RU2757473C1 - Устройство для измерения диаметра провода - Google Patents

Устройство для измерения диаметра провода Download PDF

Info

Publication number
RU2757473C1
RU2757473C1 RU2021104227A RU2021104227A RU2757473C1 RU 2757473 C1 RU2757473 C1 RU 2757473C1 RU 2021104227 A RU2021104227 A RU 2021104227A RU 2021104227 A RU2021104227 A RU 2021104227A RU 2757473 C1 RU2757473 C1 RU 2757473C1
Authority
RU
Russia
Prior art keywords
wire
measuring
resonator
sections
diameter
Prior art date
Application number
RU2021104227A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2021104227A priority Critical patent/RU2757473C1/ru
Application granted granted Critical
Publication of RU2757473C1 publication Critical patent/RU2757473C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Техническим результатом является расширение функциональных возможностей. Устройство для измерения диаметра провода, содержащее размещаемую снаружи провода коаксиально с ним металлическую трубу, выполненную из трех участков, на одном из которых, расположенном на измерительном участке провода, возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок, электрически соединенный посредством линии связи и элемента связи с объемным резонатором, для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, каждый из участков металлической трубы с проводом с обеих сторон от измерительного участка является запредельным волноводом для частот электромагнитных колебаний, возбуждаемых в объемном резонаторе, содержит на каждом из этих двух участков расположенную внутри металлической трубы вдоль нее, металлическую плоскость, соединенную по всей длине с внутренней поверхностью трубы и имеющей ширину, сужающую сечение трубы с расположенным соосно с ней проводом. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Оно может быть применено также при бесконтактном измерении диаметра провода одновременно в нескольких его сечениях.
Известны рефлектометрический способ измерения диаметра протяженных металлических изделий и реализующее его устройство (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С.248-249). Данные технические решения обеспечивают достаточно высокую точность измерения диаметра в пределах его измерения (Н4 мм. При более высоких значениях изменения диаметра погрешность его определения значительно увеличивается. Недостатком этих способа и устройства является ограниченная область применения, обусловленная небольшим диапазоном измерения.
Известно также устройство для измерения диаметра провода с применением открытого СВЧ резонатора в виде совокупности двух металлических отражающих зеркал, соосных с осью поворота (SU 873155, 15.10.1981). Контролируемый провод пересекает ось резонатора под прямым углом. Измерение диаметра провода основано на измерении угла поворота резонатора, обеспечивающего фиксированное значение вносимых в резонатор контролируемым проводом потерь (сдвига резонансных частот). Измеритель угла поворота, связанный с механизмом поворота резонатора и откалиброванный в значениях диаметра, определяет среднее значение диаметра. Недостатком этого устройства является ограниченные функциональные возможности, обусловленные сложностью его реализации и ненадежностью конструкции, воззванное наличием подвижных элементов конструкции.
Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М: Энергоатомиздат. 1989. 208 с. С.61-62), которое содержит цилиндрический объемный резонатор в виде полости металлической трубы и торцевых металлических плоскостей. Через малые сквозные отверстия в металлических торцевых плоскостях полости проходит контролируемый провод, располагаемый вдоль оси данного резонатора. В этом объемном резонаторе возбуждены электромагнитные колебания типа Е010 или типа E110. Измеряя резонансную частоту электромагнитных колебаний данного резонатора, определяют диаметр провода. Недостатком данного устройства являются ограниченные функциональные возможности, позволяя контролировать провода с малыми значениями диаметров; в ином случае необходимо выполнять большие сквозные отверстия в торцевых плоскостях резонаторов, что приводит к недопустимому снижению добротности резонаторов из-за потерь электромагнитной энергии вследствие излучения электромагнитных волн через указанные отверстия.
