RU2754275C1 - Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления - Google Patents

Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления Download PDF

Info

Publication number
RU2754275C1
RU2754275C1 RU2020141533A RU2020141533A RU2754275C1 RU 2754275 C1 RU2754275 C1 RU 2754275C1 RU 2020141533 A RU2020141533 A RU 2020141533A RU 2020141533 A RU2020141533 A RU 2020141533A RU 2754275 C1 RU2754275 C1 RU 2754275C1
Authority
RU
Russia
Prior art keywords
sensors
soil
temperature
electrical resistance
depth
Prior art date
Application number
RU2020141533A
Other languages
English (en)
Inventor
Владимир Константинович Губин
Евгений Эдуардович Головинов
Эльвира Батыревна Дедова
Андраник Мардиросович Каспарян
Original Assignee
Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") filed Critical Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова")
Priority to RU2020141533A priority Critical patent/RU2754275C1/ru
Application granted granted Critical
Publication of RU2754275C1 publication Critical patent/RU2754275C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Forests & Forestry (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Remote Sensing (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Food Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретения относятся к области сельского хозяйства. Способ включает выполнение в посевах озимых культур скважин до средней многолетней глубины промерзания почвы, систематическое послойное измерение в них температуры почвы и ее электрического сопротивления с помощью датчиков температуры и электрического сопротивления, первую пару из которых располагают на поверхности почвы, вторую – на глубине кущения, третью – в зоне нахождения основной массы поглощающих корней растений и четвертую пару датчиков располагают на глубине пахотного слоя, сформированного над плужной подошвой, ограничивающей распространение поглощающих корней растений, последующие датчики служат для контроля глубины промерзания. Устройство выполнено в виде цилиндрического корпуса, по длине наружной поверхности которого установлены датчики - по одной стороне поверхности датчики температуры, по другой - датчики электрического сопротивления. При этом все датчики посредством электропроводки, располагаемой внутри корпуса и выведенной на его верхний конец, подключены к беспроводному передатчику информации на базовый компьютер. Изобретения позволяют с большей достоверностью и значительно меньшими трудозатратами прогнозировать возможность повреждения посевов озимых культур от вымерзания, снежной плесени, притертой корки, выпирания узла кущения и вымокания. 2 н.п. ф-лы, 1 ил.

