески, снижающей влияние вибрации.
Основным недостатком этого устройства является то, что химический анализ загрязнения местности проводится по содержанию веществ в воздухе, тогда как боевые отравляющие вещества переносятся воздушными потоками на значительные расстояния и накапливаются в низинах, над поверхностью грунтов, проникают вглубь, отравляя подземные воды, или, напротив, под воздействием определенных природных условий испаряются из грунтов, вторично загрязняя воздух [Хисматуллина А.Ф., Гасилов B.C., Чижова М.А., Хайруллина Л.И. Влияние метеорологических условий на распространение токсичных веществ в окружающем пространстве // Вестник технологического университета. - 2017. - Т. 20. - №12. - С. 152-157. Режим доступа: http://Users/user/Downloads/vliyanie-meteorologicheskih-usloviy-na-rasprostranenie-toksichnyh-veschestv-v-okruzhayuschem-prostranstve.pdf]. Анализ грунтов невозможен из-за неустойчивости стандартных беспилотных летательных аппаратов мультироторного типа, подлежащих оснащению газоанализатором. Кроме того, используемые в газоанализаторе чувствительные элементы на основе полупроводниковых адсорбционных сенсоров чувствительны к вибрации, что снижает точность измерения отравляющих веществ в воздухе; они характеризуются высоким потреблением энергии, что сокращает время их непрерывной работы и уменьшает радиус проведения химической разведки; требуют длительного времени для восстановления после сорбции отравляющих веществ или замены на аналогичные в случае хемосорбции газочувствительного слоя с определяемым соединением; для проведения измерения и регенерации сенсоров необходимы дополнительные устройства (пробоотборник, регенератор), при этом измерительный модуль имеет большую массу, что усложняет его воздушное транспортирование.
Технической задачей изобретения является создание беспилотного комплекса для проведения дистанционной химической разведки с целью определения отравляющих веществ в грунтах, оснащенного беспилотным летательным аппаратом мультироторного типа с повышенной устойчивостью, за счет установки телескопических стоек изменяемой длинны и оборудованных датчиками контакта с опорной поверхностью места приземления. При этом телескопические опорные стойки оборудованы реверсными электродвигателями, выдвигающими штоки при посадке на неровную поверхность анализируемого грунта с целью обеспечения горизонтального положения и предотвращения опрокидывания беспилотного летательного аппарата мультироторного типа. Чувствительные элементы газоанализатора должны характеризоваться устойчивостью к вибрации для повышения точности измерений концентрации отравляющих веществ в грунте; малыми энергопотреблением и временем саморегенерации для обеспечения многократно повторяющихся измерений и расширения радиуса проведения дистанционной химической разведки за однократное применение беспилотного летательного аппарата; обеспечивать проведение анализа пробы «на месте» и регенерацию сенсоров без использования дополнительных модулей; а также малой массой для снижения веса полезной нагрузки беспилотного летательного аппарата мультироторного типа. Конструкция крепления газоанализатора к беспилотному летательному аппарату мультироторного типа должна обеспечивать его спуск, подъем и плотное прилегание к грунту при анализе.
Техническая задача достигается тем, что беспилотный комплекс дистанционной химической разведки грунта, содержащий беспилотный летательный аппарат мультироторного типа; видеокамеру, связанную с пультом управления оператора; газоанализатор на основе сенсоров для определения различных типов отравляющих веществ и включающий аналитический модуль; модуль связи с оператором; аналитическую камеру, модуль питания газоанализатора; модули для считывания информации и управления питанием газоанализатора. При этом беспилотный летательный аппарат мультироторного типа дополнительно оснащается телескопическими опорными стойками, оборудованными датчиками контакта с поверхностью места приземления и устройством выдвижения штоков, позволяющим производить в автоматическом режиме удлинение опорных стоек при посадке на неровную поверхность анализируемого грунта, а газоанализатор содержит сенсоры пьезосорбционного типа, устойчивые к вибрации и характеризующиеся малым энергопотреблением и быстрой саморегенерацией; аналитическую камеру открытого типа (без дна) с заостренными краями для плотного прилегания к грунту при проведении анализа «на месте»; крепление корпуса газоанализатора к беспилотному летательному аппарату, обеспечивающее спуск газоанализатора на поверхность грунта и подъем после проведения анализа.
