RU2761913C1 - Скважинный клапан с управляемым электроприводом - Google Patents

Скважинный клапан с управляемым электроприводом Download PDF

Info

Publication number
RU2761913C1
RU2761913C1 RU2021122451A RU2021122451A RU2761913C1 RU 2761913 C1 RU2761913 C1 RU 2761913C1 RU 2021122451 A RU2021122451 A RU 2021122451A RU 2021122451 A RU2021122451 A RU 2021122451A RU 2761913 C1 RU2761913 C1 RU 2761913C1
Authority
RU
Russia
Prior art keywords
channel
fluid
protective casing
bore
oil
Prior art date
Application number
RU2021122451A
Other languages
English (en)
Inventor
Кирилл Валерьевич Семенов
Ильдар Явдатович Адиев
Сергей Николаевич Шульга
Александр Евгеньевич Слепов
Original Assignee
Акционерное общество "Научно-производственная фирма "Геофизика" (АО НПФ "Геофизика")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственная фирма "Геофизика" (АО НПФ "Геофизика") filed Critical Акционерное общество "Научно-производственная фирма "Геофизика" (АО НПФ "Геофизика")
Priority to RU2021122451A priority Critical patent/RU2761913C1/ru
Application granted granted Critical
Publication of RU2761913C1 publication Critical patent/RU2761913C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Flow Control (AREA)

Abstract

Изобретение относится к нефтегазовой сфере, в частности - для добывающих и нагнетательных скважин, эксплуатируемых одного или одновременно нескольких нефтегазоносных пластов, в качестве системы, измеряющей или регистрирующей основные параметры потока флюида, а также управляющей дебитом посредством изменения площади проходного канала. Скважинный клапан с управляемым электроприводом содержит основной корпус с центральным проходным каналом, внутренний защитный кожух проходного канала, переводник для НКТ, линию управления и питания от «нулевой точки» электроцентробежного насоса. На шасси в проходном канале жестко закреплены мотор, редуктор и блок электроники, связанный с блоком электроники датчик контроля температуры, установленный на основном корпусе в нижней части проходного канала. Винтовая пара преобразует момент вращения мотора в поступательное движение штока. Клапан дополнительно оснащен внешним защитным кожухом с выпускными отверстиями, образующим с внутренним защитным кожухом канал движения флюида, датчиком контроля состава флюида, установленным в канале движения флюида. Два идентичных парных датчика температуры и давления установлены в проходном канале на максимальном удалении друг от друга и связаны с каналом движения флюида. В корпусе вдоль продольной оси выполнен сквозной канал для вывода транзитной линии связи и питания ниже переводника для НКТ. Достигается технический результат – повышение точности контролируемых параметров давления и температуры пласта, повышение нефтеотдачи пласта. 1 ил.

