RU2759497C1 - Многолучевой эхолот автономного необитаемого подводного аппарата - Google Patents

Многолучевой эхолот автономного необитаемого подводного аппарата Download PDF

Info

Publication number
RU2759497C1
RU2759497C1 RU2021103598A RU2021103598A RU2759497C1 RU 2759497 C1 RU2759497 C1 RU 2759497C1 RU 2021103598 A RU2021103598 A RU 2021103598A RU 2021103598 A RU2021103598 A RU 2021103598A RU 2759497 C1 RU2759497 C1 RU 2759497C1
Authority
RU
Russia
Prior art keywords
receiving
antenna array
upos
auv
array
Prior art date
Application number
RU2021103598A
Other languages
English (en)
Inventor
Руслан Касымович Хаметов
Original Assignee
Акционерное Общество "Концерн "Океанприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Концерн "Океанприбор" filed Critical Акционерное Общество "Концерн "Океанприбор"
Priority to RU2021103598A priority Critical patent/RU2759497C1/ru
Application granted granted Critical
Publication of RU2759497C1 publication Critical patent/RU2759497C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Использование: изобретение относится к гидроакустической технике, в частности к бортовой аппаратуре автономных необитаемых подводных аппаратов легкого и среднего класса модульного исполнения, предназначенных для обследования рельефа дна, затонувших объектов и искусственных сооружений. Сущность: использование в МЛЭ трех приемных линейных антенных решеток, обеспечивающих возможность формирования трех вееров статических ХН, равномерно перекрывающих широкий сектор обзора, в каждом из которых наклон ХН происходит в узком секторе с незначительным расширением основного лепестка, позволило повысить подробность и точность рассчитанных профилей глубин обследуемой поверхности в направлении крайних ХН приемной АС. Технический результат: повышение подробности и точности рассчитанных профилей глубин обследуемой поверхности в направлении крайних ХН приемной АС. 7 ил.