Заявленное устройство изображено на фиг. 1 - беспилотный комплекс химической разведки грунта (вид с боку), на фиг. 2 - телескопическая опорная стойка, на фиг. 3 - телескопическая устройство спуска и подъема газоанализатора, на фиг. 4 - газоанализатор, на фиг. 5 приведен пример визуальных отпечатков сорбции хлорсодержащего отравляющего вещества в грунте, на восьми разнородных пьезосенсорах 1-8.
На фиг. 1 изображен беспилотный комплекс дистанционной химической разведки грунта, который включает следующие элементы: беспилотный летательный аппарат мультироторного типа 1, блок управления 2, датчик контакта газоанализатора с опорной поверхностью 3, воздушный винт 4, двигатель 5, демпфирующее устройство газоанализатора 6, телескопические опорные стойки 7, датчик контакта стойки с опорной поверхностью 8, газоанализатор 9, телескопическое устройство спуска и подъема газоанализатора 10, видеокамеру контроля посадки 11.
На фиг. 2 изображена схема телескопической опорной стойки, содержащей: датчик контакта стойки с опорной поверхностью 8, реверсивный электродвигатель 12, гайку штоков телескопической опорной стойки 13, винт выдвижения штоков телескопической опорной стойки 14, шток телескопической опорной стойки 15.
На фиг. 3 изображена схема устройства спуска и подъема газоанализатора, включающего: реверсивный двигатель выдвижения штоков 16, винт выдвижения штоков телескопического устройства спуска и подъема газоанализатора 17, гайку штока устройства спуска и подъема газоанализатора 18, шаровой шарнир крепления газоанализатора 19.
На фиг. 4 изображена схема устройства газоанализатора, содержащего: корпус газоанализатора 9, шаровой шарнир 19, блок управления 20, блок питания 21, аналитический модуль 22, пьезосенсоры 23, аналитическую камеру 24.
На фиг. 5 приведен пример диаграмм сорбции на восьми разнородных пьзосенсорах хлорсодержащего отравляющего вещества в грунте: а) эталонная диаграмма сорбции хлорсодержащего отравляющего вещества с концентрацией его в грунте 0,3 мг/кг, б) диаграмма сорбции хлорсодержащего отравляющего вещества в грунте в реальных условиях, в) диаграмма сорбции естественных газов грунта, незагрязненной хлорсодержащим отравляющим веществом.
Беспилотный комплекс дистанционной химической разведки грунта содержит: беспилотный летательный аппарат мультироторного типа 1 с присоединенным к нижней части блоком управления 2 и расположенными по краям двигателями 5 с воздушными винтами 4. Снизу на беспилотный летательный аппарат 1 установлены: датчик контакта газоанализатора с опорной поверхностью 3 и демпфирующее устройство 6, на которое крепится телескопическое устройство спуска и подъема 10, опускающее газоанализатор 9 до тех пор, пока не активируется датчик 3. Внизу устройства спуска и подъема 10 на шаровом шарнире 19 закреплен корпус газоанализатора 9, в котором размещены аналитический модуль 22, блок питания газоанализатора 21, модуль связи с оператором, модуль считывания информации и управления питанием газоанализатора, объединенные в блоке управления 20, аналитическая камера 24, выполненная без дна и с заостренными краями для обеспечения плотного прилегания к грунту. В верхней части аналитической камеры 24 закреплены пьезосенсоры 23, соединенные с аналитическим модулем 22. С целью снижения веса полезной нагрузки возможно запитывание газоанализатора 9 электроэнергией от беспилотного летательного аппарата мультироторного типа 1 и использование его блока управления 2 для снятия данных с аналитического модуля 22 и передачи их оператору. Для обеспечения устойчивости и горизонтирования при посадке беспилотный летательный аппарат мультироторного типа 1 оснащается телескопическими опорными стойками 7, оборудованными датчиками контакта с опорной поверхностью 8.
Аналитическая информация при детектировании грунта передается посредством известных способов беспроводной передачи данных оператору на пульт управления в режиме времени, близком к реальному, где визуализируется с помощью диаграмм, а затем идентифицируется по геометрии диаграмм и количественно определяется по площади диаграмм, например, как указано в патенте [Пат. РФ №2279065 Способ обработки сигналов мультисесорного газоанализатора типа «Электронный нос» / Кучменко Т.А., 2006].