Известно также техническое решение (RU 2626063, 21.07.2017), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Это устройство-прототип содержит размещаемую снаружи провода коаксиально с ним металлическую трубу, выполненную из трех участков, первый и второй из которых имеют одинаковый внутренний диаметр, а третий участок, расположенный между ними на измерительном участке провода, имеет отличный от них внутренний диаметр. На этом участке возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, электрически соединенный посредством линии связи и элемента связи с объемным резонатором. При этом частота возбуждаемых электромагнитных колебаний выбрана меньшей, чем критическая частота возбуждения электромагнитных волн на участках провода с участками металлической трубы с одинаковым внутренним диаметром, при этом на третьем участке металлическая труба имеет внутренний диаметр, уменьшенный по сравнению с внутренним диаметром металлической трубы на первом и втором участках. Недостатком данного устройства являются ограниченные функциональные возможности, не позволяя контролировать провода с достаточно большими значениями диаметров: при увеличении диаметра провода имеет место уменьшение расстояния между поверхностью провода и внутренней стенкой наружной трубы на измерительном участке. Это приводит к существенному увеличению значения резонансной частоты объемного резонатора на измерительном участке и вызывает трудности в ее измерении.
Техническим результатом изобретения является расширение функциональных возможностей.
Технический результат достигается тем, что устройство для измерения диаметра провода, содержащее размещаемую снаружи провода коаксиально с ним металлическую трубу, выполненную из трех участков, на одном из которых, расположенном на измерительном участке провода, возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок, электрически соединенный посредством линии связи и элемента связи с объемным резонатором, для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, каждый из участков металлической трубы с проводом с обеих сторон от измерительного участка является запредельным волноводом для частот электромагнитных колебаний, возбуждаемых в объемном резонаторе, содержит на каждом из этих двух участков расположенную внутри металлической трубы вдоль нее, по меньшей мере, одну металлическую плоскость, соединенную по всей длине с внутренней поверхностью трубы и имеющей ширину, сужающую сечение трубы с расположенным соосно с ней проводом.
Предлагаемое устройство поясняется чертежом на фиг. 1, где схематично показана схема устройства для измерения диаметра провода.
Здесь введены обозначения: объемный резонатор 1, провод 2, металлическая труба 3, запредельные волноводы 4 и 5, металлические пластины 6 и 7, элемент связи 8, линия связи 9, электронный блок 10.
Устройство работает следующим образом.
На измерительном участке контролируемого провода 2 - там, где следует измерить его диаметр - образуют колебательную систему - объемный резонатор 1 при соосном по отношению к проводу расположении отрезка металлической трубы 3 снаружи провода. Возбуждение в пределах измерительного участка электромагнитных колебаний - стоячих электромагнитных волн - возможно осуществить, если создать на его границах такие условия, при которых эти границы будут отражать электромагнитные волны, падающие на них из полости, ограниченной проводом 2 и внутренней поверхностью металлической трубы 3 на данном измерительном участке. Для создания таких граничных условий предлагается организовать вне измерительного участка провода с обеих его сторон запредельный режим распространения для электромагнитных колебаний, возбуждаемых на измерительном участке. При этом данный измерительный участок становится объемным резонатором, электромагнитные колебания в котором существуют в соответствии с возбужденным типом колебаний.
Физически обеспечить режим существования электромагнитных колебаний в пределах измерительного участка провода и режим нераспространения (т.е. запредельный режим) вне него можно путем расположении снаружи провода соосно по отношению к нему отрезка металлической трубы, при отличии диаметров которой в пределах измерительного участка провода и вне него возможен запредельный режим вне этого участка. При этом провод 2 и металлическая труба 3 образуют коаксиальную линию. Если на измерительном участке - объемном резонаторе 1 коаксиального типа - возбуждены электромагнитные колебания в некотором диапазоне часто [ƒ1, ƒ2, соответствующем изменению диаметра провода 2 в измеряемом диапазоне, то необходимо, чтобы геометрические параметры запредельных волноводов 4 и 5 на этих частотах были такими, при которых критическая частота ƒкр их возбуждения была выше максимальной частоты ƒ2 диапазона изменения частоты объемного резонатора 1. Тогда излучение электромагнитных волн за пределы измерительного участка с проводом 2 будет отсутствовать, а в полости данного объемного резонатора 1 будут существовать высокодобротные электромагнитные колебания.