Description

Изобретение относится к нефтегазовой сфере, в частности - для добывающих и нагнетательных скважин, эксплуатируемых один или одновременно несколько нефтегазоносных пластов, в качестве системы, измеряющей или регистрирующей основные параметры потока флюида, а также управляющей дебитом посредством изменения площади проходного канала.
Применяемые в добывающих и нагнетательных скважинах скважинные клапанные системы, применяемые для изменения площади проходного канала, состоят из внешнего корпуса, защитного грузонесущего корпуса, типового фланцевого соединения со стороны верхнего окончания, типового муфтового соединения под НКТ со стороны нижнего окончания, контактной группы для обеспечения питания от «нулевой точки» ЭЦН или от собственной кабельной линии связи и питания, проходного канала с изменяемой площадью проходного сечения, измерительных датчиков давления и температуры и блока электроники и телеметрии. Нижнее окончание клапана под стандартную муфту НКТ имеет пропускной канал, через который протекает поток флюида от нижнего эксплуатируемого пласта. В пропускном канале, как правило, установлена стандартизированная запирающая пара шар-седло, благодаря которой осуществляется изменение площади проходного сечения канала с целью регулирования дебита потока флюида. Шар запирающей пары жестко соединен со штоком, который в свою очередь соединяется с управляемым электроприводом, обеспечивающим поступательное движения шара и плотную посадку последнего в седло пропускного канала.
Известен скважинный управляемый электромеханический клапан, выбранный в качестве прототипа (патент РФ 2645311, опубл. 20.02.2018). включающий корпус, присоединительный переводник с типовым разъемом или разъемом типа «мокрый контакт», кабель питания, блоки контроля давления, температуры и управления микроэлектродвигателем, питающимся от «нулевой точки» электродвигателя центробежного насоса, редуктор с выходным валом, жестко соединенным с гайкой винтопары, винт, соосно сочлененный с полым штоком с проходным каналом для измерения пластового давления, подвижный дифференциальный поршень, выравнивающий скважинное и пластовое давления, вспомогательный клапан с выходным каналом в полость скважины и управляемый клапан с седлодержателем, в котором дополнительно к управляемому электромеханическому клапану герметично подсоединена штуцерная трубка с внутренним зазором, состыкованная с проходным каналом в полом штоке и герметично соединенная со вспомогательным клапаном, в которой установлена трубка для измерения пластового давления,
Конструкция известного скважинного управляемого электромеханического клапана обеспечивает возможность изменения дебита посредством изменения площади проходного канала с одновременным измерением параметров температуры и пластового давления, что обеспечивает оперативное выравнивание дебита в процессе работы. Однако она не позволяет производить измерения методами состав или получить данные о составе и дебите флюида в непосредственной близости из отсекаемого нижнего пласт, что может привезти к выбору не правильного режима отбора и, как следствие, созданию не правильной депрессии на пласт, увеличению обводненности, прорыву воды, срыву подачи, выходу из строя ПГО, и др.
Преждевременное обводнение пластов и скважин приводит к существенному снижению текущей добычи нефти и конечной нефтеотдачи, так как повышение обводненности приводит к бесполезной циркуляции воды по промытым зонам, а в пласте остаются целики нефти. Что приводит к большим экономическим потерям, влекущим остановку скважины в связи с подъемом на поверхность, транспортированием, подготовкой и обратной закачкой в пласт больших объемов воды.
Задачей настоящего изобретения является, наряду с возможностью изменения дебита посредством изменения площади проходного канала скважинного клапана, расширение его функциональных возможностей - обеспечение возможности контроля состава флюида отсекаемого пласта и с управляемым электроприводом.
Поставленная задача решается следующим образом.
Скважинный клапан с управляемым электроприводом, включающий основной корпус с центральным проходным каналом, внутренний защитный кожух проходного канала, переводник для НКТ, линию управления и питания от «нулевой точки» электроцентробежного насоса, жестко закрепленные на шасси в проходном канале мотор, редуктор и блок электроники, связанный с блоком электроники датчик контроля температуры и давления, установленный на основном корпусе в нижней части проходного канала, и винтовую пару, преобразующую момент вращения мотора в поступательное движение штока, согласно изобретению дополнительно оснащен внешним защитным кожухом с выпускными отверстиями, образующим с внутренним защитным кожухом канал движения флюида, датчиком контроля состава флюида, установленным в канале движения флюида, а также двумя идентичными парными преобразователями температуры и давления, установленными в проходном канале на максимальном удалении друг от друга и связанными с каналом движения флюида. При этом в основном корпусе вдоль продольной оси выполнен сквозной канал для вывода транзитной линии электрического питания и связи за пределы переводника для НКТ.
Предложенное техническое решение имеет следующие существенные отличия от прототипа:
- наличие дополнительного внешнего защитного кожуха обеспечивает, наряду с центральным проходным каналом, создание дополнительного канала для движения флюида из отсекаемого нижнего и контроля его гидродинамических параметров
- наличие датчика состава флюида и размещение его в образованном канале движения флюида обеспечивает возможность контроля состава флюида в непосредственной близости из отсекаемого нижнего пласта,
- показания дополнительных двух идентичных парных преобразователей давления и температуры флюида, связанных с каналом движения флюида, в совокупности с показаниями находящегося в этом же канале датчика состава флюида обеспечивают возможность в режиме реального времени оценивать состав потока флюида из нижнего пласта и принимать оперативные решения по регулированию дебита, либо по полному закрытию запирающей пары в случае повышения обводненности потока.
- расположение дополнительных идентичных парных преобразователей давления и температуры в проходном канале на максимальном удалении друг от друга обеспечивает максимальную длину измерительной базы контролируемых параметров, Это позволяет определять метрологические характеристики парных преобразователей давления и температуры одновременно за одну калибровочную операцию, то есть практически в идеально одинаковых условиях, что в совокупности с показаниями датчика состава флюида позволяет получить высокую точность при оценке дебита. Причем, с учетом параметра расстояния мерной базы между идентичными парными преобразователями давления и температуры обеспечивается возможность оценивать скорость потока в канале движения флюида, а также максимально точно зафиксировать момент повышения его обводненности.
