RU2760096C1 - Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе - Google Patents

Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе Download PDF

Info

Publication number
RU2760096C1
RU2760096C1 RU2021101233A RU2021101233A RU2760096C1 RU 2760096 C1 RU2760096 C1 RU 2760096C1 RU 2021101233 A RU2021101233 A RU 2021101233A RU 2021101233 A RU2021101233 A RU 2021101233A RU 2760096 C1 RU2760096 C1 RU 2760096C1
Authority
RU
Russia
Prior art keywords
magnesium
hydroxyapatite
composite material
grinding
powder
Prior art date
Application number
RU2021101233A
Other languages
English (en)
Inventor
Полина Алексеевна Крохичева
Динара Рустамовна Хайрутдинова
Маргарита Александровна Гольдберг
Виктория Николаевна Казакова
Дмитрий Павлович Шортников
Сергей Миронович Баринов
Владимир Сергеевич Комлев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН)
Priority to RU2021101233A priority Critical patent/RU2760096C1/ru
Application granted granted Critical
Publication of RU2760096C1 publication Critical patent/RU2760096C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders

Abstract

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и раскрывает способ получения биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния. Способ характеризуется тем, что включает смешение и помол исходных порошковых материалов, представляющих собой магний и гидроксиапатит, в атмосфере инертного газа в планетарной мельнице с последующим компактированием смеси электроимпульсным методом, при этом содержание фазы гидроксиапатита в порошковой смеси составляет 70-90 мас.%, а содержание фазы магния - 10-30 мас.%. Полученный композиционный материал на основе гидроксиапатита, армированного частицами магния, характеризуется прочностью не менее 250 МПа при сжатии и открытой пористостью не менее 10% и может быть использован качестве материала биорезорбируемого имплантата в остеосинтезе после различных травм. 5 ил., 5 табл.

