RU2766021C1 - Способ регулирования электрической передачи тепловоза - Google Patents

Способ регулирования электрической передачи тепловоза Download PDF

Info

Publication number
RU2766021C1
RU2766021C1 RU2021127722A RU2021127722A RU2766021C1 RU 2766021 C1 RU2766021 C1 RU 2766021C1 RU 2021127722 A RU2021127722 A RU 2021127722A RU 2021127722 A RU2021127722 A RU 2021127722A RU 2766021 C1 RU2766021 C1 RU 2766021C1
Authority
RU
Russia
Prior art keywords
traction
value
generators
speed
shaft
Prior art date
Application number
RU2021127722A
Other languages
English (en)
Inventor
Сергей Ирленович Ким
Владимир Васильевич Грачев
Михаил Владимирович Федотов
Андрей Андреевич Пронин
Original Assignee
Акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (АО "ВНИКТИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (АО "ВНИКТИ") filed Critical Акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (АО "ВНИКТИ")
Priority to RU2021127722A priority Critical patent/RU2766021C1/ru
Application granted granted Critical
Publication of RU2766021C1 publication Critical patent/RU2766021C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/12Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and DC motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Изобретение относится к электрическим тяговым системам транспортных средств. Способ регулирования электрической передачи тепловоза, заключающийся в том, что задают частоты вращения вала двух тепловых двигателей, приводящих во вращение соответственно первый и второй тяговые генераторы. Измеряют положение дозирующих органов топливоподачи регулятора частоты вращения каждого теплового двигателя, задают положение дозирующих органов топливоподачи и сравнивают их соответственно с измеренными положениями, величины их рассогласования интегрируют и принимают за величину уставок напряжения первого и второго тяговых генераторов. Вычисляют разность уставок напряжения первого и второго тяговых генераторов, величину полученной разности интегрируют и по результату корректируют соответственно в сторону увеличения заданное значение частоты вращения вала теплового двигателя, связанного с тяговым генератором с меньшей уставкой напряжения, и в сторону уменьшения заданное значение частоты вращения вала теплового двигателя, связанного с тяговым генератором с большей уставкой напряжения. Технический результат изобретения заключается в улучшении топливной экономичности работы тепловозов с обеспечением их высоких тяговых свойств. 3 ил.

