RU2760736C1 - Curable resins for making heat-resistant 3d objects using dlp 3d printing - Google Patents

Curable resins for making heat-resistant 3d objects using dlp 3d printing Download PDF

Info

Publication number
RU2760736C1
RU2760736C1 RU2021110932A RU2021110932A RU2760736C1 RU 2760736 C1 RU2760736 C1 RU 2760736C1 RU 2021110932 A RU2021110932 A RU 2021110932A RU 2021110932 A RU2021110932 A RU 2021110932A RU 2760736 C1 RU2760736 C1 RU 2760736C1
Authority
RU
Russia
Prior art keywords
curable resins
dlp
resistant
printing
heat
Prior art date
Application number
RU2021110932A
Other languages
Russian (ru)
Inventor
Бато Чингисович Холхоев
Ольга Сергеевна Коркунова
Виталий Федорович Бурдуковский
Ксения Николаевна Бардакова
Никита Владимирович Минаев
Петр Сергеевич Тимашев
Original Assignee
Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН)
Priority to RU2021110932A priority Critical patent/RU2760736C1/en
Application granted granted Critical
Publication of RU2760736C1 publication Critical patent/RU2760736C1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

FIELD: curable resins.SUBSTANCE: invention relates to curable resins and can be used for the manufacture of heat-resistant three-dimensional objects using DLP 3D printing. Curable resins consist of a heat-resistant polymer - poly-2,2'-(n-oxydiphenylene)-5,5'-dibenzimidazole with a molecular weight of 100-180 kDa, an aromatic acrylamide binder - 3,3-di(4'-acrylamidophenyl)phthalide, active solvent - N,N-dimethylacrylamide and photoinitiator - bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.EFFECT: formation of products of a given architecture by the DLP 3D printing method in a short period of time, characterized by a heat resistance of 401-422°С and a tensile strength of 88.2-121.1 MPa.1 cl, 3 ex

Description

Изобретение относится к отверждаемым смолам на основе акриламидных компонентов и термостойкого полибензимидазола и может быть использовано для изготовления термостойких трехмерных объектов методом DLP 3D-печати.The invention relates to curable resins based on acrylamide components and heat-resistant polybenzimidazole and can be used for the manufacture of heat-resistant three-dimensional objects by DLP 3D printing.

Из существующего уровня техники известны аналоги – отверждаемые смолы на основе различных моно-, ди- и полифункциональных (мет)акрилатных производных и фотоинициаторов, которые могут быть использованы для изготовления трехмерных полимерных объектов методом лазерной стереолитографии (патенты RU 2127444, RU 2515991, RU 2477290, RU 2244335). Общим недостатком указанных отверждаемых смол является низкая термостойкость получаемых изделий, что существенно ограничивает области их практического применения.From the existing prior art, analogs are known - curable resins based on various mono-, di- and polyfunctional (meth) acrylate derivatives and photoinitiators, which can be used for the manufacture of three-dimensional polymer objects by laser stereolithography (patents RU 2127444, RU 2515991, RU 2477290, RU 2244335). A common disadvantage of these curable resins is the low heat resistance of the resulting products, which significantly limits the scope of their practical application.

Наиболее близким по технической сущности к предлагаемому изобретению аналогом, принятого за прототип (патент RU 2684387), являются отверждаемые смолы на основе поли-(м-фенилен)изофталамида с молекулярной массой 60 кДа, акриламидных соединений и фотоинициатора. Термостойкость изделий, сформированных методом лазерной стереолитографии на основе таких смол, составляет 370-390°С, а прочность на разрыв 86,8-90,3 МПа.The closest in technical essence to the proposed invention analogue adopted for the prototype (patent RU 2684387), are curable resins based on poly- ( m- phenylene) isophthalamide with a molecular weight of 60 kDa, acrylamide compounds and a photoinitiator. The thermal resistance of products formed by laser stereolithography based on such resins is 370-390 ° C, and the tensile strength is 86.8-90.3 MPa.