Description

Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования. для применения в качестве имплантата при остеосинтезе.
Изобретение относится к области медицины, а именно для применения в качестве материала имплантата в остеосинтезе после различных травм. Актуальность замены современных имплантатов на биорезорбируемые играет важную роль для здоровья пациента. Уровень осложнений после использования металлических имплантатов создает потребность в новой технологии, главным преимуществом которой является исключение проведения повторной операции.
По многим соображениям сообщество травматологов и ортопедов всегда стремилось к такому стандарту остеосинтеза, при котором не пришлось бы проводить этапное лечение для удаления выполнившего свою функцию фиксатора. Впоследствии это привело к масштабной исследовательской работе в биоматериаловедении, сосредоточенной на поиске материала, который бы деградировал и постепенно утрачивал свою прочность пропорционально скорости заживления кости, тем самым улучшая результат хирургического лечения [Верещагин В.И. Новые технологии создания и применения биокерамики в восстановительной медицине: материалы III Международной научно-практической конференции // Тезисы докладов и сообщений научно-практической конференции 7-9 октября 2013 г. Томский политехнический университет.- Томск: Изд. Томского политехнического университета, 2013. - 219 с.].
Согласно стратегии научно-технологического развития Российской Федерации, одним из главных приоритетным направлением в науке является переход к персонализированной медицине, высокотехнологичному здравоохранению и технологиям здоровьесбережения. В связи с этим, вопрос поиска биорезорбируемого материала имплантата для лечения переломов и травм различной степени, который исключит проведение повторной операции, а, следовательно, будет способствовать уменьшению реабилитационного периода пациента, является актуальным направлением в биоматериаловедении.
Магний проявляет биосовместимость с организмом человека, его механические свойства максимально близки к свойствам кости, что делает магний перспективным материалом для создания биорезорбируемых имплантатов, однако разложение имплантата в естественных условиях организма человека прогрессирует очень быстро [Song, Guangling. "Recent progress in corrosion and protection of magnesium alloys." Advanced Engineering Materials, 2005. - P. 563-58.]. Таким образом, с целью уменьшения скорости коррозии и увеличении времени деградации имплантата до полного восстановления костной ткани, в настоящее время обсуждаются различные подходы [Homayun, Bahman, and Abdollah Afshar. "Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials." Journal of Alloys and Compounds, 2014. - P. 607.].
Значительные усилия были направлены на разработку керамических материалов на основе фосфатов кальция [Баринов С.М., Комлев B.C. Биокерамика на основе фосфатов кальция. - М.: Наука, 2005. - 204 с.]. Материалы на основе фосфатов кальция не вызывают отрицательных реакций организма, в отличие от ряда металлов и полимеров, и биологически активны в отношении образования костного апатита. Но известные керамические материалы имеют достаточно низкие механически характеристики, чтобы воспринимать во многих необходимых ситуациях физическую нагрузку с высокой степенью надежности [Кирилова И.А. Анатомо-функциональные свойства кости как основа создания костно-пластических материалов для травматологии и ортопедии (анатомо-экспериментальное исследование): Дис… д-ра мед. наук // Новосибирск. - 2011. - 258 с. - 2011.].
Авторы в работе [Kusnierczyk К., Basista М. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials // Journal of biomaterials applications. - 2017. - T. 31. - №.6. - P. 878-900] отмечают перспективность использования магниевых сплавов и композитов на их основе с добавлением фосфатов кальция (трикальцийфосфат (ТКФ), гидроксиапатит (ГА), тетракальциевый фосфат (ТеТКФ)) в качестве биодеградируемого материала имплантата для применения в ортопедии.
Из уровня техники известен способ получения композиционного материала магний-ГА при содержании ГА - 1,5 мас.%. методом обработки трением с перемешиванием [Ahmadkhaniha D. et al. Corrosion behavior of magnesium and magnesium-hydroxyapatite composite fabricated by friction stir processing in Dulbecco's phosphate buffered saline // Corrosion Science. - 2016. - T. 104. - P. 319-329.]. Авторы сосредоточились на изучении механизма коррозии магния и не приводят значения прочности и пористости полученных образцов композита. Данный метод получения приводит к неравномерному распределению компонентов в материале.
Из уровня техники известно, что в работе [Khanra А.К. et al. Microstructure and mechanical properties of Mg-HAP composites //Bulletin of Materials Science. - 2010. - T. 33. - №.1. - P. 43-47.] композиционный материал магний-ГА получали методом экструзии. Различное количество порошка ГА (0, 5, 10, 15 вес.%) добавляли в расплав магния при температуре 700°С и перемешивали, после смешивания производили гомогенизацию слитков при 400°С в течение 12 ч. Экструзию проводили при температуре 320°С. Максимальный предел прочности на растяжение составил 171 МПа для образцов, содержащих 5 вес.% ГА. С увеличением содержания ГА прочность снижается. Композиты, содержащие 15 вес.% ГА и 0 вес.% ГА показывают прочность на сжатие около 305 и 265 МПа соответственно. Данная технология является многоэтапной и энергозатратной.