На фиг. 5 приведен пример диаграмм сорбции на восьми разнородных пьезосенсорах хлорсодержащего отравляющего вещества в грунте: а) эталонная диаграмма сорбции хлорсодержащего отравляющего вещества с концентрацией его в грунте 0,3 мг/кг, б) диаграмма сорбции хлорсодержащего отравляющего вещества в грунте в реальных условиях, в) диаграмма сорбции естественных газов грунта, незагрязненного хлорсодержащим отравляющим веществом.
Беспилотный комплекс дистанционной химической разведки грунта функционирует следующим образом: оператор производит внешний осмотр устройства, включает пульт управления и беспилотный летательный аппарат мультироторного типа 1, проверяет степень заряженности батареи, производит калибровку навигационного оборудования и видеокамеры 11, устанавливает пьезосенсоры 23 в аналитическую камеру 24, включает газоанализатор 9 и проверяет уровень заряженности его аккумулятора, правильность работы сенсоров 23 по их начальной частоте колебания. Оператор с помощью устройства 19 прикрепляет корпус газоанализатора 9 к беспилотному летательному аппарату мультироторного типа 1. Проверяет исправность шарнира 19 и правильность работы устройства спуска и подъема газоанализатора 10. Затем оператор закладывает маршрут полета в систему автоматического управления и отправляет устройство в пункт назначения. Посадка беспилотного летательного аппарата 1 производится следующим образом: беспилотный летательный аппарат 1 переходит в режим полета с удержанием горизонта и плавно снижается до контакта хотя бы одной стойки 7 с опорной поверхностью, при этом срабатывает датчик контакта 8, подающий сигнал в блок управления 2. Затем беспилотный летательный аппарат фиксирует высоту и выдвигает оставшиеся стойки 7 до срабатывания их датчиков контакта с опорной поверхностью 8. Выдвижение стоек происходит за счет работы реверсивного электродвигателя 12, приводящего во вращение винт выдвижения штоков 14, который, в свою очередь, воздействует на гайки 13, жестко соединенные со штоками 15 телескопической опорной стойки. Для предотвращения прокручивания штоков относительно друг друга они оборудуются направляющими (например, шлицами). Устройство спуска и подъема газоанализатора 10 работает аналогичным образом. При помощи камеры 11 оператор контролирует процесс посадки. После приземления беспилотного летательного аппарата оператор с помощью устройства спуска и подъема 10 которое работает аналогично телескопической опорной стойке устанавливает газоанализатор 9 на поверхности, контролируя его установку по срабатыванию датчика контакта газоанализатора с опорной поверхностью 3. При наличии в грунте отравляющих веществ их пары адсорбируются на разнородных сорбционных покрытиях пьезосенсоров 23, при этом снижается частота колебаний пьезосенсоров 23, что по средствам известных способов беспроводной передачи данных передается оператору на пульт управления, где с помощью стандартного офисного программного обеспечения аналитический сигнал визуализируются в диаграммы, как указано в патенте [Пат. РФ №2279065 Способ обработки сигналов мультисесорного газоанализатора типа «Электронный нос» / Кучменко Т.А., 2006]. Пример визуализации сорбции хлорсодержащих отравляющих веществ представлен на фиг. 5а, 5б.
По геометрии диаграммы с помощью программы сравнения с эталонными образцами идентифицируется отравляющее вещество в грунте (фиг. 5а, 5б) или устанавливается отсутствие отравляющих веществ (фиг. 5в). По площади диаграммы устанавливается концентрация отравляющего вещества в грунте. Например, при сорбции хлорсодержащего отравляющего вещества в реальных условиях площадь диаграммы на фиг. 5б меньше площади эталонной диаграммы на фиг. 5а в 1,9 раза, что позволяет сделать вывод о концентрации отравляющего вещества в исследуемом грунте, равной 0,15 мг/кг. После чего по команде оператора с помощью устройства спуска и подъема 10 газоанализатор 9 поднимается с поверхности грунта непосредственно перед взлетом. Затем беспилотный летательный аппарат мультироторного типа 1 перемещается в следующий пункт назначения. Последовательность проведения измерения концентрации в грунте отравляющих веществ повторяется вышеописанным методом. Восстановление базовой частоты пьезосенсоров 23 происходит самопроизвольно между перелетами беспилотного летательного аппарата мультироторного типа от одного пункта назначения к другому. Воздушные потоки, создаваемые винтами 4 беспилотного летательного аппарата мультироторного типа 1 и встречными потоками воздуха, ускоряют процесс десорбции. Время самовосстановления пьезосенсоров 23 не превышает 3 мин.
Изготовление устройства возможно из узлов и агрегатов, серийно выпускаемых промышленностью.