- наличие в основном корпусе вдоль его продольной оси сквозного канала обеспечивает возможность транзита линии электрического питания и связи из проходного канала за пределы переводника для НКТ, что позволяет в зависимости от решаемой задачи подключать к скважинному клапану с управляемым электроприводом дополнительное скважинное оборудование для термогидродинамических исследований действующих скважин в процессе контроля за разработкой нефтегазовых месторождений.
Возможность контроля состава и дебита флюида в непосредственной близости из отсекаемого нижнего пласта, высокая точность контролируемых параметров давления и температуры пласта обеспечивают высокую эффективность применения предложенной конструкции скважинного клапана с управляемым электроприводом для контроля обводненности и своевременного принятия решения по изменению дебита посредством изменения площади проходного канала, что повышает нефтеотдачу пласта и снижает экономические затраты по извлечению нефти.
При этом возможность подключения дополнительного скважинного оборудования в связи с наличием в основном корпусе сквозной проточки для транзита линии электрического питания и связи из проходного канала за пределы переходника для НКТ расширяет функциональные возможности устройства.
С точки зрения практической реализации предложенная конструкция скважинного клапана с управляемым электроприводом не требует специальных материалов и оборудования, что говорит о соответствии ее критерию « промышленная применимость»
На фиг. представлен вариант конструкции скважинного клапана с управляемым электроприводом (разрез) в полностью закрытом состоянии.
Скважинный клапан с управляемым электроприводом содержит основной корпус 1; переводник 2 для НКТ; шасси 3 для крепления редуктора 4, электромотора 5 и блока электроники 6; винтовую пару 7, шток 8; запирающую пару «шар - седло» - 9 и 10 соответственно; преобразователь давления и температуры 11 ниже запирающей пары «шар -седло», датчик контроля состава флюида 12; идентичные парные преобразователи давления и температуры 13 (на практике использовались парные кварцевые датчики давления и температуры) выше запирающей пары «шар - седло»; типовое фланцевое соединение 14 для механической стыковки с ЭЦН; проходной канал 15 движения флюида от нижнего пласта за запирающей парой «шар - седло»; кабельную линию 16 для электропитания и передачи информации от блока электроники 6 к наземным системам, внутренний защитный кожух 17; и внешний защитный кожух 18 с выпускными отверстиями 19, образующие канал 20 движения флюида, сквозной канал 21 для транзитной линии электрического питания и связи с внешним скважинным устройством, в качестве которого может быть использован, например, комплексный прибор САКМАР производства НПФ «Геофизика».
Скважинный клапан с управляемым электроприводом (далее - клапан) работает следующим образом.
Предварительно, в процессе сборки конструкции представленного клапана, определяют метрологические характеристики идентичных парных преобразователей давления и температуры 13. Метрологические характеристики определяют за одну калибровочную операцию с учетом мерной базы (расстояния между датчиками 13 в проходном канале 15), то есть практически в идеально одинаковых условиях, что позволяет затем максимально точно зафиксировать момент повышения обводненности потока флюида.
Далее клапан в полностью открытом состоянии запирающей пары «шар - седло» (шар 9 находится в крайнем верхнем положении) спускается в скважину на подвеске ЭЦН и своим нижним переводником 2 для НКТ герметично стыкуется с разделителем пластов (на фиг. не показано). Флюид из верхнего пласта протекает по затрубному пространству, а флюид из нижнего пласта протекает через разделитель пластов по секции НКТ и проходному каналу 15.
На наземной станции управления оператор в режиме реального времени, наряду с контролем датчиком 11 гидростатических параметров давления и температуры ниже запирающей пары «шар - седло» (на входе переводника НКТ 2), совокупно оценивает показания датчика состава флюида 12 и разностные показания парных датчиков давления и температуры 13 в канале 20 движения флюида выше запирающей пары «шар -седло». При увеличении процента влагосодержания флюида в канале 20 показания датчика состава флюида 12 возрастают, что свидетельствует об увеличении обводненности флюида нижнего пласта. Одновременно, с учетом мерной базы, по показаниям парных датчиков давления и температуры 13 фиксируется момент повышения обводненности. Оператор принимает решение уменьшить дебит нижнего пласта и по линии связи 16 подает пусковой сигнал закрытия клапана полностью или частично (в зависимости от величины параметров) на электронный блок 6. Электронным блоком 6 подается питание на мотор 5, который через редуктор 4 передает момент вращения на винтовую пару 7, преобразующую вращающий момент в поступательное движение штока 8. Шток 8 смещает шар 9 ближе к седлу 10, тем самым уменьшая площадь проходного сечения канала (или перекрывая его полностью - предотвращая прорыв воды). При снижении контролируемых параметров до заданной нормы оператором на электронный блок 6 подается пусковой сигнал открытия клапана. Открытие клапана - смещение шара 9 посредством штока 8 в противоположную сторону - осуществляется в обратном порядке
Таким образом, применение на практике предложенной конструкция скважинного клапана с управляемым электроприводом позволяет с высокой точностью осуществлять контроль состава флюида в непосредственной близости из отсекаемого нижнего пласта, управлять дебитом скважины, отсекать обводненные (выработанные) участки пласта с целью обеспечения нормальных условий выработки остальных пластов, и тем самым обеспечивать эффективность добычи нефти.
Кроме того, наличие в основном корпусе 1 сквозного канала 21 для транзита линии электрического питания и связи из проходного канала за пределы переводника 2 для НКТ позволяет в зависимости от поставленной задачи подключать дополнительное скважинное оборудование, расширяя тем самым функциональные возможности заявленного скважинного клапана с управляемым электроприводом. Например, дополнительно для термогидродинамических исследований действующих скважин в процессе контроля за разработкой нефтегазовых месторождений дополнительно подключалась комплексная скважинная автономная аппаратура КСА-А5-36 «САКМАР» (изготовитель АО НПФ «Геофизика», г. Уфа).