Получить композиционный материал магний - ГА, сохранив исходные свойства гидроксиапатита - биоактивность, а магния - биорезорбируемость и близкие значения прочностных характеристик с естественной костной тканью [Современные методы остеосинтеза костей при острой травме опорно-двигательного аппарата: Учебное пособие / С.В. Сергеев, Н.В. Загородний, М.А. Абдулхабиров, О.Б. Гришанин, Н.И. Карпович, B.C. Папоян. - М.: РУДН, 2008 - 222 с.], позволяют методы порошковой металлургии.
В работе [Sunil В.R. et al. Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants //Journal of the mechanical behavior of biomedical materials. - 2014. - T. 40. - P. 178-189.] описана технология получения композита магний - ГА с помощью методов порошковой металлургии. На первом этапе проводили смешение и помол исходных порошковых компонентов с содержанием фазы ГА 8, 10 и 15 вес.% (ост. магний) в планетарной мельнице в течение 20 ч при скорости 200 об/мин в этиловом спирте. Далее полученную порошковую смесь спекали электроимпульсным методом компактирования на установке DR SINTER, SPS - 625, Japan при температуре 450°С, давлении 50 МПа и выдержке 10 мин. Авторы не приводят значения плотности, прочности и пористости, полученных композиционных образцов, возможно, технология смешения и помола исходных порошковых компонентов в этиловом спирте может приводить к образованию оксида магния, что является недостатком.
Наиболее близким к предлагаемому изобретению является способ получения композита магний - ГА электроимпульсным методом, описанный в работе [Nakahata I., Tsutsumi Y., Kobayashi E. Mechanical Properties and Corrosion Resistance of Magnesium-Hydroxyapatite Composites Fabricated by Spark Plasma Sintering // Metals. - 2020. - T. 10. - №.10. - P. 1314.]. На первом этапе производится смешение и помол исходных порошковых компонентов с содержанием фазы ГА - 8, 10 и 12 вес.% (ост. магний) в планетарной мельнице в атмосфере аргона в течение 10 мин при 500 об/мин, размер частиц порошка после помола составил 180 мкм. На втором этапе производилась подпрессовка образцов при 10 МПа в течение 1 мин и далее образцы спекались при температуре 500°С, давлении 50МПа, с выдержкой 10 мин на установке SPS-511S, Fuji-SPS, Saitama, Japan. Пористость полученных композиционных образцов составляла 2-8% и увеличивалась с повышением содержания ГА в композите. Максимальная прочность при сжатии составляла 150МПа для образцов содержащих 0 вес.% ГА и 200 МПа при содержании 10 вес.% ГА в композите, однако, при содержании 12 вес.% ГА прочность снижалась до 140 МПа. В качестве основной фазы данного композита выступает металлический магний, содержание которого превышает содержание ГА.
Авторы настоящего изобретения обнаружили, что с помощью метода электроимпульсного компактирования возможно получать композиционный материал на основе керамики - гидроксиапатита при низкой температуре спекания.
Исследование растворимости и способности формирования кальций - фосфатного слоя на поверхности композитного материала при выдержке в растворах, моделирующие внеклеточные жидкости организма, описано в работе [Jaiswal S. et al. Differential in vitro degradation and protein adhesion behaviour of spark plasma sintering fabricated magnesium-based temporary orthopaedic implant in serum and simulated body fluid // Biomedical Materials. - 2019. - T. 15. - №.1. - P. 015006]. Композит на основе магния с добавлением цинка в количестве 3 вес. % и ГА в количестве 0, 5, 15 вес.% был получен методом электроимпульсного спекания на установке Dr. Sinter, SPS625, Japan. Давление прессования составило 80 МПа, температурный режим состоял из нескольких стадий: выдержка в течение 5 мин при температуре 450°С, затем повышение температуры до 500°С и выдержка 5 мин. Исследование растворимости и способности образовывать кальций-фосфатный слой (КФС) полученных образцов проводили в жидкости SBF (Simulate Body Fluid) при температуре 37±1°С в течение 3, 7 и 14 дней. Исследование показало образование незначительного фосфатно - кальциевого слоя (ФКС) к 3-им суткам выдержки на поверхности композита, содержащего 15 вес.% ГА, однако, к 14-ым суткам, происходит исчезновение КФС с образованием слоя хлорида магния MgCl2. Максимальное растворение образцов композита происходит на первые сутки выдержки в растворе и уменьшается с увеличением содержания ГА.
Таким образом, задачей изобретения является создание эффективного и сравнительно простого в осуществлении способа получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования.
Технический результат способа заключается в использовании электроимпульсного метода компактирования при низкой температуре и коротком времени спекания низкотемпературного биорезорбируемого композиционного материала магний-ГА, что приводит к повышению механической прочности и сохранению пористой структуры.