Description

Изобретение относится к гидроакустической технике, в частности к бортовой аппаратуре автономных необитаемых подводных аппаратов (АНПА) легкого и среднего класса модульного исполнения, предназначенных для обследования рельефа дна, затонувших объектов и искусственных сооружений.
Применение АНПА для проведения обследовательских работ под водой показало большую перспективность этого направления.
В настоящее время основным средством получения информации о формах рельефа дна и подводных объектов является многолучевой эхолот (МЛЭ).
Известны МЛЭ группы компаний Teledyne Marine Acoustic Imaging Group (http://www.teledynemarine.com), компаний Imagenex Technology Corp.(http://www.imagenex.com), Kongsberg Maritime (http://www.km.kongsberg.com), Norbit Subsea (http://www.norbit.com), R2Sonic LLC (http://www.r2sonic.com) и Tritech International Ltd (http://www.tritech.co.uk), устанавливаемые на АНПА. Все перечисленные модели выполнены в виде одного или нескольких законченных устройств без привязки к конкретному проекту аппарата, и именно с этим связан их основной недостаток - сложность компоновки в составе малогабаритного АНПА модульного исполнения. В то же время, выполнение МЛЭ в виде отдельного модуля (отсека) полезной нагрузки упрощает общую сборку АНПА, повышает качество монтажа, обеспечивает жесткость и прочность конструкции аппарата.
Наиболее близким к заявляемому изобретению по своему назначению, технической сущности и достигаемым результатам является МЛЭ Sonic 2026 компании R2Sonic LLC (http://www.r2sonic.com), выполненный в виде носового отсека Survey Head ONE АНПА SeaCat компании ATLAS ELEKTRONIK GmbH (http://www.atlas-elektronik.com).
Устройство-прототип содержит излучающую и приемную гидроакустические антенные системы (АС) и обтекатель. Излучающая АС образована генераторным устройством (ГУ) и излучающей цилиндрической антенной решеткой с одним активным сегментом, а приемная АС - устройством управления и цифровой обработки сигналов (УУиЦОС), устройством предварительной обработки сигналов (УПОС), вторичным источником электропитания (ВИП) и приемной линейной антенной решеткой, при этом выход УУиЦОС подключен к входу ГУ, выход которого соединен с излучающей антенной решеткой, а вход - к выходу УПОС, вход которого соединен с приемной антенной решеткой.
Устройство-прототип закреплено на АНПА таким образом, что излучающая антенная решетка расположена вдоль диаметральной плоскости аппарата, а приемная - перпендикулярно к ней.
При работе устройство-прототип производит излучение акустического зондирующего сигнала в сторону дна. При этом по сигналу от УУиЦОС ГУ формирует электрические сигналы, подводимые к излучающей антенной решетке, где они преобразуются в акустический зондирующий сигнал.
В режиме приема рассеянные (отраженные) в направлении на устройство-прототип сигналы принимаются приемной антенной решеткой, где преобразуются в электрические сигналы, и поступают в УПОС. В нем принятые сигналы подвергаются предварительной обработке и подаются в УУиЦОС, где осуществляется пространственная обработка входных сигналов, результаты которой передаются в вычислительную систему АНПА для записи на накопитель, и начинается новый цикл «излучение-прием».
Далее на борту обеспечивающего судна производится перезапись накопленных данных, выполняется обработка результатов съемки и формируется трехмерное изображение обследуемой поверхности.
При этом трехмерное изображение формируется из профилей глубин, следующих друг за другом, где каждый профиль является двумерным набором значений глубины и соответствующего горизонтального расстояния до точки привязки глубины. При этом значения указанных параметров рассчитываются на основе сигналов рассеянных (отраженных) элементами разрешения обследуемой поверхности, которые ограничены шириной эквивалентных характеристик направленности (ХН), образованных в результате перекрытия широкой в вертикальной (ВП) и узкой в горизонтальной (ГП) плоскостях ХН излучающей АС и веера широких в ГП и узких в ВП статических ХН приемной АС.
Недостатком устройства-прототипа является снижение степени схожести рассчитанных и истинных профилей глубин по мере удаления от центральной части рассчитанного профиля к краям из-за расширения ХН приемной АС в ВП при ее наклоне в этой же плоскости.
Задача изобретения состоит в повышении эффективности обследования рельефа дна, затонувших объектов и искусственных сооружений.
Технический результат реализации изобретения заключается в повышении подробности и точности рассчитанных профилей глубин обследуемой поверхности в направлении крайних ХН приемной АС.
Для достижения технического результата в МЛЭ, выполненный в виде носового отсека АНПА и содержащий излучающую и приемную гидроакустические АС и обтекатель, в котором излучающая АС образована ГУ и излучающей цилиндрической антенной решеткой с одним активным сегментом, а приемная АС - УУиЦОС, первым УПОС, ВИП и первой приемной линейной антенной решеткой, при этом выход УУиЦОС подключен к входу ГУ, выход которого соединен с излучающей антенной решеткой, а первый вход - к выходу первого УПОС, вход которого соединен с первой приемной антенной решеткой, при этом МЛЭ закреплен на АНПА таким образом, что излучающая антенная решетка расположена вдоль диаметральной плоскости аппарата, а первая приемная антенная решетка - перпендикулярно к ней, введены новые признаки, а именно:
- в приемную АС введены второе и третье УПОС и вторая и третья приемные линейные антенные решетки, при этом второй и третий входы УУиЦОС подключены к выходу второго и третьего УПОС, вход каждого из которых соединен с соответствующей приемной антенной решеткой;
- при этом приемные антенные решетки расположены параллельно, так что первая решетка установлена между второй и третьей;
- при этом в каждой из приемных антенных решеток установлено одинаковое количество пьезоэлектрических преобразователей, так что акустические оси преобразователей первой решетки наклонены под углом 0°, второй - 45°, а третьей - минус 45° относительно вертикальной оси приемной АС.