Description

Предлагаемое изобретение относится к области сельского хозяйства и найдет применение при возделывании озимых культур, преимущественно озимой пшеницы.
Сущность решаемой проблемы состоит в том, что озимые культуры высевают осенью. До наступления зимних холодов они успевают дать всходы и пройти стадию кущения. В зимний период растения проходят стадию яровизации и после схода снежного покрова трогаются в рост, формируя урожай. Условия перезимовки оказывают большое влияние на состояние растений зимой. При неблагоприятных условиях может произойти как полная гибель посевов, так и их изреживание. К неблагоприятным условиям перезимовки относятся: вымерзание посевов при недостаточной толщине снежного покрова и низких зимних температурах; выпревание посевов при слабом осеннем промерзании почвы и большой толщине снежного покрова. В последнем случае растения продолжают рост под снегом и поражаются снежной плесенью, что приводит к их гибели. При частых оттепелях происходит вымокание посевов и разрыв корневой системы при последующем замерзании почвы с повышенной влажностью. Оценка состояния растений озимых культур еще зимой позволяет принять меры по снижению отрицательного влияния климатических факторов на условия перезимовки или подготовить запас семян яровых культур для проведения пересева погибших озимых.
Известен способ оценки перезимовки озимых, согласно которому зимой на поле расчищают снег и отбирают монолитные образцы на глубину 20 см размером 30×30 см. Эти образцы помещают в ящики и перевозят в лабораторию. Здесь их размораживают и через 5 дней срезают надземную часть растительности. Затем монолиты поливают и выдерживают 15 дней, после чего подсчитывают количество растений, давших новые листья. На 25 день растения извлекают из почвы, отмывают и подсчитывают общее количество растений, давших новые листья. На основе этого подсчета определяют процент перезимовавших растений. Взятие монолитов производят три раза за зиму: 25января, 25 февраля и 15 марта из расчета 2 монолита на 25 га посевов (электронный ресурс/farmer can.com>news/63-condition-of winter-crops/ дата обращения 27.06.2020)
Недостатком этого способа является большая трудоемкость, связанная с трехкратным взятием монолитов из-под снега и длительным процессом отращивания фактически перезимовавших растений в лабораторных условиях.
Известен способ оценки хода перезимовки озимой культуры, сущность которого состоит в том, что производят измерение влажности почвы путем взятия проб в период естественного замерзания и оттаивания почвы и прогнозируют состояние посевов в зависимости от отличия установленной влажности взятого образца почвы от установленной опытным путем величины "критической влажности," при которой в процессе замерзания почвы происходит разрыв корней озимой культуры. (Ав. Св. СССР №1409161, МПК A01G 13/00, опубл. 15.07.1988 г. )
Этот способ имеет ограниченное применение, так как может прогнозировать повреждение озимых только после зимней оттепели на тяжелых почвах, которые при превышении критического уровня влажности увеличиваются в объеме и повреждают корневую систему растения. При этом для определения влажности почвы необходимо взятие проб в зимнее время в полевых условиях и определение влажности взятых образцов в лаборатории, что связано со значительными затратами труда.
Устранить указанные недостатки позволяет предлагаемый способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур, включающий выполнение в посевах озимых культур скважин до средней многолетней глубины промерзания
почвы, систематическое послойное измерение в них температуры почвы и ее электрического сопротивления с помощью датчиков температуры и электрического сопротивления, первую пару из которых располагают на поверхности почвы, вторую – на глубине кущения, третью – в зоне нахождения основной массы поглощающих корней растений и четвертую пару датчиков располагают на глубине пахотного слоя, сформированного над плужной подошвой, ограничивающей распространение поглощающих корней растений, последующие датчики служат для контроля глубины промерзания.
Осуществить предлагаемый способ позволяет предлагаемое устройство, выполненное в виде цилиндрического корпуса, по длине наружной поверхности которого установлены датчики – по одной стороне поверхности датчики температуры, по другой – датчики электрического сопротивления, при этом все датчики посредством электропроводки, располагаемой внутри корпуса и выведенной на его верхний конец, подключены к беспроводному передатчику информации на базовый компьютер.
Новый технический результат от применения предложенного способа и устройства состоит в том, что систематическое послойное измерение температуры и электрического сопротивления почвы в скважине до средней многолетней глубины промерзания почвы позволяет получать в режиме текущего времени информацию о температуре и по электрическому сопротивлению о влажности почвы в зоне расположения корневой системы озимой культуры и на основании этой информации оценивать условия перезимовки озимой культуры без взятия почвенных образцов и проведения лабораторных исследований.
Сущность изобретения поясняется чертежом, где на фиг. 1 представлена схема размещенного в скважине устройства для измерения температуры и электрического сопротивления почвы (вид в разрезе).
Устройство для осуществления предлагаемого способа представляет собой цилиндрический корпус 4 длиной 110-120 см, вдоль которого по одной стороне его наружной поверхности размещены датчики 5 температуры почвы, подключенные электропроводкой 6 к беспроводному передатчику 7 информации на базовый компьютер. На противоположной стороне наружной
поверхности корпуса 4 размещены датчики 8 электрического сопротивления почвы, подключенные электропроводкой 9 также к передатчику 7, смонтированному на верхнем конце корпуса 4 (поскольку устройство устанавливается вертикально). При этом расстояние между первым (сверху) и вторым датчиками температуры составляет 3 см, между вторым и третьим 5 см, между третьим и четвертым 10 см, последующие датчики температуры до нижнего конца корпуса размещены через 10 см. Датчики 8 электрического сопротивления размещены по такой же схеме. Датчики на наружной поверхности корпуса закреплены с помощью колец 10.
Предложенный способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур с помощью предлагаемого устройства осуществляется в следующей последовательности:
На поле 1 буром, диаметр которого равен диаметру цилиндрического корпуса устройства 4, выполняют скважину 2 на глубину 1,0 м. Скважины на поле выполняют с частотой 2 скважины на 25 га. В скважину 2 помещают устройство 3 таким образом, чтобы первый датчик температуры почвы 5 и первый датчик сопротивления почвы 8 располагались на поверхности почвы. Вторые датчики 5 и 8 разместятся на глубине кущения - 3 см от поверхности поля. Третьи датчики будут расположены в зоне нахождения основной массы поглощающих корней растения - 8 см (3+5), и четвертая пара датчиков окажется на глубине 18 см (8+10), на глубине пахотного слоя, сформированного над плужной подошвой, ограничивающей распространение поглощающих корней растений. Последующие датчики служат для контроля глубины промерзания.
При завершении кущения растений и наступления заморозков начинают вести ежедневное наблюдение за динамикой температуры и электрического сопротивления почвы в пределах пахотного слоя - до глубины 18 см. Информация передается в автоматическом режиме два раза в сутки на базовый компьютер, размещенный в офисе хозяйства и содержащий базу данных многолетних
наблюдений за температурой воздуха в зимний период, толщиной снежного покрова и результатами перезимовки озимых.
Если при незначительной толщине снежного покрова (5-10 см) наблюдается резкое понижение температуры воздуха на поле, а на глубине кущения (3 см) датчик 5 в течение нескольких дней показывает понижение температуры почвы до -16-18°С, то высока вероятность гибели посевов вследствие вымерзания.
При выпадении значительного слоя снега (более 30 см) на слабо промерзшую почву и глубине промерзания почвы менее 50 см при ее температуре в слое 3-5 см, +1-2°С, возникает опасность возобновления роста растений под снегом. При этом в слое 0-8 см будет наблюдаться значительное повышение электрического сопротивления, измеряемого датчиками 8, расположенными в слоях 0-5 см и 0-8 см. Это свидетельствует о понижении влажности почвы в результате поглощения влаги корнями растений. В этом случае существует опасность поражения растений снежной плесенью и выпревания посевов, особенно на пониженных участках поля.
При зимних оттепелях повышение температуры выше 0°С, отмечаемое на поверхности поля и в слоях почвы 0-5 см и 0-8 см, и одновременное резкое падение на этой глубине электрического сопротивления почвы, указывают на насыщение почвы жидкой влагой до уровня НВ и на опасность образования притертой корки при последующем понижении температуры в этом слое ниже -1,0°С.
На тяжелых грунтах, увеличивающих свой объем при замерзании, возникает опасность выпирания узла кущения, что также ведет к ослаблению и гибели растений.
С наступлением весеннего таяния снега важное значение имеет наблюдение за изменением глубины промерзания метрового слоя грунта и электрическим сопротивлением почв в слое 0-18 см. Температура почвы в этом слое выше +1°С и отсутствие электрического сопротивления почвы свидетельствуют о насыщении пахотного слоя почв влагой выше уровня НВ. Это является следствием медленного оттаивания нижних слоев грунта и образования из него водоупорного слоя, что ведет к скоплению воды в пониженных местах поверхности поля и образованию вымочек.
Таким образом, предложенный способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур с помощью устройства для его осуществления позволяет с большей достоверностью и значительно меньшими трудозатратами прогнозировать возможность повреждения посевов озимых культур от вымерзания, снежной плесени, притертой корки, выпирания узла кущения и вымокания.