Указанный технический результат достигают способом электроимпульсного метода компактирования низкотемпературного биорезорбируемого композиционного материала магний-ГА при следующих соотношениях и характеристиках компонентов в материале, гидроксиапатит 70-90 мас.%:, размер частиц - 80 мкм, плотность порошка - 3,472 г/см3, удельная поверхность порошка - 20,9±1 м2/гр, магний 10-30 мас.%, размер частиц 100 мкм, плотность порошка - 1,729 г/см3. Производится смешение и помол исходных компонентов в планетарной мельнице в атмосфере инертного газа при следующих технологических параметрах: время помола - 10-15 мин, скорость помола - 300 об/мин, размер частиц порошковой смеси после помола составляет 8 мкм, удельная поверхность -49,0±1 м2/гр. Производится электроимпульсное компактирование порошковой смеси на установке LABOX-152VHD при температуре спекания 400-600°С в высоком вакууме, давлении 20-30 МПа, скоростью нагрева - 10-15°С/мин, времени выдержки - 10-60 мин, скоростью охлаждения -10-15°С/мин. Согласно изобретению, полученный композиционный материал магний-ГА при низкой температуре спекания, характеризуется прочностью при сжатии не менее 250 МПа, открытой пористостью не более 19% и способностью образовывать кальций-фосфатный слой на поверхности при выдерживании в растворах, моделирующие внеклеточные жидкости организма.
Пример 1
Методом электроимпульсного компактирования был получен образец композиционного материала с содержанием 70 мас.% ГА, размер частиц - 80 мкм, плотность порошка - 3,472 г/см3, удельная поверхность порошка - 20,9± м2/гр, и 30 мас.% магния, размер частиц 100 мкм, плотность порошка - 1,729 г/см3. Производится смешение и помол исходных компонентов в планетарной мельнице в атмосфере инертного газа при следующих технологических параметрах: время помола - 10-15 мин, скорость помола - 300 об/мин, размер частиц порошковой смеси после помола составляет 8 мкм, удельная поверхность - 49,0±1 м2/гр. Производится электроимпульсное компактирование порошковой смеси при температуре спекания 300°С в высоком вакууме, давлении 20 МПа, скоростью нагрева - 10°С/мин, времени выдержки - 10 мин, скоростью охлаждения -10°С/мин. При данных технологических параметрах компактирования спекание композиционного материала не произошло.
Пример 2
Методом электроимпульсного компактирования был получен образец композиционного материала с содержанием 70 мас.% ГА, размер частиц - 80 мкм, плотность порошка - 3,472 г/см3, удельная поверхность порошка - 20,9±1 м2/гр, и 30 мас.% магния, размер частиц 100 мкм, плотность порошка - 1,729 г/см3. Производится смешение и помол исходных компонентов в планетарной мельнице в атмосфере инертного газа при следующих технологических параметрах: время помола - 10-15 мин, скорость помола - 300 об/мин, размер частиц порошковой смеси после помола составляет 8 мкм, удельная поверхность - 49,0±1 м2/гр. Производится электроимпульсное компактирование порошковой смеси при температуре спекания 500°С в высоком вакууме, давлении 20 МПа, скоростью нагрева - 10°С/мин, времени выдержки - 10 мин, скоростью охлаждения - 10°С/мин. После охлаждения были проведены механические испытания при сжатии и измерение пикнометрической плотности образца. Полученный низкотемпературный биорезорбируемый композиционный материал характеризуется прочностью при сжатии 286±7 МПа, плотностью 2,1 г/см3 и открытой пористостью 13,5%.
Сущность изобретения заключается в подавлении роста зерен и сохранении композиционной структуры за счет использования электроимпульсного метода компактирования, что приводит к повышению механической прочности. При этом, одновременно, происходит улучшении биорезорбируемости композиционного материала магний-ГА за счет сохранения открытой пористости.
Были изготовлены образцы низкотемпературного биорезорбируемого композиционного материала магний-ГА, имеющие составы в пределах заявленных, и определены их свойства в сравнении с прототипом. Полученные результаты технологических параметров электроимпульсного метода компактирования и технических характеристик спеченных образцов композиционного материала магний-ГА представлены в таблице 1.
Механические исследования
Для исследования механических свойств и пористости композитного материала магний - ГА, согласно настоящему изобретению, были получены образцы при содержании 70 мас.% ГА и 30 мас.% магния цилиндрической формы методом электроимпульсного компактирования на установке LABOX-152VHD при различной температуре спекании. После охлаждения образцов до комнатной температуры проводилось измерение пиконометрический плотности и расчет открытой пористости на оборудовании AccuPyc II 1340, в качестве рабочего газа использовался гелий, его поведение наиболее близко к поведению идеального газа, а его адсорбируемость при нормальных условиях пренебрежимо мала. Значения плотности, получаемые экспериментальным путем - является эффективная плотность ρэ, которая для большинства пористых тел может быть принята с малой долей ошибки за истинную плотность материала:
Figure 00000001
где Vэ - эффектный объем твердого тела, m - измеренная масса образца.
В таблице 2 приведены значения эффективной плотности образцов после компактирования электроимпульсным методом и расчет открытой пористости.
Механические исследования при сжатии проводили согласно ASTM D695-91 на оборудовании Instron 5581 при одноосном сжатии со скоростью нагружения 1 мм /мин (погрешность измерения скорости 0,2%, погрешность измерения нагрузки 0,5%), окончательные статистические расчеты проводились для 5 образцов.