Description

Изобретение относится к железнодорожному транспорту, а именно к способу регулирования электропередачи тепловоза с автономными тепловыми двигателями, тяговыми генераторами и тяговыми электродвигателями постоянного тока.
Известен способ регулирования электрической передачи тепловоза посредством регулирования напряжения тягового генератора тепловоза, заключающийся в том, что задают частоту вращения вала теплового двигателя, приводящего во вращение тяговый генератор, измеряют положение дозирующего органа топливоподачи регулятора частоты вращения теплового двигателя, соответствующее текущему значению частоты вращения вала теплового двигателя, измеряют напряжение тягового генератора, сравнивают его с величиной уставки и по величине рассогласования изменяют ток возбуждения тягового генератора (Вилькевич Б.И. Автоматическое управление электропередачей тепловозов. М., Транспорт, 1978 г., с. 39-41, рисунок 30).
Недостатком известного способа является то, что при движении тепловоза по участку с ухудшенными условиями сцепления, невозможно одновременно обеспечить хорошие противобоксовочные свойства и осуществить работу теплового двигателя по экономической характеристике, что приводит в конечном итоге к увеличению удельного расхода топлива.
Известен способ регулирования напряжения тягового генератора электрической передачи тепловоза, принятый за прототип, заключающийся в том, что задают частоту вращения вала теплового двигателя, приводящего во вращение тяговый генератор, связанный с тяговыми электродвигателями постоянного тока, измеряют дозирующего органа топливоподачи регулятора частоты вращения теплового двигателя, соответствующее текущему значению частоты вращения вала теплового двигателя, задают положение дозирующего органа топливоподачи регулятора частоты вращения заданной частоте вращения, сравнивают его с измеренным величину их рассогласования интегрируют по времени и принимают величину уставки напряжения тягового генератора (SU, авторское свидетельство №925693, кл. B60L 11/02, опублик. 1982 г.).
Недостатком известного способа является то, что при выполнении тепловоза с двумя и более тепловыми двигателями, каждый из которых соединен с отдельной группой тяговых электродвигателей, невозможно обеспечить одновременно равномерную загрузку групп тяговых электродвигателей и работу всех тепловых двигателей по экономическим характеристикам, что приводит в конечном итоге к увеличению удельного расхода топлива и ухудшению тяговых свойств тепловоза.
Техническим результатом изобретения является улучшение топливной экономичности работы тепловозов с обеспечением их высоких тяговых свойств.
Указанный технический результат достигается тем, что в регулирования электрической передачи тепловоза, заключающемся в что задают частоты вращения вала двух тепловых двигателей, во вращение соответственно первый и второй тяговые генераторы, из которых связан со своей группой тяговых электродвигателей постоянного тока, измеряют положение дозирующих органов топливоподачи регулятора частоты вращения каждого теплового двигателя, соответствующие текущим значениям частот вращения первого и второго тепловых двигателей, задают положение органов топливоподачи регуляторов частоты вращения заданной частоте вращения, сравнивают их соответственно с положениями, величины их рассогласования интегрируют по времени принимают за величину уставок напряжения первого и второго генератора, вычисляют разность уставок напряжения первого и тяговых генераторов, величину полученной разности интегрируют во времени и по результату интегрирования корректируют сторону увеличения заданное значение частоты вращения вала двигателя, связанного с тяговым генератором с меньшей уставкой напряжения, и в сторону уменьшения заданное значение частоты вала теплового двигателя, связанного с тяговым генератором с уставкой напряжения.
На Фиг. 1 представлена блок-схема устройства, реализующая способ, на Фиг. 2 - графики изменения напряжений Uг1, Uг2 при постоянной мощности Pг1 и Рг2 тяговых генераторов 4-1 и 4-2, напряжения Uг тяговых генераторов для некоторой фиксированной скорости V движения тепловоза в функции тока нагрузки Iг тяговых генераторов, на Фиг. 3 - графики изменения оптимального положения дозирующих органов топливоподачи регулятора частоты Lp, полной мощности дизелей Рд, свободной мощности дизелей Рг1, Рг2, в функции частоты вращения nд.