Сущность изобретения поясняется фиг.1-7.
На фиг.1 изображены заявляемый МЛЭ и АНПА в сборе, где 1 - заявляемый МЛЭ, 2 - АНПА, 3 и 4 - излучающая и приемная АС, 5 - обтекатель.
На фиг.2 изображены излучающая и приемная АС в сборе и схема расположения пьезоэлектрических преобразователей в приемных антенных решетках, где 6 - излучающая антенная решетка, 7, 8 и 9 - первая, вторая и третья приемные антенные решетки, 10 - пьезоэлектрический преобразователь приемной антенной решетки, Ζ - вертикальная ось приемной АС. На схеме расположения преобразователей изображения антенных решеток смещены и развернуты.
На фиг.3 изображена структурная схема заявляемого МЛЭ, где 11 - устройство управления и цифровой обработки сигналов (УУиЦОС), 12 - генераторное устройство (ГУ), 13, 14 и 15 - первое, второе и третье устройства предварительной обработки сигналов (УПОС), 16 - вторичный источник электропитания (ВИП).
На фиг.4 изображено пояснение к снижению подробности и точности рассчитанного профиля глубин при сложной структуре обследуемой поверхности. Здесь R1 и R2 - наклонные дальности, Η - глубина, Δ - ширина элемента разрешения, α и θ - угол наклона и ширина ХН приемной АС в ВП.
На фиг.5 изображены графики зависимости ширины ХН приемной АС в ВП от угла наклона ХН в этой же плоскости для трех устройств, где 17, 18 и 19 - кривые для устройства-прототипа, МЛЭ с приемной дуговой антенной решеткой и заявляемого МЛЭ.
На фиг.6 изображены графики зависимости ширины элемента разрешения от угла наклона ХН приемной АС в ВП для трех устройств.
На фиг.7 изображена схема обзора пространства в ВП заявляемым МЛЭ, где 20 - ХН излучающей АС в ВП, 21, 22 и 23 - центральный, правый и левый веера статических ХН приемной АС в ВП.
Заявляемый МЛЭ 1 (фиг.1 и 2) выполнен в виде носового отсека АНПА 2 и состоит из излучающей 3 и приемной 4 АС и обтекателя 5. Излучающая АС 3 монтируется на переднем торце приемной АС 4, с которой имеет электрическое соединение, и закрывается сверху обтекателем 5. На заднем торце приемной АС 4 имеется соединительный узел и установлен электрический вывод (на фиг.1 и 2 не показаны) для обеспечения стыковки и электрического соединения заявляемого МЛЭ 1 с другим отсеком АНПА 2.
Излучающая АС 3 (фиг.3) содержит ГУ 12 и излучающую антенную решетку 6, а приемная АС 4 - УУиЦОС 11, первое 13, второе 14 и третье 15 УПОС, ВИП 16 и первую 7, вторую 8 и третью 9 приемные антенные решетки. Выход УУиЦОС 11 подключен к входу ГУ 12, выход которого соединен с излучающей антенной решеткой 6, а первый, второй и третий входы - к выходу первого 13, второго 14 и третьего 15 УПОС, вход каждого из которых соединен с соответствующей приемной антенной решеткой. Электропитание и управление заявляемым МЛЭ 1 осуществляется от системы энергообеспечения (СЭ) и системы управления (СУ) (на фиг.3 не показаны) АНПА 2, соединенных с входом ВИП 16 и УУиЦОС 11, соответственно.
АНПА 2 представляет собой обследовательский аппарат легкого или среднего класса модульного исполнения. Конкретными примерами подходящих аппаратов являются, но не ограничиваются ими, АНПА Gavia компании Teledyne Gavia, SeaCat компании ATLAS ELEKTRONIK GmbH и многие другие.
Обтекатель 5 предназначен для снижения гидродинамического сопротивления и гидродинамической помехи, обеспечения требуемых балластировочных характеристик АНПА 2, а также для защиты излучающей 3 и приемной 4 АС от случайных ударов о дно и корпус обеспечивающего судна. Обтекатель 5 является съемным, имеет криволинейную форму, предающую аппарату желаемые внешние обводы, и выполнен, например, из сферопластика.
УУиЦОС 11 предназначено для информационного обмена с СУ АНПА 2, формирования временной диаграммы работы заявляемого МЛЭ 1 и контроля его технического состояния, генерации сигналов и команд, задающих работу ГУ 12, первого 13, второго 14 и третьего 15 УПОС, и осуществления пространственной обработки входных сигналов. ГУ 12 предназначено для формирования электрических сигналов с требуемыми значениями напряжения, частоты и скважности, необходимых для возбуждения излучающей антенной решетки 6. Первое 13, второе 14 и третье 15 УПОС обеспечивают усиление, полосовую фильтрацию, сжатие динамического диапазона и преобразование электрических сигналов, поступающих от первой 7, второй 8 и третьей 9 приемных антенных решеток, соответственно, в цифровой вид и далее их квадратурную демодуляцию с цифровым смешиванием. ВИП 16 обеспечивает преобразование напряжения электропитания, поступающего от СЭ АНПА 2, в напряжения необходимые для электропитания составных частей заявляемого МЛЭ 1. Аппаратная часть заявляемого МЛЭ 1 выполнена в виде электронных блоков цилиндрической формы, вставленных внутрь прочных корпусов излучающей 3 и приемной 4 АС.
Принципы построения аппаратной части заявляемого МЛЭ 1, а также методы обработки, реализуемые в ней известны и описаны (Кобяков Ю.С., Кудрявцев Н.Н., Тимошенко В.И. Конструирование гидроакустической рыбопоисковой аппаратуры. - Л.: Судостроение, 1986. 272 с), (Рыжиков А.В., Барсуков Ю.В. Системы и средства обработки сигналов в гидроакустике: Учеб. пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2007. 144 с).
Излучающая антенная решетка 6 предназначена для преобразования электрических сигналов, поступающих на нее от ГУ 12, в акустические зондирующие сигналы. Излучающая антенная решетка 6 выполнена цилиндрической с одним активным сегментом, секционированным по высоте. При этом каждая секция может быть образована кольцевым пьезоэлектрическим преобразователем, механически разделенным минусовым электродом на активный и пассивный сегменты, или собрана из трапецеидальных преобразователей, электрически объединенных в один канал. Ширина некомпенсированной ХН излучающей антенной решетки 6 составляет не менее 135° в ВП и не более 1° в ГП. При этом излучающая АС 3 допускает возможность наклона ХН в ГП в секторе углов ±5° для компенсации дифферента АНПА 2.