Значение прочности образцов композита магний - ГА при сжатии после электроимпульсного метода компактирования при различных температурах спекания приведены в таблице 3, и демонстрируют, что максимальный предел прочности композита магний - ГА составляет 286±7 МПа, оптимальная температура спекания составила 500°С, открытая пористость составляет 13-14%. При температурном режиме в 400°С сохраняется прочность керамических материалов 74±3 МПа, что говорит об отсутствии формирования композиционной структуры при данной температуре спекания.
Данные, приведенные в таблицах 2-3, указывают на то, что в контексте технологии получения композиционного материала на основе гидроксиапатита, армированного магнием, первым и значительным положительным эффектом является низкая температура спекания - 500°С, а применение электроимпульсного метода компактирования позволяет подавить процесс роста зерен с сохранением композиционной структуры материала за счет уменьшения времени спекания до 40 мин. После спекания электроимпульным методом в материале наблюдается заданная структура дисперсно-упрочненного композита. На рисунке 1 представлено электронное изображение в обратно-рассеянных электронах микроструктуры композита Магний-ГА, полученного электроимпульсным методом при температуре 500°С: а) увеличение × 100, б) увеличение × 500), частицы магния представляют собой вытянутые и округлые зерна размером от 50 и до 70 мкм, равномерно расположенные в пористой керамической матрице, межфазная граница четко прослеживается.
Согласно результатам проведенного микрорентгеноспектрального анализа (МРСА), на рисунке 2 представлено распределение химических элементов на участке композита Магний-ГА, полученного электроимпульсным методом компактирования при температуре 500°С. Можно видеть, что данный материал представлен двумя основными фазами-магний и ГА. Крупные зерна представляют собой магний, равномерно расположенные в матрице, состоящей из таких элементов, как фосфор, кальций, кислород:
Исследование формирования кальций-фосфатного слоя на поверхности композитного материала при выдержке в растворах, моделирующие внеклеточные жидкости организма
Для изучения биологических свойств композитного материала, согласно настоящему изобретению, и для сравнения его с аналогами, было проведено исследование растворимости и формирования КФС на поверхности композитного материала при выдержке в физиологическом растворе NaCl и растворе, моделирующего внеклеточные жидкости организма SBF согласно стандарту ГОСТ ISO 10993-9-2015. В таблице 4 представлено сравнение концентраций ионов (ммоль/л) в SBF-растворе и плазме крови человека.
Для исследований способности формировать КФС на поверхности образцов композита магний-ГА в модельном растворе SBF, были получены образцы композиционного материала с содержанием 70 мас.% ГА и 30 мас.% магния, в виде таблеток диаметром 10 мм (S=220 мм2) методом электроимпульсного компактирования при температуре 500°С. Таблетки выдерживались в SBF - растворе и NaCl - растворе при 37°С в течение 28 суток. Производился отбор жидкости в 1-е, 3-е, 7-е, 14-е и 28-е сутки. Линейное распределение элементов на поверхности исходных таблеток и после 28 дней выдерживания их в SBF - растворе были оценены с помощью МРСА. Морфологию поверхности таблеток со сформированным КФС исследовали с помощью сканирующей электронной микроскопии, по наличию КФС оценивали результаты биомиметических исследований. На рисунке 3 показана микроструктура образца композита магний-ГА перед выдерживанием в SBF растворе при увеличении × 100. На рисунке 4 показана микроструктура поверхности образца композита магний-ГА после выдерживания в SBF растворе в течение 30 суток при разных увеличениях.
На поверхности образца композита магний-ГА после выдержки в SBF, наблюдается сферическая структура осажденных частиц, которая свидетельствует о формировании биомиметического слоя - происходит перекристаллизация ГА на поверхность материала, что является показателем биосовмесимости in vitro. По составу сформированный КФС представляет собой нестехиометрический осажденный ГА (кальций - дефицитный) с формулой Са10-х(HPO4)х(PO4)6-х(ОН)2-х. Пористая структура частиц обусловлена специфическим процессом их роста, а именно пористой развитой поверхностью композита, на которой происходит адсорбция молекул и формирование фосфатного слоя. Формирование КФС на подложках (рисунок 4) происходит уже через 3 суток выдерживания их в SBF. К 28 суткам наличие КФС становится явным, размер зерен фосфатов кальция на поверхностном слое ново-сформированного КФС составляет 1-2 мкм. Участок образца композита магний-ГА после выдерживания в растворе SBF представлен на рисунке 5. Содержание химических элементов на данном участке композита магний-ГА по двум спектрам приведены в таблице 5
По данным двух спектров можно оценить соотношение кальция к фосфору, видно, что соотношение близко к стехиометрическому и равно Са/Р=1,65-1,66, это является доказательством перекристаллизации гидроксиапатита на поверхность композита. Также на поверхности наблюдается присутствие ионов Na, Cl и Mg, можно говорить о формировании кристаллитов NaCl и оксида магия MgO.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006