Устройство (фиг. 1) состоит из тепловых двигателей 1-1 и 1-2, с регуляторами 2-1 и 2-2 частоты вращения и датчиками 3-1 и 3-2 дозирующих органов топливоподачи, например, датчиками рейки насосов высокого давления тепловых двигателей 1-1 и 1-2. двигатели 1-1 и 1-2 связаны с электрической передачей, в которую сами тепловые двигатель 1-1 и 1-2, соединенные с тяговыми 4-1 и 4-2. Силовые выходы тяговых генераторов 4-1 и 4-2 подключены входам датчиков напряжения 5-1, 5-2 и входам двух групп тяговых электродвигателей 6-1, 7-1 и 6-2 и 7-2 соответственно. Тяговые 4-1 и 4-2 соединены с выходами блоков 8-1 и 8-2 управления током возбуждения тяговых генераторов 4-1 и 4-2 соответственно. Выход задатчика 9 частоты вращения тепловых двигателей 1-1 и 1-2 первыми входами сумматоров 10-1 и 10-2, выходы которых соединены соответственно с входами регуляторов 2-1 и 2-2 частоты вращения тепловых двигателей 1-1 и 1-2, с входами функциональных преобразователей 11-1 и 11-2, формирующих по заданной частоте вращения тепловых двигателей 1-1 и 1-2 сигнал заданного положения дозирующих органов топливоподачи. Выходы функциональных преобразователей 11-1 и 11-2 соединены с первыми входами 12-1 и 12-2, вторые входы сумматоров 12-1 и 12-2 соединены с датчиков 3-1 и 3-2 положения Lp дозирующих органов топливоподачи. Выходы сумматоров 12-1 и 12-2 соединены с входами блоков 13-1 и 13-интегрирования, формирующих соответствующие задания (уставки) напряжения тяговых генераторов 4-1 и 4-2, выходы блоков 13-1 и 13-2 соединены с первыми входами сумматоров 14-1 и 14-2, входы сумматоров 14-1 и 14-2 соединены с выходами датчиков 5-1 и 5-напряжения, которые подключены своими входами к выходам генераторов 4-1 и 4-2. Выходы блоков 13-1 и 13-2 интегрирования соединены с входами блока 15 сравнения, выход которого соединен с входом блока 16 интегрирования, выход которого подключен к (суммирующему) входу сумматора 10-2 и к второму (вычитающему) сумматора 10-1.
На Фиг. 1 элементы 2-1, 3-1, 4-1, 5-1, 8-1, 10-1, 11-1, 12-1, 13-1, 14-1 образуют систему регулирования частоты и нагрузки первого теплового двигателя 1-1, а элементы 2-2, 3-2, 4-2, 5-2, 8-2, 10-2, 11-2, 12-2, 13-2, 14-2 образуют систему регулирования частоты и нагрузки второго теплового двигателя 1-2, при этом тяговый генератор 4-1 нагружен на первую группу тяговых электродвигателей постоянного тока 6-1 и 7-1, тяговый генератор 4-2 нагружен на вторую группу тяговых электродвигателей постоянного тока 6-2 и 7-2.
Число тяговых электродвигателей в группе, например, 6-1 и 7-1 или 6-2 и 7-2 равно числу движущих колесных пар в тележке тепловоза, например, двум, как в рассматриваемом устройстве на фиг. 1
Способ осуществляется следующим образом.
Для системы регулирования частоты и нагрузки первого теплового двигателя 1-1 задатчиком 9 задают частоту вращения nдз0 теплового двигателя 1-1. На выходе задатчика 9 действует кодовый сигнал, пропорциональный заданной частоте вращения теплового двигателя 1-1, который поступает на первый вход сумматора 10-1, далее этот сигнал поступает на вход регулятора 2-1 частоты и нагрузки теплового двигателя 1-1 и на вход функционального преобразователя 11-1. Регулятор 2-1 частоты и нагрузки удерживает частоту вращения теплового двигателя 1-1 пропорционально кодовому сигналу задания задатчика 9. Датчиком 3-1 измеряют сигнал измеренного положения Lри1 дозирующего органа топливоподачи регулятора 2-1 частоты и нагрузки теплового двигателя 1-1, соответствующее текущему значению частоты вращения теплового двигателя 1-1. Выходной сигнал «Lи» датчика 3-1, пропорциональный сигнал измеренного положения Lри1 дозирующего органа топливоподачи, поступает на второй вход сумматора 12-1, на первый вход которого подается сигнал с выхода функционального преобразователем 11-1. Функциональным преобразователем 11-1 задают положение дозирующего органа топливоподачи регулятора 2-1 частоты и пропорционально заданной частоте вращения теплового двигателя 1 - чего в функциональном преобразователе 11-1 преобразуют код частоты, поступающий на вход функционального преобразователя 11 - выхода задатчика 9 в сигнал Lрз заданного положения дозирующего органа топливоподачи, который с выхода функционального преобразователя 11-1 поступает на первый вход сумматора 12-1, в сигнал Lрз заданного положения дозирующего органа топливоподачи и сигнал Lpи1 измеренного датчиком 3-1 положения дозирующего органа топливоподачи в сумматоре 12-1 сравнивают по величине и знаку отклонения. Величина ΔL=±(L-Lpи1) с выхода сумматора 12-1 вход блока 13-1 интегрирования, где она интегрируется во времени, результат интегрирования принимается за величину задания тягового генератора 4-1 и с выхода блока 13-1 интегрирования первый вход сумматора 14-1, на второй вход которого подается сигнал с датчика 5-1 напряжения тягового генератора 4-1. Выходной сигнал сумматора 14-1, пропорциональный величине рассогласования заданного и измеренного напряжения тягового генератора 4-1 в блоке 8-1 управления возбуждением и подается на обмотку (на чертеже Фиг. 1 не показано) тягового генератора 4-1. Тяговый генератор 4-1 возбуждается и на его выходе действует напряжение Uг1, соответствующее заданному значению напряжения Uгз1 с выхода 1 интегрирования, которое подается на тяговые электродвигатели постоянного тока 6-1 и 7-1.