Claims (1)

  1. Скважинный клапан с управляемым электроприводом, включающий основной корпус с центральным проходным каналом, внутренний защитный кожух проходного канала, переводник для НКТ, линию управления и питания от «нулевой точки» электроцентробежного насоса, жестко закрепленные на шасси в проходном канале мотор, редуктор и блок электроники, связанный с блоком электроники датчик контроля температуры, установленный на основном корпусе в нижней части проходного канала, и винтовую пару, преобразующую момент вращения мотора в поступательное движение штока, отличающийся тем, что он дополнительно оснащен внешним защитным кожухом с выпускными отверстиями, образующим с внутренним защитным кожухом канал движения флюида, датчиком контроля состава флюида, установленным в канале движения флюида, а также двумя идентичными парными датчиками температуры и давления, установленными в проходном канале на максимальном удалении друг от друга и связанными с каналом движения флюида, при этом в корпусе вдоль продольной оси выполнен сквозной канал для вывода транзитной линии связи и питания ниже переводника для НКТ.
RU2021122451A 2021-07-27 2021-07-27 Скважинный клапан с управляемым электроприводом RU2761913C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021122451A RU2761913C1 (ru) 2021-07-27 2021-07-27 Скважинный клапан с управляемым электроприводом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021122451A RU2761913C1 (ru) 2021-07-27 2021-07-27 Скважинный клапан с управляемым электроприводом

Publications (1)

Publication Number Publication Date
RU2761913C1 true RU2761913C1 (ru) 2021-12-14

Family

ID=79175198

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021122451A RU2761913C1 (ru) 2021-07-27 2021-07-27 Скважинный клапан с управляемым электроприводом

Country Status (1)