Техническим результатом настоящего изобретения является увеличение термостойкости и механической прочности изделий и уменьшение времени их формирования. Технический результат изобретения достигается за счет использования отверждаемых смол на основе термостойкого полимера – поли-2,2’-(п-оксидифенилен)-5,5’-дибензимидазола с молекулярной массой 100-180 кДа, ароматического акриламидного связующего – 3,3-ди(4’-акриламидофенил)фталида, активного растворителя – N,N-диметилакриламида и фотоинициатора – бис(2,4,6-триметилбензоил)-фенилфосфиноксида. Уменьшение времени формирования изделий достигается благодаря использованию метода DLP 3D-печать, поскольку в этом случае каждый слой засвечивается диодной матрицей, а не сканируется лазерным лучом как в методе лазерной стереолитографии.The technical result of the present invention is to increase the heat resistance and mechanical strength of products and reduce the time of their formation. The technical result of the invention is achieved through the use of curable resins based on a heat-resistant polymer - poly-2,2 '- ( p- hydroxyphenylene) -5,5'-dibenzimidazole with a molecular weight of 100-180 kDa, an aromatic acrylamide binder - 3,3-di (4'-acrylamidophenyl) phthalide, active solvent - N, N-dimethylacrylamide and photoinitiator - bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Reducing the formation time of products is achieved through the use of the DLP 3D printing method, since in this case each layer is illuminated by a diode matrix, and not scanned by a laser beam as in the method of laser stereolithography.

Отверждаемая смола имеет следующий состав (%, масс.):The curable resin has the following composition (%, wt.):

1. Поли-2,2’-(п-оксидифенилен)-5,5’-дибензимидазола – 5-15; 1. Poly-2,2 '- ( p- hydroxyphenylene) -5,5'-dibenzimidazole - 5-15;

2. 3,3-ди(4’-акриламидофенил)фталид – 5-15; 2. 3,3-di (4'-acrylamidophenyl) phthalide 5-15;

3. N,N-диметилакриламид – 69-89;3. N, N-dimethylacrylamide 69-89;

4. Бис(2,4,6-триметилбензоил)-фенилфосфиноксид – 1.4. Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide - 1.

Формирование трехмерных объектов на основе отверждаемых смол осуществлялся технологией DLP 3D-печати с использованием светодиодного излучения со следующими характеристиками: длина волны 405 нм, мощность излучения 30 мВт. Подвод светодиодного излучения производился снизу перпендикулярно поверхности смолы. Толщина слоя составляла 10-50 мкм, время засветки одного слоя – 10-30 секунд.The formation of three-dimensional objects based on curable resins was carried out by DLP 3D printing technology using LED radiation with the following characteristics: wavelength 405 nm, radiation power 30 mW. The LED radiation was supplied from below, perpendicular to the resin surface. The layer thickness was 10-50 microns, the exposure time of one layer was 10-30 seconds.

Полученные таким образом материалы заданной геометрической формы согласно данным синхронного термического анализа на воздухе при скорости нагревания 5 град/мин не плавятся вплоть до начала деструкции, которая происходит при 401-422°С, что свидетельствует об их высокой термостойкости. Прочность на разрыв материалов составляет 88,2-121,1 МПа.The materials obtained in this way of a given geometric shape, according to the data of synchronous thermal analysis in air at a heating rate of 5 K / min, do not melt until the onset of destruction, which occurs at 401–422 ° C, which indicates their high thermal stability. The tensile strength of the materials is 88.2-121.1 MPa.

Предлагаемое изобретение подтверждается следующими примерами.The proposed invention is supported by the following examples.

Пример 1. В 8,863 мл N,N-диметилакриламида добавляли 0,5 г поли-2,2’-(п-оксидифенилен)-5,5’-дибензимидазола, 1 г 3,3-ди(4’-акриламидофенил)фталида и 0,1 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксида и интенсивно перемешивали до полной гомогенизации. Полученную смолу подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки в вакууме при 100°С начинало деструктировать на воздухе при 401°С. Образцы имеют следующие механические характеристики: прочность на разрыв 88,2±5,1 МПа, относительное удлинение при разрыве 9,4±1,4%. Example 1 . In 8.863 ml of N, N-dimethylacrylamide, 0.5 g of poly-2,2 '- ( p- hydroxyphenylene) -5,5'-dibenzimidazole, 1 g of 3,3-di (4'-acrylamidophenyl) phthalide and 0, 1 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide photoinitiator and vigorously stirred until complete homogenization. The resulting resin was exposed to LED light at λ = 405 nm. As a result, a product was obtained, which, after thorough washing and drying in vacuum at 100 ° C, began to degrade in air at 401 ° C. The samples have the following mechanical characteristics: tensile strength 88.2 ± 5.1 MPa, elongation at break 9.4 ± 1.4%.