Аналогично производится регулирование напряжения для системы регулирования частоты и нагрузки второго теплового двигателя 1-2 (элементы 2-2, 3-2, 4-2, 5-2, 8-2, 10-2, 11-2, 12-2, 13-2, 14-2), в результате которого на выходе тягового генератора 4-2 действует напряжение Uг2, соответствующее заданному значению напряжения Uгз2 с выхода блока 13-2 интегрирования, и которое подается на тяговые электродвигатели постоянного тока 6-2 и 7-2.
В установившемся режиме для систем регулирования частоты и нагрузки первого теплового двигателя 1-1 и второго теплового двигателя 1-2 будут справедливы следующие соотношения:
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
где:
Uг1, Uг2 - измеренные значения напряжения тяговых генераторов 4-1 и 4-2 соответственно;
Uгз1, Uгз2 - задание значения напряжения тяговых генераторов 4-1 и 4-2 соответственно;
K - коэффициент масштабирования;
Lрз - сигнал заданного положения дозирующего органа топливоподачи;
Lри1, Lри2 сигнал измеренного положения дозирующего органа топливоподачи регуляторов 2-1 и 2-2 тепловых двигателей 1-1 и 1-2;
dt переменная интегрирования
На Фиг 2. для установившегося режима обоих тепловых 1-1 и 1-2 показаны графики изменения напряжений Uг1, Uг2 при мощности Pг1 и Рг2 (линии а и б соответственно), при этом на пересечениях кривых а и б характеристики Uг (Iг) (точки А и Б соответственно) для некоторой фиксированной скорости движения V (линия е на Фиг. 2) получаем значения уставок напряжения Uгз1, Uгз2 тяговых генераторов 4-1 и 4-2, и значения токов нагрузки тяговых генераторов Iг1 и Iг2 в этом режиме. Указанные значения токов тяговых генераторов Iг1 и Iг2 соответствуют различным нагрузкам групп тяговых электродвигателей 6-1, 7-1 и 6-2, 7-2, что приведет к затруднениям в построении чувствительной системы защиты от боксования тепловоза, которые в большинстве случаев основаны на анализе рассогласования нагрузок тяговых электродвигателей. Для обеспечения работы обоих тепловых двигателей 1-1 и 1-2 в режиме необходимо осуществлять регулирование тепловых соответствующих им тяговых генераторов 4-1 и 4-2 таким образом, фактическое положение Lp1 и Lp2 дозирующих органов топливоподачи регуляторов 2-1 и 2-2 частоты и нагрузки находилось на линии 1 оптимального положения дозирующих органов (Фиг. 3) и имело Lp0 (точка И Фиг. 3), а полная (индикаторная) мощность N тепловых двигателей 1-1 и 1-2 соответствовала экономической характеристике (точке В на линии 2 Фиг. 3). Для рассмотренного случая режима значения мощности Pг1 и Рг2 тяговых генераторов 4-1 и 4-2 соответствуют точкам Б и А на линиях 3 и 4 (Фиг. 3) свободной тепловых двигателей 1-1 и 1-2 при заданной частоте nдз0 вращения. г и д на Фиг. 2 соответствуют отсечкам напряжения Uгм и тока Iгм генератора.
Сигналы, пропорциональные Uгз1, Uгз2, с выходов блоков 13-1 и 13-2 интегрирования (Фиг. 2) подаются на вход блока 15 сравнения, полученное значение ΔU=Uгз1-Uгз2 интегрируют в блоке интегрирования 16, результат интегрирования подают на вычитающий вход сумматора 10-1 и на суммирующий вход сумматора 10-2. Таким образом, при Uгз1>Uгз2 (как показано на Фиг. 2) выходной сигнал сумматора 10-1, пропорциональный заданной частоте теплового двигателя 1-1 начинает уменьшаться относительно задания частоты вращения nдз0 и в новом установившемся режиме становится равным nдз1 (Фиг. 3), а выходной сигнал сумматора 10-2, пропорциональный заданной частоте вращения теплового двигателя начинает увеличиваться относительно начального задания частоты вращения nдз0 и в новом установившемся режиме становится равным (Фиг. 3). В результате в системах регулирования частоты и нагрузки тепловых двигателей 1-1 и 1-2 будет получено новое установившееся состояние, при котором величины уставок напряжения тяговых генераторов 4-1 и 4-2 становятся равными друг другу, как показано в В на линии в (Фиг. 2) и соответствуют величине Uгз, токи нагрузки генераторов 4-1 и 4-2 также становятся равными друг другу и соответствуют величине Iг (Фиг. 2), что благоприятно с точки зрения использования сцепного веса тепловоза и для обеспечения надежной работы систем защиты от боксования тепловоза.
Одновременно с этим в новом установившемся режиме значения свободной мощности тепловых двигателей 1-1 и 1-2, равны друг другу и соответствуют точкам Г и Д на линиях 3 и 4 (Фиг. 3), и, следовательно, тепловые двигатели 1-1 и 1-2 работают по экономической характеристике (точки Е и Ж на линии 2 на Фиг. 3). Фактическое положение дозирующих органов топливоподачи регуляторов 2-1 и 2-2 частоты и нагрузки при этом соответствуют значениям Lp1 и Lp2 (точки К и Л на линии 1 Фиг. 3.).
Предлагаемый способ регулирования опробован на стенде и показал положительные результаты.