Claims (1)

  1. Способ получения биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для имплантата, используемого при остеосинтезе, включающий смешение и помол исходных порошковых материалов, представляющих собой магний и гидроксиапатит, в атмосфере инертного газа в планетарной мельнице с последующим компактированием смеси электроимпульсным методом, отличающийся тем, что содержание фазы гидроксиапатита в порошковой смеси составляет 70-90 мас.%, а содержание фазы магния - 10-30 мас.%, при этом исходный размер частиц гидроксиаппатита - 80 мкм, исходная плотность порошка гидроксиаппатита - 3,472 г/см3, и исходный размер частиц магния 100 мкм, исходная плотность порошка магния - 1,729 г/см3; помол порошковой смеси проводится 10-15 мин, скорость помола составляет 300 об/мин, размер частиц порошковой смеси после помола составляет 8 мкм, удельная поверхность частиц порошковой смеси после помола составляет 49,0 м2/гр, электроимпульсное компактирование порошковой смеси производится в вакууме при температуре - 400-600°С, времени 30-40 мин, при давлении 20 МПа, со скоростью нагрева - 10°С/мин, полученный композиционный материал на основе гидроксиапатита, армированного частицами магния, характеризуется прочностью не менее 250 МПа при сжатии и открытой пористостью не менее 10%.
RU2021101233A 2021-01-21 2021-01-21 Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе RU2760096C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021101233A RU2760096C1 (ru) 2021-01-21 2021-01-21 Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021101233A RU2760096C1 (ru) 2021-01-21 2021-01-21 Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе

Publications (1)

Publication Number Publication Date
RU2760096C1 true RU2760096C1 (ru) 2021-11-22

Family

ID=78719366

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021101233A RU2760096C1 (ru) 2021-01-21 2021-01-21 Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе

Country Status (1)

Country Link
RU (1) RU2760096C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227011C2 (ru) * 1998-10-02 2004-04-20 Докса Актиеболаг Биологически активный композиционный материал и способ его получения
CN101099873A (zh) * 2006-07-03 2008-01-09 佳木斯大学 多孔镁/羟基磷灰石生产工艺方法
CN103599561B (zh) * 2013-11-07 2015-08-19 同济大学 一种镁合金/羟基磷灰石复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227011C2 (ru) * 1998-10-02 2004-04-20 Докса Актиеболаг Биологически активный композиционный материал и способ его получения
CN101099873A (zh) * 2006-07-03 2008-01-09 佳木斯大学 多孔镁/羟基磷灰石生产工艺方法
CN103599561B (zh) * 2013-11-07 2015-08-19 同济大学 一种镁合金/羟基磷灰石复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAKAHATA I. et al. Mechanical Properties and Corrosion Resistance of Magnesium-Hydroxyapatite Composites Fabricated by Spark Plasma Sintering // Metals. 2020, N10, p.1314. *
RATNA SUNIL, B. et al. Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. Journal of the Mechanical Behavior of Biomedical Materials, 40, 2014, 178-189. doi:10.1016/j.jmbbm.2014.08.016. *
RATNA SUNIL, B. et al. Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. Journal of the Mechanical Behavior of Biomedical Materials, 40, 2014, 178-189. doi:10.1016/j.jmbbm.2014.08.016. NAKAHATA I. et al. Mechanical Properties and Corrosion Resistance of Magnesium-Hydroxyapatite Composites Fabricated by Spark Plasma Sintering // Metals. 2020, N10, p.1314. *

Similar Documents

Publication Publication Date Title
Uppal et al. Magnesium based implants for functional bone tissue regeneration–A review
Sahmani et al. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: fabrication, characterization and simulation
Yin et al. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications
Prakash et al. Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications
Parai et al. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration
CN102580143A (zh) 医用可降解吸收Mg-Sr系镁合金植入体及其制备方法
CN102552973A (zh) 医用可降解吸收Mg-Sr-Ca系镁合金植入体及其制备方法
Pattanayak et al. Calcium phosphate bioceramics and bioceramic composites
Kucko et al. Calcium phosphate bioceramics and cements
Topuz et al. Titanium-based composite scaffolds reinforced with hydroxyapatite-zirconia: Production, mechanical and in-vitro characterization
No et al. Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties
O’Hara et al. Optimisation of the mechanical and handling properties of an injectable calcium phosphate cement
CN102978495A (zh) 一种Mg-Sr-Zn系合金及其制备方法
Moradi et al. Magnesium/nano-hydroxyapatite porous biodegradable composite for biomedical applications
Sobczak-Kupiec et al. Physicochemical and biological properties of hydrogel/gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles
Su et al. Corrosion-wear behavior of a biocompatible magnesium matrix composite in simulated body fluid
Karamian et al. Correlation between crystallographic parameters and biodegradation rate of natural hydroxyapatite in physiological solutions
Vasconcellos et al. Calcium phosphate cement scaffolds with PLGA fibers
Tipan et al. Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review
Singh et al. Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications
Dubey et al. Synthesis and evaluation of magnesium/co-precipitated hydroxyapatite based composite for biomedical application
Farrahnoor et al. Effects of hydroxyapatite addition on the bioactivity of Ti-Nb alloy matrix composite fabricated via powder metallurgy process
Bütev et al. Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions
RU2760096C1 (ru) Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе
Thian et al. Processing of HA-coated Ti–6Al–4V by a ceramic slurry approach: an in vitro study