Первая 7, вторая 8 и третья 9 приемные антенные решетки предназначены для преобразования принимаемых акустических сигналов в электрические, которые подаются в первое 13, второе 14 и третье 15 УПОС, соответственно. Приемные антенные решетки выполнены линейными и располагаются параллельно друг другу так, что первая решетка установлена между второй и третьей. В каждой из приемных антенных решеток содержится одинаковое количество пьезоэлектрических преобразователей 10, которые установлены на несущую конструкцию так, что акустические оси преобразователей первой решетки наклонены под углом 0°, второй - 45°, а третьей - минус 45° относительно вертикальной оси Ζ приемной АС 4. Ширина некомпенсированной ХН каждой из приемных антенных решеток составляет не менее 10° в ГП и не более 1° в ВП. При этом приемная АС 4 допускает возможность одновременного формирования трех вееров статических ХН с максимальным наклоном ХН в ВП в каждом веере ±22,5° относительно вертикальной оси соответствующей приемной антенной решетки, а соответствующее расположение преобразователей в каждой из решеток обеспечивает обзор пространства в ВП в секторе углов не менее 135°.
Поясним достижимость технического результата.
Трехмерное изображение должно с наибольшей подробностью и точностью передавать характерные формы обследуемой поверхности.
Подробность и точность оценки глубины рассчитанных профилей во многом зависят от ширины элемента разрешения Δ (фиг.4), которая может быть определена выражениями
Figure 00000001
R1=H/cos(α+θ/2), R2=H/cos(α - θ/2),
где R1 и R2 - наклонные дальности, м; Η - глубина, м; α и θ - угол наклона и ширина ХН приемной АС в ВП, град.
Действительно, обследуемые поверхности в общем случае не являются ни ровными, ни горизонтальными. И если в пределах элемента разрешения оказывается совокупность неровностей (впадины, выступы), то вследствие осреднения батиметрических данных по всему элементу, существенно ухудшается точность определения глубины и искажается рассчитанный профиль с заметной тенденцией к сглаживанию.
Эффективной мерой уменьшения ширины элемента разрешения и, как следствие, повышения подробности и точности рассчитанного профиля глубин является сужение основного лепестка ХН приемной АС в ВП. Однако при использовании в приемной АС линейной антенной решетки с наклоном ХН наблюдается расширение основного лепестка, значение которого растет обратно пропорционально косинусу угла наклона, т.е. θ=θ0/cosα, где θ0 - ширина некомпенсированной ХН. Это приводит к необходимости применения в приемной АС дуговой антенной решетки с постоянной шириной ХН, но при этом существенно увеличивается максимальный размер решетки, что в ряде случаев не позволяет конструктивно ее вписать в обводы малогабаритного АНПА. Оптимальным решением, позволяющим разрешить указанное противоречие, является использование нескольких линейных антенных решеток, каждая из которых формирует веер статических ХН в узком секторе с незначительным расширением основного лепестка, а в совокупности они обеспечивают обзор пространства в широком секторе обзора, как это делается в заявляемом МЛЭ.
Графики зависимости ширины ХН θ приемной АС в ВП от угла наклона ХН a в этой же плоскости приведены на фиг.5. Графики зависимости ширины элемента разрешения Δ от угла наклона ХН α в ВП, согласно (1), представлены на фиг.6. Кривые 17, 18 и 19 получены для устройства-прототипа, МЛЭ с приемной дуговой антенной решеткой и заявляемого МЛЭ, соответственно, при θ0=1° и Η=10 м. Из анализа представленных на фиг.5 и 6 кривых следует, что использование трех линейных антенных решеток, выполненных в виде ориентированных определенным образом пьезоэлектрических преобразователей, позволяет формировать остронаправленные ХН в ВП в широком секторе обзора, уменьшить ширину элемента разрешения в направлении крайних ХН приемной АС и, как следствие, повысить подробность и точность рассчитанных профилей глубин.
Заявляемый МЛЭ работает следующим образом (фиг.7).
После подачи электропитания от СЭ АНПА 2 и при поступлении команд управления от СУ АНПА 2 запускается цикл «излучение-прием». По сигналу от УУиЦОС 11 ГУ 12 формирует электрические сигналы и подает их на излучающую антенную решетку 6, где они преобразуются в акустический зондирующий сигнал, который излучается в сторону дна. При этом излучающая АС 3 формирует ХН 20, ширина которой в ВП составляет не менее 135°. Рассеянные (отраженные) в направлении на заявляемый МЛЭ 1 сигналы принимаются первой 7, второй 8 и третьей 9 приемными антенными решетками, где преобразуются в электрические сигналы, и поступают в первое 13, второе 14 и третье 15 УПОС, соответственно. В них принятые сигналы усиливаются, фильтруются, сжимаются, оцифровываются, подвергаются квадратурной демодуляции с цифровым смешиванием и подаются в УУиЦОС 11. В УУиЦОС 11 осуществляется формирование центрального 21, правого 22 и левого 23 вееров статических ХН с максимальным наклоном ХН в ВП в каждом веере ±22,5° относительно вертикальной оси соответствующей приемной антенной решетки. Далее веера статических ХН передаются в СУ АНПА 2 для записи на накопитель и начинается новый цикл «излучение-прием».
При этом сканирование обследуемой поверхности в ВП происходит за счет распространения в водной среде зондирующих сигналов, а в направлении движения заявляемого МЛЭ 1 - за счет поступательного движения АНПА 2.
Далее на борту обеспечивающего судна производится перезапись накопленных данных, выполняется обработка результатов съемки и формируется трехмерное изображение обследуемой поверхности.
Таким образом, технический результат реализации изобретения достигнут, так как по сравнению с устройством-прототипом в заявляемом МЛЭ за счет формирования трех вееров статических ХН равномерно перекрывающих широкий сектор обзора, в каждом из которых наклон ХН происходит в узком секторе с незначительным расширением основного лепестка, обеспечивается повышение подробности и точности рассчитанных профилей глубин обследуемой поверхности в направлении крайних ХН приемной АС.