Claims (2)

1. Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур, включающий выполнение в посевах озимых культур скважин до средней многолетней глубины промерзания почвы, систематическое послойное измерение в них температуры почвы и ее электрического сопротивления с помощью датчиков температуры и электрического сопротивления, первую пару из которых располагают на поверхности почвы, вторую – на глубине кущения, третью – в зоне нахождения основной массы поглощающих корней растений и четвертую пару датчиков располагают на глубине пахотного слоя, сформированного над плужной подошвой, ограничивающей распространение поглощающих корней растений, последующие датчики служат для контроля глубины промерзания.
2. Устройство для осуществления способа по п. 1, выполненное в виде цилиндрического корпуса, по длине наружной поверхности которого установлены датчики - по одной стороне поверхности датчики температуры, по другой - датчики электрического сопротивления, при этом все датчики посредством электропроводки, располагаемой внутри корпуса и выведенной на его верхний конец, подключены к беспроводному передатчику информации на базовый компьютер.
RU2020141533A 2020-12-16 2020-12-16 Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления RU2754275C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020141533A RU2754275C1 (ru) 2020-12-16 2020-12-16 Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020141533A RU2754275C1 (ru) 2020-12-16 2020-12-16 Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2754275C1 true RU2754275C1 (ru) 2021-08-31

