RU2753014C1 - Способ получения кристаллического сульфата аммония - Google Patents

Способ получения кристаллического сульфата аммония Download PDF

Info

Publication number
RU2753014C1
RU2753014C1 RU2020129128A RU2020129128A RU2753014C1 RU 2753014 C1 RU2753014 C1 RU 2753014C1 RU 2020129128 A RU2020129128 A RU 2020129128A RU 2020129128 A RU2020129128 A RU 2020129128A RU 2753014 C1 RU2753014 C1 RU 2753014C1
Authority
RU
Russia
Prior art keywords
solution
pipeline
ammonium sulphate
evaporator
ammonium sulfate
Prior art date
Application number
RU2020129128A
Other languages
English (en)
Inventor
Сергей Витальевич Ардамаков
Александр Викторович Герасименко
Original Assignee
Публичное акционерное общество "КуйбышевАзот"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "КуйбышевАзот" filed Critical Публичное акционерное общество "КуйбышевАзот"
Priority to RU2020129128A priority Critical patent/RU2753014C1/ru
Application granted granted Critical
Publication of RU2753014C1 publication Critical patent/RU2753014C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • C01C1/248Preventing coalescing or controlling form or size of the crystals

Abstract

Изобретение относится к способу получения кристаллического сульфата аммония. Способ включает кристаллизацию исходного раствора сульфата аммония путем: подачи исходного раствора сульфата аммония в емкость для исходного раствора сульфата аммония; подачи исходного раствора сульфата аммония из емкости для исходного раствора сульфата аммония тремя потоками: в нижнюю часть кристаллизатора, в гидроклассификатор и в трубопровод, соединяющий кристаллизатор и испаритель; отделения кристаллов от маточного раствора выпариванием в кристаллизаторе, который имеет: зону испарения, расположенную в верхней части, и зону кристаллизации, расположенную в средней и нижней частях в форме вертикальной центральной трубы; с получением двух потоков, первый из которых, отбираемый из нижней части кристаллизатора, направляют в гидроклассификатор, а второй поток, отбираемый из средней части кристаллизатора, направляют с помощью трубопровода и циркуляционного насоса в испаритель с получением парожидкостного потока, причем второй поток вместе с трубопроводами, соединяющими среднюю часть кристаллизатора, циркуляционный насос, испаритель и зону испарения, расположенную в верхней части кристаллизатора, и вместе с вертикальной центральной трубой образуют циркуляционный контур; направления парожидкостного потока из испарителя с помощью трубопровода в зону испарения, расположенную в верхней части кристаллизатора; ввода конденсата, получаемого в испарителе, в трубопровод, соединяющий испаритель и зону испарения, расположенную в верхней части кристаллизатора; направления по трубопроводу из гидроклассификатора кристаллического сульфата аммония в растворе в накопитель раствора сульфата аммония, откуда часть раствора подают по трубопроводу в емкость для исходного раствора сульфата аммония, другую часть подают по трубопроводу в центрифугу для отделения кристаллов сульфата аммония от маточного раствора, который поступает по трубопроводу в емкость для исходного раствора сульфата аммония, а кристаллы сульфата аммония поступают в сушилку с калорифером, на ленточный транспортер и на склад готовой продукции. При этом создают дополнительный циркуляционный контур за счет отбора с помощью насоса из зоны кристаллизации части потока циркуляционного контура, содержащего мелкие кристаллы сульфата аммония, нагреванием этой части потока и вводом в верхнюю часть вертикальной центральной трубы. Процесс проводят с вводом в дополнительный циркуляционный контур водного раствора хлорида магния с концентрацией 0,01-0,02 мас.% и при массовом соотношении потока циркуляционного контура и потока дополнительного циркуляционного контура равном (2-4):1, причем точка отбора части потока циркуляционного контура находится в верхней половине вертикальной центральной трубы. Наличие дополнительного циркуляционного контура увеличивает время роста кристаллов и интенсифицирует перемешивание, что приводит к увеличению доли крупных кристаллов сульфата аммония - 80% и более. 2 ил., 1 табл., 10 пр.