В резонаторном датчике, представляющем собой объемный резонатор 1 открытого типа в виде отрезка коаксиальной линии с сопряженными с ним на его обоих торцах отрезками коаксиальных запредельных волноводов 4 и 5, возбуждают электромагнитные колебания. Для образования данного коаксиального резонатора снаружи контролируемого провода 2 соосно с ним располагают металлическую трубу 3. Возбуждение и съем электромагнитных колебаний в объемном резонаторе 1, в также измерение резонансной частоты электромагнитных колебаний, изменяющейся при изменении диаметра контролируемого провода, и ее преобразование в выходной сигнал осуществляют через элемент связи 8 (металлический штырь, петля связи), подсоединенный к объемному резонатору 1, и линию связи 9 с помощью электронного блока 10. Число элементов связи (один или два) определяется применяемой схемой измерения; на фиг. 1 показано возбуждение электромагнитных колебаний в объемном резонаторе 1 и их съем с помощью одного металлического штыря.
Высший тип электромагнитной волны в коаксиальной линии, характеризующийся наибольшей критической длиной волны λкр, есть Н11, начиная с длин волн λ>λкрH11 ≈ π(R1+R2), где λкрH11 - критическая длина волны для волн типа Н11, R1 и R2 - радиусы, соответственно, внутреннего и внешнего проводников линии. Затем следует тип поля £01, начиная с λ>λкрE01 ≈ π(R2-R1) и т.д. Собственная (резонансная) частота ƒp электромагнитных колебаний такого резонатора, в данном случае объемного резонатора 1, близка к собственной частоте закрытого коаксиального резонатора и может быть оценена по формуле (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат.1989. 208 с. С.71-72):
Figure 00000001
где l - длина резонатора; р = 0,1,2, …; с - скорость света.
Колебания типа Нm1p (m=1,2,3…; р=1,2,3,…), среди которых низший тип есть H111 с собственной частотой, определяемой формулой (2). В коаксиальном волноводе среди возможных возбуждаемых электромагнитных волн типа Нm1 (m=1,2,3…) низший тип есть Н11. В этом случае имеем следующее выражение для критической длиной волны λкрH11 (монография: Милованов О.С, Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 1980. 464 с. С.45-46):
Figure 00000002
где D1 и D2 - диаметры, соответственно, внутреннего и внешнего проводников линии, в данном случае диаметры, соответственно, провода 2 и внутреннего диаметра металлической трубы 3. Особенностью волн этих H-типов, характеризующихся произвольным первым индексом m=1,2,3…, но вторым индексом 1, является наличие в формуле для ƒкр суммы диаметров D1 и D2. Например, при D1=10 мм, D2=50 мм для волн типа Н11 будем иметь ƒкр - 1,67 ГГц.
Формула (1), выражающая зависимость информативного параметра - резонансной частоты ƒр электромагнитных колебаний объемного резонатора 1 от диаметра D1 провода 2, при работе на колебаниях типа Н111 принимает вид
Figure 00000003
Каждый из двух отражателей электромагнитных волн - запредельных волноводов 4 и 5, располагаемых с обеих сторон объемного резонатора 1, содержит отрезок полой металлической трубы 3, внутри которой расположена продольно, по меньшей мере, одна прямоугольная металлическая пластина (6 и 7, соответственно) в виде продольной перегородки в поперечном сечении металлической трубы 3, соединенной по всей длине с внутренней поверхностью трубы с расположенным соосно с ней проводом 2 и имеющей ширину, сужающую сечение трубы. Одна или несколько металлических пластин разделяют сечение трубы на две или более части меньшего сечения, которые представляют собой запредельные волноводы для электромагнитных колебаний, возбуждаемых в объемном резонаторе 1. Каждый такой запредельный волновод имеет длину порядка нескольких сантиметров (~ 50÷100 мм). На фиг. 1 показано применение одной металлической пластины 6 и 7 в каждом из двух запредельных волноводов 4 и 5, соответственно. Металлические пластины 6 и 7, располагаются не диаметрально внутри этой трубы, соосно с которой расположен контролируемый провод 2, а на некотором расстоянии от центра трубы; каждая из таких металлических пластин является хордой меньшей длины, чем длина внутреннего диаметра металлической трубы 3. Оптимизация конструкции каждой прямоугольной металлической пластины, включающая ее конфигурацию (плоская или криволинейная пластина) и выбор числа таких пластин, производится с точки зрения как обеспечения достаточно высокой добротности (порядка 10 и более), что достаточно для съема и дальнейшего преобразования полезного сигнала с целью измерения резонансной частоты объемного резонатора 1.
Отметим, что предлагаемое устройство работоспособно именно на одном из высших типов электромагнитных колебаний, в частности, колебаниях типа H111, в рассматриваемом коаксиальном объемном резонаторе 1, так как колебания в нем на основном типе ТЕМ характеризуются малой добротностью и не имеют функциональной зависимости от диаметра провода.
Таким образом, данное устройство позволяет производить бесконтактные измерения диаметра провода и других протяженных металлических изделий (стержней, нитей и т.п.) как в одном, так и, при необходимости, одновременно в нескольких их сечениях.