Пример 2. В 8,316 мл N,N-диметилакриламида добавляли 1,0 г поли-2,2’-(п-оксидифенилен)-5,5’-дибензимидазола, 1 г 3,3-ди(4’-акриламидофенил)фталида и 0,1 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксид и интенсивно перемешивали до полной гомогенизации. Полученную смолу подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки вакууме при 100°С начинало деструктировать на воздухе при 408°С. Образцы имеют следующие механические характеристики: прочность на разрыв 101,1±7,1 МПа, относительное удлинение при разрыве 8,5±0,9%. Example 2 . In 8.316 ml of N, N-dimethylacrylamide was added 1.0 g of poly-2,2 '- (p-oxydiphenylene) -5,5'-dibenzimidazole, 1 g of 3,3-di (4'-acrylamidophenyl) phthalide and 0, 1 g of photoinitiator bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and vigorously stirred until complete homogenization. The resulting resin was exposed to LED light at λ = 405 nm. As a result, a product was obtained, which, after thorough washing and drying in a vacuum at 100 ° C, began to degrade in air at 408 ° C. The samples have the following mechanical characteristics: tensile strength 101.1 ± 7.1 MPa, elongation at break 8.5 ± 0.9%.

Пример 3. В 7,796 мл N,N-диметилакриламида добавляли 1,5 г поли-2,2’-(п-оксидифенилен)-5,5’-дибензимидазола, 1 г 3,3-ди(4’-акриламидофенил)фталида и 0,1 г фотоинициатора бис(2,4,6-триметилбензоил)-фенилфосфиноксид и интенсивно перемешивали до полной гомогенизации. Полученную смолу подвергали светодиодному излучению с λ=405 нм. В результате получали изделие, которое после тщательного промывания и сушки вакууме при 100°С начинало деструктировать на воздухе при 422°С. Образцы имеют следующие механические характеристики: прочность на разрыв 121,1±8,4 МПа, относительное удлинение при разрыве 6,7±1,0%. Example 3. In 7.796 ml of N, N-dimethylacrylamide was added 1.5 g of poly-2,2 '- (p-oxydiphenylene) -5,5'-dibenzimidazole, 1 g of 3,3-di (4'-acrylamidophenyl) phthalide and 0.1 g of the photoinitiator bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and vigorously stirred until complete homogenization. The resulting resin was exposed to LED light at λ = 405 nm. As a result, a product was obtained, which, after thorough washing and drying in a vacuum at 100 ° C, began to degrade in air at 422 ° C. The samples have the following mechanical characteristics: tensile strength 121.1 ± 8.4 MPa, elongation at break 6.7 ± 1.0%.

Как видно из приведенных примеров, отверждаемые смолы выгодно отличаются от известных по совокупности эксплуатационных характеристик изделий на их основе.As can be seen from the above examples, curable resins compare favorably with products based on them known from the set of performance characteristics.

Вышеперечисленный комплекс практически полезных свойств изделий на основе полученных отверждаемых смол определяет положительный эффект изобретения. Полученные отверждаемые смолы могут быть использованы для DLP 3D-печати при получении термо- и теплостойких изделий заданной архитектуры.The above complex of practically useful properties of products based on the obtained curable resins determines the positive effect of the invention. The resulting curable resins can be used for DLP 3D printing to obtain heat and heat resistant products of a given architecture.

Claims (2)

Отверждаемые смолы для изготовления термостойких изделий заданной архитектуры методом DLP 3D-печати, отличающиеся тем, что отверждаемые смолы имеют следующий состав (% масс.):Curable resins for the manufacture of heat-resistant products of a given architecture by the DLP 3D printing method, characterized in that the curable resins have the following composition (wt%): Поли-2,2’-(п-оксидифенилен)-5,5’-дибензимидазолPoly-2,2 '- ( p- hydroxyphenylene) -5,5'-dibenzimidazole 5-15 5-15 3,3-ди(4’-акриламидофенил)фталид3,3-di (4'-acrylamidophenyl) phthalide 5-15 5-15 N,N-диметилакриламидN, N-dimethylacrylamide 69-8969-89 Бис(2,4,6-триметилбензоил)-фенилфосфиноксидBis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide 1one
RU2021110932A 2021-04-19 2021-04-19 Curable resins for making heat-resistant 3d objects using dlp 3d printing RU2760736C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021110932A RU2760736C1 (en) 2021-04-19 2021-04-19 Curable resins for making heat-resistant 3d objects using dlp 3d printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021110932A RU2760736C1 (en) 2021-04-19 2021-04-19 Curable resins for making heat-resistant 3d objects using dlp 3d printing