Description

Изобретение относится к способу получения кристаллического сульфата аммония (СА) и может быть использовано в химической и нефтехимической промышленности и для нужд сельского хозяйства.
Известен способ изогидрической кристаллизации веществ из растворов путем контакта пульпы с хладоносителем. Для получения однородного кристалла дополнительно возвращают мелкие кристаллы в зону гидроклассификатора кристаллизатора для их доращивания (Патент РФ 1212453, B01D 9/00, 1986). Недостатками этого способа являются невысокая производительность установки и повышенная влажность получаемых кристаллов.
Известен также способ непрерывной изогидрической кристаллизации веществ из растворов, включающий нагревание исходной смеси теплоносителем, многоступенчатую кристаллизацию с разделением потоков в кристаллизаторах, выделением кристаллов сепарацией маточного раствора. Для получения крупных кристаллов узкой гранулометрической фракции выводят кристаллы из нижней части кристаллизатора тангенциально в верхнюю часть последующего кристаллизатора и смешивают с исходной смесью с последующим возвращением в кристаллизатор предыдущей ступени (Патент РФ 1673150, B01D 9/00, 9/02, 1991). Недостатками этого способа является невысокая производительность установки и недостаточно высокое качество полученных кристаллов.
Известен также способ получения кристаллического СА методом выпаривания в производстве капролактама. Раствор СА со стадии оксимирования перерабатывается в раздельных циклах, соединенных между собой в части использования сокового пара. Исходный раствор СА с концентрацией 25-30% масс. поступает в испаритель, в котором вода испаряется. В сепараторе пары отделяются и проходят через испаритель и циркуляционный насос. Упаривание и кристаллизация раствора осуществляются в системе кристаллизатор - насос - подогреватель -кристаллизатор. Выводимый раствор отделяется от кристаллов. (Овчинников В.И. и др. Производство капролактама. -М.: Химия, 1977, с. 211-213). Недостатком этого способа является невысокая производительность, при этом используется несколько аппаратов выпаривания и сепараторов, происходят потери аммиака и сокового пара.
Наиболее близким решением поставленной технической задачи (прототипом) является способ получения кристаллического СА (Патент РФ 2389685, C01C 1/24, 2010). Процесс проводят в соответствии с принципиальной технологической схемой, приведенной на фиг. 1. Раствор СА с концентрацией 38-42% направляют в емкость для исходного раствора СА (1), в которую также направляют поток осветленного раствора СА из накопителя раствора СА (6) и маточный раствор СА из центрифуги (8). Концентрация серной кислоты в емкости (1) изменяется в пределах 1,35-6,6% масс. Образовавшаяся в емкости (1) суспензия СА тремя потоками поступает:
- в гидроклассификатор (3),
- в нижнюю часть кристаллизатора (2),
- в трубопровод, соединяющий кристаллизатор (2) и испаритель (5), на всас циркуляционного насоса (4).
В промышленных условиях расход суспензии СА на эти три потока составляет, соответственно, 3+3+4=10 т/час. В кристаллизаторе (2) происходит выпаривание раствора СА. Кристаллизатор (2) состоит из двух зон:
- зоны испарения, расположенной в верхней части кристаллизатора, где происходит испарение воды паром и переход раствора СА в пересыщенное состояние,
- зоны кристаллизации, расположенной в средней и нижней части кристаллизатора в форме вертикальной центральной трубы.