Claims (1)

  1. Устройство для измерения диаметра провода, содержащее размещаемую снаружи провода коаксиально с ним металлическую трубу, выполненную из трех участков, на одном из которых, расположенном на измерительном участке провода, возбуждены электромагнитные колебания как в открытом с торцов объемном резонаторе, электронный блок, электрически соединенный посредством линии связи и элемента связи с объемным резонатором, для возбуждения в объемном резонаторе и съема электромагнитных колебаний и измерения резонансной частоты электромагнитных колебаний, каждый из участков металлической трубы с проводом с обеих сторон от измерительного участка является запредельным волноводом для частот электромагнитных колебаний, возбуждаемых в объемном резонаторе, отличающееся тем, что оно содержит на каждом из этих двух участков расположенную внутри металлической трубы вдоль нее, по меньшей мере, одну металлическую плоскость, соединенную по всей длине с внутренней поверхностью трубы и имеющей ширину, сужающую сечение трубы с расположенным соосно с ней проводом.
RU2021104227A 2021-02-19 2021-02-19 Устройство для измерения диаметра провода RU2757473C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021104227A RU2757473C1 (ru) 2021-02-19 2021-02-19 Устройство для измерения диаметра провода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021104227A RU2757473C1 (ru) 2021-02-19 2021-02-19 Устройство для измерения диаметра провода

Publications (1)

Publication Number Publication Date
RU2757473C1 true RU2757473C1 (ru) 2021-10-18

Family

ID=78286674

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021104227A RU2757473C1 (ru) 2021-02-19 2021-02-19 Устройство для измерения диаметра провода

Country Status (1)

Country Link
RU (1) RU2757473C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1232943A1 (ru) * 1984-07-30 1986-05-23 Ордена Ленина Институт Проблем Управления Устройство дл измерени внутреннего диаметра металлической трубы
JPS61235712A (ja) * 1985-04-11 1986-10-21 Kensaku Imaichi 管の内径等の測定方法
SU1672210A1 (ru) * 1988-11-01 1991-08-23 Московский Институт Электронного Машиностроения Способ контрол диаметра диэлектрических деталей цилиндрической формы
JP2003337015A (ja) * 2002-05-21 2003-11-28 Taisei Corp 杭形状の測定方法
CN207515708U (zh) * 2017-12-08 2018-06-19 浙江大学 一种直径在线测量装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1232943A1 (ru) * 1984-07-30 1986-05-23 Ордена Ленина Институт Проблем Управления Устройство дл измерени внутреннего диаметра металлической трубы
JPS61235712A (ja) * 1985-04-11 1986-10-21 Kensaku Imaichi 管の内径等の測定方法
SU1672210A1 (ru) * 1988-11-01 1991-08-23 Московский Институт Электронного Машиностроения Способ контрол диаметра диэлектрических деталей цилиндрической формы
JP2003337015A (ja) * 2002-05-21 2003-11-28 Taisei Corp 杭形状の測定方法
CN207515708U (zh) * 2017-12-08 2018-06-19 浙江大学 一种直径在线测量装置

Similar Documents

Publication Publication Date Title
RU2619356C1 (ru) Устройство для измерения диаметра провода
Culshaw et al. Measurement of permittivity and dielectric loss with a millimetre-wave fabry-perot interferometer
RU2757473C1 (ru) Устройство для измерения диаметра провода
RU2611334C1 (ru) Устройство для измерения внутреннего диаметра металлической трубы
Bourgeois et al. Simple model for the mode-splitting effect in whispering-gallery-mode resonators
Lines et al. Some properties of waveguides with periodic structure
Salski et al. Mode coupling in a fabry-perot open resonator
Kuzmichev et al. An open resonator for physical studies
RU2426099C1 (ru) Устройство для определения концентрации смеси веществ
EP3308160B1 (en) Fluid measuring system
RU2626063C1 (ru) Устройство для бесконтактного измерения диаметра провода
CN116027116A (zh) 基于TM0np模平行平板介质谐振器的介电常数测试装置
RU2691288C1 (ru) Способ измерения внутреннего диаметра металлической трубы
Kheir et al. Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators
Parkhomenko et al. The improved resonator method for measuring the complex permittivity of materials
RU146668U1 (ru) Волноводный полосно-пропускающий свч-фильтр
RU2767586C1 (ru) Устройство для измерения внутреннего диаметра металлической трубы
RU2786529C2 (ru) Устройство для измерения физических свойств диэлектрического вещества
RU2739937C1 (ru) Способ измерения собственной добротности диэлектрического резонатора
RU2753662C1 (ru) Устройство для измерения собственной добротности диэлектрического резонатора
RU215270U1 (ru) Устройство для измерения физических свойств диэлектрической жидкости
RU2762058C1 (ru) Устройство для измерения физических свойств диэлектрической жидкости
Yeh et al. Circular dielectric waveguides
Egorov et al. The metal-dielectric resonator method of measuring the parameters of radio materials
Karpovich et al. High-quality corrugated resonators for measurements at millimeter and submillimeter-wave bands