Country Link
RU (1) RU2761913C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2344274C1 (ru) * 2007-04-16 2009-01-20 ООО НИИ "СибГеоТех" Способ одновременно-раздельной добычи нефти из пластов одной скважины с погружной насосной установкой (варианты)
RU2385409C2 (ru) * 2008-05-13 2010-03-27 ООО Научно-исследовательский институт "СибГеоТех" Способ добычи флюида из пластов одной скважины электроприводным насосом с электрическим клапаном и установка для его реализации (варианты)
RU2519281C1 (ru) * 2013-04-10 2014-06-10 Общество с ограниченной ответственностью Научно-техническое предприятие "Нефтегазтехника" Насосно-пакерная и отсекательная система для одновременно-раздельной эксплуатации пластов скважины (варианты)
RU2563262C2 (ru) * 2014-07-15 2015-09-20 Олег Сергеевич Николаев Клапанная насосная установка для одновременно-раздельной эксплуатации многопластовой скважины
RU2645311C1 (ru) * 2016-09-06 2018-02-20 Общество с ограниченной ответственностью Научно-производственная фирма "Пакер" Скважинный управляемый электромеханический клапан
EP2860342B1 (en) * 2011-10-11 2018-11-14 Halliburton Manufacturing & Services Limited Downhole contingency apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2344274C1 (ru) * 2007-04-16 2009-01-20 ООО НИИ "СибГеоТех" Способ одновременно-раздельной добычи нефти из пластов одной скважины с погружной насосной установкой (варианты)
RU2385409C2 (ru) * 2008-05-13 2010-03-27 ООО Научно-исследовательский институт "СибГеоТех" Способ добычи флюида из пластов одной скважины электроприводным насосом с электрическим клапаном и установка для его реализации (варианты)
EP2860342B1 (en) * 2011-10-11 2018-11-14 Halliburton Manufacturing & Services Limited Downhole contingency apparatus
RU2519281C1 (ru) * 2013-04-10 2014-06-10 Общество с ограниченной ответственностью Научно-техническое предприятие "Нефтегазтехника" Насосно-пакерная и отсекательная система для одновременно-раздельной эксплуатации пластов скважины (варианты)
RU2563262C2 (ru) * 2014-07-15 2015-09-20 Олег Сергеевич Николаев Клапанная насосная установка для одновременно-раздельной эксплуатации многопластовой скважины
RU2645311C1 (ru) * 2016-09-06 2018-02-20 Общество с ограниченной ответственностью Научно-производственная фирма "Пакер" Скважинный управляемый электромеханический клапан

Similar Documents

Publication Publication Date Title
RU2442021C2 (ru) Система гидравлического насоса для скважинного инструмента (варианты), способ управления указанным насосом и способ эксплуатации насосной системы для скважинного инструмента
US11142955B2 (en) Steerable drill bit system
US8905128B2 (en) Valve assembly employable with a downhole tool
US10392931B2 (en) Hydraulically assisted pulser system and related methods
US7086294B2 (en) Retrievable downhole flow meter
US6330913B1 (en) Method and apparatus for testing a well
US5213159A (en) Method and apparatus for monitoring well fluid parameters
US20140090888A1 (en) Apparatus, System, and Method for Controlling the Flow of Drilling Fluid in a Wellbore
RU2562641C2 (ru) Способ одновременно-раздельной эксплуатации двухпластовой скважины и скважинная насосная установка для его осуществления
AU8292801A (en) Closed-loop drawdown apparatus and method for in-situ analysis of formation fluids
CN106640033A (zh) 旋转导向工具状态监测方法
GB2398583A (en) Formation testing using differential pressure conditions to actuate sample mechanism
CA2185067A1 (en) Production wells having permanent downhole formation evaluation sensors
CN105464649B (zh) 地层压力测量短节和地层压力模拟测量装置
US10208558B2 (en) Power pumping system and method for a downhole tool
CN110230490B (zh) 一种适用于测量井下地层流体压力的方法和装置
CN107489410B (zh) 井下智控式封隔双向配注装置
CN109356541A (zh) 电动投放短节及投放方法
CN110044529A (zh) 一种盾构隧道外侧土压力测量方法
US8393874B2 (en) Hybrid pumping system for a downhole tool
RU2761913C1 (ru) Скважинный клапан с управляемым электроприводом
CN113530503A (zh) 一种测、调、采一体化的分层采油系统
RU2268988C2 (ru) Универсальный пакер для опрессовки и исследования колонн
US20210102450A1 (en) Method And Apparatus For Producing Well With Backup Gas Lift And An Electrical Submersible Well Pump
RU2620700C1 (ru) Скважинный управляемый электромеханический клапан