Нагрев раствора СА осуществляют в испарителе (5), в котором контроль и регулирование температуры осуществляется подачей пара с получением на выходе из испарителя (5) конденсата. Циркуляция раствора СА осуществляется по циркуляционному контуру: циркуляционный насос (4) - испаритель (5) - зона выпаривания - вертикальная центральная труба (7) и нижняя часть кристаллизатора (2) - циркуляционный насос (4). Для тангенциального вращения и перемешивания потоков используются патрубки (на фиг. 1 не показаны) и циркуляционный насос (4). Циркулирующий по циркуляционному контуру раствор СА после испарителя (5) поступает в зону испарения кристаллизатора (2), где часть раствора испаряется и раствор становится пересыщенным. Кристаллизация СА происходит в зоне кристаллизации при перетекании раствора по вертикальной центральной трубе (7). Перетекая по вертикальной центральной трубе (7) раствор переходит в зону осаждения и классификации, расположенную в гидроклассификаторе (3), откуда раствор СА с массовой долей не менее 18 -20% отводится в накопитель раствора СА (6). Образовавшийся в зоне испарения кристаллизатора (2) пар поступает в сепаратор (на фиг. 1 не показан), в котором улавливаются частицы СА и органические примеси аммиака. Одновременно проводится промывка полученного в сепараторе раствора СА (на фиг. 1 не показано). Полученный в сепараторе пар подают в испаритель на следующую технологическую нитку (на фиг. 1 не показано). Из гидроклассификатора (3) раствор поступает в накопитель раствора СА (6). Часть осветленного раствора из накопителя раствора СА (6) подается обратно в емкость для исходного раствора СА (1). Другая часть с концентрацией кристаллов СА в растворе более 60% поступает в центрифугу (8), откуда отфугованный раствор СА (маточный раствор) возвращается в емкость для исходного раствора СА (1). Остальная часть с концентрацией воды менее 2% масс. направляется в сушилку с калорифером (9) и с концентрацией воды менее 0,3% масс. далее направляется на ленточный транспортер (10) и далее на склад готовой продукции (11). Для регулирования размеров кристаллов СА в трубопровод между кристаллизатором (2) и испарителем (5) с помощью насоса подается конденсат. Регулирование размеров кристаллов важно для качества конечного продукта: чем больше размеры кристаллов СА, тем выше качество конечного продукта. Подача конденсата с помощью насоса способствует растворению зародышей и мелких кристаллов СА, попадающих в циркуляционный контур из нижней части кристаллизатора (2) и, таким образом, улучшает качество конечного продукта. Расход конденсата в промышленных установках составляет 0,4 т/час.
Недостатком процесса по прототипу является малая доля крупных кристаллов с размером частиц 1,5-2,5 мм - 70% (см. таблицу, пример 1).
Малая доля крупных кристаллов зависит от трех основных причин:
1) большое количество загрязнений, присутствующих в маточном рассоле,
2) недостаточное время роста кристаллов в цикле,
3) недостаточно интенсивное перемешивание суспензии в кристаллизаторе.
Целью настоящего изобретения является улучшение качества целевого продукта за счет увеличения доли крупных кристаллов СА.
Согласно изобретению, поставленная цель достигается способом получения кристаллического сульфата аммония кристаллизацией исходного раствора сульфата аммония путем:
- подачи исходного раствора сульфата аммония в емкость для исходного раствора сульфата аммония;
- подачи исходного раствора сульфата аммония из емкости для исходного раствора сульфата аммония тремя потоками: в нижнюю часть кристаллизатора, в гидроклассификатор и в трубопровод, соединяющий кристаллизатор и испаритель;
- отделением кристаллов от маточного раствора выпариванием в кристаллизаторе, который имеет:
Figure 00000001
зону испарения, расположенную в верхней части;
Figure 00000002
зону кристаллизации, расположенную в средней и нижней части в форме вертикальной центральной трубы;
с получением двух потоков, первый из которых, отбираемый из нижней части кристаллизатора, направляют в гидроклассификатор, а второй поток, отбираемый из средней части кристаллизатора, направляют с помощью трубопровода и циркуляционного насоса в испаритель с получением паро-жидкостного потока, причем, второй поток вместе с трубопроводами, соединяющими среднюю часть кристаллизатора, циркуляционный насос, испаритель и зону испарения, расположенную в верхней части кристаллизатора, и вместе с вертикальной центральной трубой образуют циркуляционный контур;