Claims (1)

  1. Многолучевой эхолот (МЛЭ), выполненный в виде носового отсека автономного необитаемого подводного аппарата (АНПА) и содержащий излучающую и приемную гидроакустические антенные системы (АС) и обтекатель, в котором излучающая АС образована генераторным устройством (ГУ) и излучающей цилиндрической антенной решеткой с одним активным сегментом, а приемная АС - устройством управления и цифровой обработки сигналов (УУиЦОС), первым устройством предварительной обработки сигналов (УПОС), вторичным источником электропитания и первой приемной линейной антенной решеткой, при этом выход УУиЦОС подключен к входу ГУ, выход которого соединен с излучающей антенной решеткой, а первый вход - к выходу первого УПОС, вход которого соединен с первой приемной антенной решеткой, при этом МЛЭ закреплен на АНПА таким образом, что излучающая антенная решетка расположена вдоль диаметральной плоскости аппарата, а первая приемная антенная решетка - перпендикулярно к ней, отличающийся тем, что в приемную АС введены второе и третье УПОС и вторая и третья приемные линейные антенные решетки, при этом второй и третий входы УУиЦОС подключены к выходу второго и третьего УПОС, вход каждого из которых соединен с соответствующей приемной антенной решеткой, при этом приемные антенные решетки расположены параллельно, так что первая решетка установлена между второй и третьей, при этом в каждой из приемных антенных решеток установлено одинаковое количество пьезоэлектрических преобразователей, так что акустические оси преобразователей первой решетки наклонены под углом 0°, второй - 45°, а третьей - минус 45° относительно вертикальной оси приемной АС.
RU2021103598A 2021-02-12 2021-02-12 Многолучевой эхолот автономного необитаемого подводного аппарата RU2759497C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021103598A RU2759497C1 (ru) 2021-02-12 2021-02-12 Многолучевой эхолот автономного необитаемого подводного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021103598A RU2759497C1 (ru) 2021-02-12 2021-02-12 Многолучевой эхолот автономного необитаемого подводного аппарата