Family

ID=77670331

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020141533A RU2754275C1 (ru) 2020-12-16 2020-12-16 Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2754275C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1194323A1 (ru) * 1983-06-30 1985-11-30 Всесоюзный научно-исследовательский институт сельскохозяйственной метеорологии Способ диагностики повреждений озимых культур низкими отрицательными температурами в зимний период
SU1409161A1 (ru) * 1981-09-22 1988-07-15 Харьковский сельскохозяйственный институт им.В.В.Докучаева Способ оценки хода перезимовки озимых культур
SU1584823A1 (ru) * 1987-03-10 1990-08-15 Украинская сельскохозяйственная академия Способ оценки зимостойкости растений озимых зерновых культур
RU130710U1 (ru) * 2013-03-21 2013-07-27 Государственное научное учреждение Всероссийский научно-исследовательский институт гидротехники и мелиорации им. А.Н. Костякова Российской академии сельскохозяйственных наук (ГНУ ВНИИГиМ Россельхозакадемии) Устройство для измерения твердости почвогрунтов вращательным срезом
RU2674072C1 (ru) * 2017-07-13 2018-12-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарская государственная сельскохозяйственная академия" Способ определения нормативной урожайности зерновых культур применительно к оценке земель сельскохозяйственного назначения
RU2699755C1 (ru) * 2018-11-28 2019-09-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") Устройство для измерения твердости почвогрунтов
CN111551589A (zh) * 2020-04-16 2020-08-18 河北农业大学 基于电阻抗的测定苗木根系质量的装置及测定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1409161A1 (ru) * 1981-09-22 1988-07-15 Харьковский сельскохозяйственный институт им.В.В.Докучаева Способ оценки хода перезимовки озимых культур
SU1194323A1 (ru) * 1983-06-30 1985-11-30 Всесоюзный научно-исследовательский институт сельскохозяйственной метеорологии Способ диагностики повреждений озимых культур низкими отрицательными температурами в зимний период
SU1584823A1 (ru) * 1987-03-10 1990-08-15 Украинская сельскохозяйственная академия Способ оценки зимостойкости растений озимых зерновых культур
RU130710U1 (ru) * 2013-03-21 2013-07-27 Государственное научное учреждение Всероссийский научно-исследовательский институт гидротехники и мелиорации им. А.Н. Костякова Российской академии сельскохозяйственных наук (ГНУ ВНИИГиМ Россельхозакадемии) Устройство для измерения твердости почвогрунтов вращательным срезом
RU2674072C1 (ru) * 2017-07-13 2018-12-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарская государственная сельскохозяйственная академия" Способ определения нормативной урожайности зерновых культур применительно к оценке земель сельскохозяйственного назначения
RU2699755C1 (ru) * 2018-11-28 2019-09-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт гидротехники и мелиорации имени А.Н. Костякова" (ФГБНУ "ВНИИГиМ им. А.Н. Костякова") Устройство для измерения твердости почвогрунтов
CN111551589A (zh) * 2020-04-16 2020-08-18 河北农业大学 基于电阻抗的测定苗木根系质量的装置及测定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПОЗДНЯКОВ А.И. и др. Стационарные электрические поля в почвах, Москва, КМК Scientific Press Ltd, 1996, с.66, 83-88. *

Similar Documents

Publication Publication Date Title
Rienth et al. State-of-the-art of tools and methods to assess vine water status
Haise et al. Soil, plant, and evaporative measurements as criteria for scheduling irrigation
Sutinen et al. Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method
Hou et al. Determining water use and crop coefficients of drip-irrigated cotton in south Xinjiang of China under various irrigation amounts
Khorsand et al. Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes
CN102967354A (zh) 作物生物量检测装置及检测方法
Sample et al. Understanding soil moisture sensors: A fact sheet for irrigation professionals in Virginia
CN110432046B (zh) 一种温室内的智能灌溉系统
Colombo Frost hardening spruce container stock for overwintering in Ontario
Tsoulias et al. Using data on soil ECa, soil water properties, and response of tree root system for spatial water balancing in an apple orchard
RU2754275C1 (ru) Способ измерения температуры и электрического сопротивления почвы в пахотном слое озимых культур и устройство для его осуществления
Liu et al. Relationship between environmental factor and maximum daily stem shrinkage in apple tree in arid region of northwest China
Orta et al. Use of infrared thermometry for developing baseline equations and scheduling irrigation in wheat
Soussa Effects of drip irrigation water amount on crop yield, productivity and efficiency of water use in desert regions in Egypt
Equiza et al. Assessment of freezing injury in palm species by chlorophyll fluorescence
Bornstein et al. Trafficability factor in a silty clay loam soil
Staugaitis et al. The regularities of mineral nitrogen distribution in Lithuania's soils in spring.
Ali et al. Methods or approaches of irrigation scheduling—An overview
Zhang et al. Effects of soil temperature on bud break, shoot and needle growth, and frost hardiness in Pinus sylvestris var. mongolica saplings during dehardening
Workmaster et al. Shifts in bud and leaf hardiness during spring growth and development of the cranberry upright: regrowth potential as an indicator of hardiness
Siringoringo et al. Effect of Slope and Distance from Oil Palm Stands on Soil Water Content
Xu et al. Evapotranspiration observation and data analysis in reed swamp wetlands
Banach et al. CONDUCTIVITY OF INTRACELLULAR ELECTROLYTES AS A QUICK INDICATOR OF THE VIABILITY OF SCOTS PINE SEEDLINGS AFTER WINTERING IN FIELD CONDITIONS
Endo Soil water and solute transport in an Andosol apple orchard including the dormancy period in a snowy cold region
Abubaker Irrigation scheduling for efficient water use in dry climates