Publications (1)

Publication Number Publication Date
RU2760736C1 true RU2760736C1 (en) 2021-11-30

Family

ID=79174017

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021110932A RU2760736C1 (en) 2021-04-19 2021-04-19 Curable resins for making heat-resistant 3d objects using dlp 3d printing

Country Status (1)

Country Link
RU (1) RU2760736C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792647C1 (en) * 2022-12-08 2023-03-22 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Photosensitive compositions for the manufacture of heat-resistant mechanically strong objects by dlp 3d printing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646088C1 (en) * 2016-12-27 2018-03-01 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Photopolymer composition for the production of thermal-resistant objects by the method of laser stereolithography
RU2684387C2 (en) * 2017-05-03 2019-04-08 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Photopolymer composition for the production of thermal-resistant objects by the method of laser stereolithography
CN110341097A (en) * 2019-08-05 2019-10-18 浙江大学 A kind of thermoplastic polymer and application based on DLP photocuring 3D printing
EP3778681A1 (en) * 2018-03-28 2021-02-17 Kuraray Noritake Dental Inc. Photocurable resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2646088C1 (en) * 2016-12-27 2018-03-01 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Photopolymer composition for the production of thermal-resistant objects by the method of laser stereolithography
RU2684387C2 (en) * 2017-05-03 2019-04-08 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Photopolymer composition for the production of thermal-resistant objects by the method of laser stereolithography
EP3778681A1 (en) * 2018-03-28 2021-02-17 Kuraray Noritake Dental Inc. Photocurable resin composition
CN110341097A (en) * 2019-08-05 2019-10-18 浙江大学 A kind of thermoplastic polymer and application based on DLP photocuring 3D printing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kholkhoev B. Ch. et al., Mendeleev Communications, 2019, 29, 223-225. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792647C1 (en) * 2022-12-08 2023-03-22 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Photosensitive compositions for the manufacture of heat-resistant mechanically strong objects by dlp 3d printing

Similar Documents

Publication Publication Date Title
US8758954B2 (en) Process for preparing membranes
Xu et al. Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs
US10279319B2 (en) Curable compositions and membranes
ES2731827T3 (en) Functional polymeric membrane and its manufacturing method
AU2012285540B2 (en) Curable compositions and membranes
Turunen et al. Pico-and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity
RU2760736C1 (en) Curable resins for making heat-resistant 3d objects using dlp 3d printing
TW200624493A (en) Antimicrobial polymer compositions having improved discoloration resistance
US20120024697A1 (en) Membranes
EP3418313B1 (en) Composition optical three-dimensional molding
KR20070110295A (en) Curable acrylate compositions, methods of making the compositions and articles made therefrom
WO2021198416A1 (en) Membranes and their uses
Wang et al. The cytocompatibility of genipin-crosslinked silk fibroin films
JP2011052063A5 (en)
CN103201651B (en) Optical lens and method for manufacturing same
RU2646088C1 (en) Photopolymer composition for the production of thermal-resistant objects by the method of laser stereolithography
KR102025864B1 (en) Hydrogel actuator haning acrylic acid and method for fabricating hydrogel actuator
Reisinger et al. Spatially resolved photoactivation of dynamic exchange reactions in 3D-printed thiol–ene vitrimers
FI64181C (en) POLYVINYLIDENFLUORID- ELLER VINYLIDENFLUORID-KOPOLYMERATBLANDNINGAR MED UTMAERKT LJUSGENOMSLAEPPANDE FOERMAOGA
US20230100967A1 (en) Membrane Stacks and Their Uses
RU2792647C1 (en) Photosensitive compositions for the manufacture of heat-resistant mechanically strong objects by dlp 3d printing
RU2684387C2 (en) Photopolymer composition for the production of thermal-resistant objects by the method of laser stereolithography
GB1585671A (en) Stabilised cured or uncured linear aromatic polyester composition and process for preparation thereof
RU2790249C1 (en) Photo-curable compositions for manufacture of heat-resistant three-dimensional objects by dlp 3d printing
CN111909320A (en) Photocuring 3D printing modified polylactic acid composite photosensitive resin and preparation method thereof