Claims (1)

  1. Способ регулирования электрической передачи тепловоза, заключающийся в том, что задают частоты вращения вала двух тепловых двигателей, приводящих во вращение соответственно первый и второй тяговые генераторы, каждый из которых связан со своей группой тяговых электродвигателей постоянного тока, измеряют положение дозирующих органов топливоподачи регулятора частоты вращения каждого теплового двигателя, соответствующие текущим значениям частот вращения вала первого и второго тепловых двигателей, задают положение дозирующих органов топливоподачи регуляторов частоты вращения пропорционально заданной частоте вращения, сравнивают их соответственно с измеренными положениями, величины их рассогласования интегрируют по времени и принимают за величину уставок напряжения первого и второго тяговых генераторов, отличающийся тем, что вычисляют разность уставок напряжения первого и второго тяговых генераторов, величину полученной разности интегрируют во времени и по результату интегрирования корректируют соответственно в сторону увеличения заданное значение частоты вращения вала теплового двигателя, связанного с тяговым генератором с меньшей уставкой напряжения, и в сторону уменьшения заданное значение частоты вращения вала теплового двигателя, связанного с тяговым генератором с большей уставкой напряжения.
RU2021127722A 2021-09-20 2021-09-20 Способ регулирования электрической передачи тепловоза RU2766021C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021127722A RU2766021C1 (ru) 2021-09-20 2021-09-20 Способ регулирования электрической передачи тепловоза

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021127722A RU2766021C1 (ru) 2021-09-20 2021-09-20 Способ регулирования электрической передачи тепловоза

Publications (1)

Publication Number Publication Date
RU2766021C1 true RU2766021C1 (ru) 2022-02-07

Family

ID=80214768

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021127722A RU2766021C1 (ru) 2021-09-20 2021-09-20 Способ регулирования электрической передачи тепловоза

Country Status (1)