Publications (1)

Publication Number Publication Date
RU2759497C1 true RU2759497C1 (ru) 2021-11-15

Family

ID=78607204

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021103598A RU2759497C1 (ru) 2021-02-12 2021-02-12 Многолучевой эхолот автономного необитаемого подводного аппарата

Country Status (1)

Country Link
RU (1) RU2759497C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797778C1 (ru) * 2022-08-31 2023-06-08 Акционерное Общество "Концерн "Океанприбор" Беспроводной рыбопоисковый эхолот

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059734A1 (en) * 2002-01-15 2003-07-24 Hafmynd Ehf. Construction of an underwater vehicle
RU2563332C2 (ru) * 2013-07-15 2015-09-20 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ навигации автономного необитаемого подводного аппарата
US9174713B2 (en) * 2012-11-02 2015-11-03 Raytheon Company Unmanned underwater vehicle
RU2572666C1 (ru) * 2014-06-19 2016-01-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Гидроакустическая система визуализации подводного пространства
RU161175U1 (ru) * 2015-12-16 2016-04-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") Малогабаритный автономный необитаемый подводный аппарат модульной конструкции
RU2681415C1 (ru) * 2018-05-22 2019-03-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Малогабаритный многофункциональный автономный необитаемый подводный аппарат - носитель сменной полезной нагрузки

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059734A1 (en) * 2002-01-15 2003-07-24 Hafmynd Ehf. Construction of an underwater vehicle
US9174713B2 (en) * 2012-11-02 2015-11-03 Raytheon Company Unmanned underwater vehicle
RU2563332C2 (ru) * 2013-07-15 2015-09-20 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ навигации автономного необитаемого подводного аппарата
RU2572666C1 (ru) * 2014-06-19 2016-01-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Гидроакустическая система визуализации подводного пространства
RU161175U1 (ru) * 2015-12-16 2016-04-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") Малогабаритный автономный необитаемый подводный аппарат модульной конструкции
RU2681415C1 (ru) * 2018-05-22 2019-03-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Малогабаритный многофункциональный автономный необитаемый подводный аппарат - носитель сменной полезной нагрузки

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797778C1 (ru) * 2022-08-31 2023-06-08 Акционерное Общество "Концерн "Океанприбор" Беспроводной рыбопоисковый эхолот

Similar Documents

Publication Publication Date Title
US9268020B2 (en) Sonar assembly for reduced interference
US11668820B2 (en) Sonar data compression
de MOUSTIER State of the art in swath bathymetry survey systems
US6842401B2 (en) Sonar beamforming system
US7755974B2 (en) Side scan sonar imaging system with enhancement
US9335412B2 (en) Sonar transducer assembly
US20030235112A1 (en) Interferometric imaging method apparatus and system
Trucco et al. Devising an affordable sonar system for underwater 3-D vision
US11726196B2 (en) Sonar system with increased transverse beam width
US4958330A (en) Wide angular diversity synthetic aperture sonar
US20200333787A1 (en) Marine surface drone and method for characterising an underwater environment implemented by such a drone
RU2759497C1 (ru) Многолучевой эхолот автономного необитаемого подводного аппарата
CN107728153B (zh) 一种水下全景三维成像拖体
US11397263B2 (en) Sonar system with acoustic beam reflector
US8203909B1 (en) Forward-looking sonar for ships and boats
JP2008076294A (ja) 水底下探査方法及び装置
Schock et al. Buried object scanning sonar for AUVs
CN112698349B (zh) 浅海岛礁水上水下同步一体化空间测量系统及方法
Nitadori et al. An experimental underwater acoustic imaging system using multi-beam scanning
CN112362153A (zh) 基于uuv平台的低频主动水声探测系统及方法
Olivieri Bio-inspired broadband SONAR technology for small UUVs
RU2754604C1 (ru) Гидролокатор кругового обзора автономного необитаемого подводного аппарата
RU179409U1 (ru) Многоэлементная дуговая антенна
Ehrhardt et al. Comparison of different short-range sonar systems on real structures and objects
Felisberto et al. An AUV mounted vector-sensor for seismic surveying