Claims (1)

  1. Беспилотный комплекс химической разведки грунта, содержащий беспилотный летательный аппарат мультироторного типа, газоанализатор, модуль связи с оператором, модуль питания газоанализатора, модуль считывания информации, видеокамеру, отличающийся тем, что дополнительно оснащен телескопическими опорными стойками с возможностью их автоматического удлинения, телескопическим устройством спуска и подъема газоанализатора, при этом газоанализатор пьзосенсорного типа содержит открытую аналитическую камеру с заостренными краями.
RU2020129280A 2020-09-03 2020-09-03 Беспилотный комплекс химической разведки грунта RU2766308C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020129280A RU2766308C1 (ru) 2020-09-03 2020-09-03 Беспилотный комплекс химической разведки грунта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020129280A RU2766308C1 (ru) 2020-09-03 2020-09-03 Беспилотный комплекс химической разведки грунта

Publications (1)

Publication Number Publication Date
RU2766308C1 true RU2766308C1 (ru) 2022-03-14

Family

ID=80736528

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020129280A RU2766308C1 (ru) 2020-09-03 2020-09-03 Беспилотный комплекс химической разведки грунта

Country Status (1)

Country Link
RU (1) RU2766308C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795996C1 (ru) * 2022-09-21 2023-05-16 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство определения токсических химических веществ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3293115A1 (de) * 2016-09-07 2018-03-14 Siemens Aktiengesellschaft Verfahren zur steuerung unbemannter flugobjekte
CN107941988A (zh) * 2017-10-16 2018-04-20 华南理工大学 一种检测气体污染源的无人机设备及监测方法
US20190033441A1 (en) * 2016-01-21 2019-01-31 Universidad De Oviedo Airborne systems and detection methods localisation and production of images of buried objects and characterisation of the composition of the subsurface
RU2681966C1 (ru) * 2018-02-16 2019-03-14 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Комплекс беспилотных летательных средств на базе аэростатического летательного аппарата
RU197822U1 (ru) * 2019-01-28 2020-06-01 Краевое Государственное Бюджетное Учреждение Профессионального Образования Красноярский Политехнический Техникум Беспилотный мультироторный летательный аппарат для мониторинга состояния растительности
RU2723201C1 (ru) * 2019-07-11 2020-06-09 Общество с ограниченной ответственностью "Альбатрос" (ООО "Альбатрос") Беспилотный летательный аппарат самолетного типа для обнаружения пропавшего человека

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190033441A1 (en) * 2016-01-21 2019-01-31 Universidad De Oviedo Airborne systems and detection methods localisation and production of images of buried objects and characterisation of the composition of the subsurface
EP3293115A1 (de) * 2016-09-07 2018-03-14 Siemens Aktiengesellschaft Verfahren zur steuerung unbemannter flugobjekte
CN107941988A (zh) * 2017-10-16 2018-04-20 华南理工大学 一种检测气体污染源的无人机设备及监测方法
RU2681966C1 (ru) * 2018-02-16 2019-03-14 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Комплекс беспилотных летательных средств на базе аэростатического летательного аппарата
RU197822U1 (ru) * 2019-01-28 2020-06-01 Краевое Государственное Бюджетное Учреждение Профессионального Образования Красноярский Политехнический Техникум Беспилотный мультироторный летательный аппарат для мониторинга состояния растительности
RU2723201C1 (ru) * 2019-07-11 2020-06-09 Общество с ограниченной ответственностью "Альбатрос" (ООО "Альбатрос") Беспилотный летательный аппарат самолетного типа для обнаружения пропавшего человека

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795996C1 (ru) * 2022-09-21 2023-05-16 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство определения токсических химических веществ

Similar Documents

Publication Publication Date Title
US11598697B2 (en) Air sample collection apparatus and methods for use
Chang et al. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies
Pobkrut et al. Sensor drone for aerial odor mapping for agriculture and security services
Neumann et al. Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping
Schwarzbach et al. Remote water sampling using flying robots
Aurell et al. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle
Hien et al. An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs)
Grandy et al. Development of a drone-based thin-film solid-phase microextraction water sampler to facilitate on-site screening of environmental pollutants
Kezoudi et al. The Unmanned Systems Research Laboratory (USRL): A new facility for UAV-based atmospheric observations
Song et al. Using unmanned aerial vehicles to sample aquatic ecosystems
RU81471U1 (ru) Дистанционный беспилотный летательный аппарат для отбора проб жидкости
Koparan et al. Unmanned aerial vehicle (UAV) assisted water sampling
RU2766308C1 (ru) Беспилотный комплекс химической разведки грунта
CN108872191B (zh) 一种无人机大气污染检测系统
CN113848226A (zh) 一种智能化空间移动污染物自主溯源系统及溯源方法
RU210641U1 (ru) Устройство для дистанционного отбора проб грунта с использованием беспилотного летательного аппарата коптерного типа
Sanim et al. Development of an aerial drone system for water analysis and sampling
RU2697474C1 (ru) Способ гравиметрической съемки с использованием беспилотного летательного аппарата (бпла)
Falabella et al. Application of a customizable sensor platform to detection of atmospheric gases by UAS
Archer et al. Introduction, overview, and status of the Microwave Autonomous Copter System (MACS)
Fulchignoni et al. A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)
Wellman et al. The use of an airborne air sampling platform for regional air quality studies
Gartrell et al. AERIAL SAMPLING BY HELICOPTER: A METHOD FOR STUDY OF DIFFUSIEON PATTERNS
RU2777752C1 (ru) Способ определения дисперсного состава альфа-активных примесей при аварийном выбросе в атмосферу
Kaliszewski et al. Mły nczak