Country Link
RU (1) RU2766021C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787135C1 (ru) * 2022-03-29 2022-12-29 Открытое Акционерное Общество "Российские Железные Дороги" Способ автоматического управления током тяговых электродвигателей подвижного состава

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU925693A1 (ru) * 1980-01-25 1982-05-07 Предприятие П/Я В-2320 Способ регулировани напр жени т гового генератора тепловоза
RU2423252C1 (ru) * 2010-02-17 2011-07-10 Открытое акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (ОАО "ВНИКТИ") Способ регулирования электрической передачи тепловоза
RU2466039C1 (ru) * 2011-06-23 2012-11-10 Открытое акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (ОАО "ВНИКТИ") Способ регулирования мощности тягового генератора тепловоза
US20130152815A1 (en) * 2011-12-20 2013-06-20 Kabushiki Kaisha Toshiba Hybrid electric locomotive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU925693A1 (ru) * 1980-01-25 1982-05-07 Предприятие П/Я В-2320 Способ регулировани напр жени т гового генератора тепловоза
RU2423252C1 (ru) * 2010-02-17 2011-07-10 Открытое акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (ОАО "ВНИКТИ") Способ регулирования электрической передачи тепловоза
RU2466039C1 (ru) * 2011-06-23 2012-11-10 Открытое акционерное общество Научно-исследовательский и конструкторско-технологический институт подвижного состава (ОАО "ВНИКТИ") Способ регулирования мощности тягового генератора тепловоза
US20130152815A1 (en) * 2011-12-20 2013-06-20 Kabushiki Kaisha Toshiba Hybrid electric locomotive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787135C1 (ru) * 2022-03-29 2022-12-29 Открытое Акционерное Общество "Российские Железные Дороги" Способ автоматического управления током тяговых электродвигателей подвижного состава

Similar Documents

Publication Publication Date Title
US4896090A (en) Locomotive wheelslip control system
US3997822A (en) Method of controlling locomotive wheel slip
GB2178612A (en) Loss of electrical feedback detector
US3982164A (en) Locomotive wheel slip control
US7487851B2 (en) Method and apparatus for controlling a hybrid power supply system in a vehicle
JPH09331601A (ja) 自動車、特にハイブリッド電力使用車両における電力分配を調節する方法および装置
US10000197B2 (en) Mild hybrid powertrain controls
JPH09322304A (ja) ハイブリッド式自動車用の駆動システム及びそのようなシステムの制御方法
RU2766021C1 (ru) Способ регулирования электрической передачи тепловоза
JPH0368603B2 (ru)
RU2290329C1 (ru) Автоматическая микропроцессорная система регулирования напряжения тягового генератора тягового транспортного средства
CN105610359A (zh) 发电机功率输出控制方法、装置及系统
US10804827B2 (en) Closed-loop-controlled voltage generating apparatus and method for operating a closed-loop-controlled voltage generating apparatus
RU2652426C1 (ru) Способ регулирования электрической передачи тепловоза
RU2366583C1 (ru) Способ регулирования электрической тяговой передачи тепловоза
RU2454335C1 (ru) Способ регулирования электрической передачи тепловоза
CN100581729C (zh) 一种钢轨打磨车的调速装置
RU2423252C1 (ru) Способ регулирования электрической передачи тепловоза
US20200198795A1 (en) Device For Providing Power Or Thrust To An Aerospace Vehicle And Method For Controlling A Device For Providing Power To An Aerospace Vehicle
RU2174919C1 (ru) Способ регулирования электрической передачи тепловозов
RU2182086C1 (ru) Способ управления работой транспортного средства с электрической передачей и устройство для его осуществления
RU2750943C1 (ru) Способ регулирования электрической передачи тепловоза в режиме электрического тормоза
RU2406622C2 (ru) Автоматическая комбинированная микропроцессорная система регулирования температуры сглаживающего реактора тягового транспортного средства
CA1283470C (en) Loss of electrical feedback detector
RU2443579C1 (ru) Микропроцессорная система регулирования напряжения тягового генератора тягового транспортного средства