- направлением паро-жидкостного потока из испарителя с помощью трубопровода в зону испарения, расположенную в верхней части кристаллизатора;
- вводом конденсата, получаемого в испарителе, в трубопровод, соединяющий испаритель и зону испарения, расположенную в верхней части кристаллизатора;
- направлением по трубопроводу из гидроклассификатора кристаллического сульфата аммония в растворе в накопитель раствора сульфата аммония, откуда часть раствора подают по трубопроводу в емкость для исходного раствора сульфата аммония, другую часть подают по трубопроводу в центрифугу для отделения кристаллов сульфата аммония от маточного раствора, который поступает по трубопроводу в емкость для исходного раствора сульфата аммония, а кристаллы сульфата аммония поступают в сушилку с калорифером, на ленточный транспортер и на склад готовой продукции. Создают дополнительный циркуляционный контур за счет отбора с помощью насоса из зоны кристаллизации части потока циркуляционного контура, содержащего мелкие кристаллы сульфата аммония, нагреванием этой части потока и вводом в верхнюю часть вертикальной центральной трубы, а процесс проводят с вводом в дополнительный циркуляционный контур водного раствора хлорида магния с концентрацией 0,01-0,02% масс. Процесс проводят при массовом отношении потока циркуляционного контура и потока дополнительного циркуляционного контура равном (2-4):1. Точка отбора части потока циркуляционного контура находится в верхней половине вертикальной центральной трубы.
Способ иллюстрируется нижеследующими примерами.
Пример 1 (сравнительный по прототипу). Процесс проводят в соответствии с принципиальной технологической схемой, приведенной на фиг. 1. Раствор СА с концентрацией 40,5% масс. направляют в емкость для исходного раствора СА (1), в которую также направляют поток осветленного раствора СА из накопителя раствора СА (6) и маточный раствор СА из центрифуги (8). Концентрация серной кислоты в емкости (1) равна 3,2% масс. Образовавшаяся в емкости (1) суспензия СА тремя потоками поступает:
- в гидроклассификатор (3),
- в нижнюю часть кристаллизатора (2),
- в трубопровод, соединяющий кристаллизатор (2) и испаритель (5), на всас циркуляционного насоса (4).
Расход суспензии СА на эти три потока суммарно составляет 10 т/час. В кристаллизаторе (2) происходит выпаривание раствора СА. Кристаллизатор (2) состоит из двух зон:
- зоны испарения, расположенной в верхней части кристаллизатора, где происходит испарение воды паром и переход раствора СА в пересыщенное состояние,
- зоны кристаллизации, расположенной в средней и нижней части кристаллизатора в форме вертикальной центральной трубы.
Нагрев раствора СА осуществляют в испарителе (5), в котором контроль и регулирование температуры осуществляют подачей пара с получением на выходе из испарителя (5) конденсата. Циркуляция раствора СА осуществляется по циркуляционному контуру: циркуляционный насос (4) - испаритель (5) - зона выпаривания - вертикальная центральная труба (7) и нижняя часть кристаллизатора (2) - циркуляционный насос (4). Циркулирующий по циркуляционному контуру раствор СА после испарителя (5) поступает в зону испарения кристаллизатора (2), где часть раствора испаряется и раствор становится пересыщенным. Кристаллизация СА происходит в зоне кристаллизации при перетекании раствора по вертикальной центральной трубе (7). Перетекая по вертикальной центральной трубе (7) раствор переходит в зону осаждения и классификации, расположенную в гидроклассификаторе (3), откуда раствор СА с массовой долей 19,2% отводится в накопитель раствора СА (6). Из гидроклассификатора (3) раствор поступает в накопитель раствора СА (6). Часть осветленного раствора из накопителя раствора СА (6) подается обратно в емкость для исходного раствора СА (1). Другая часть с концентрацией кристаллов СА в растворе 65,3% масс. поступает в центрифугу (8), откуда отфугованный раствор СА (маточный раствор) возвращается в емкость для исходного раствора СА (1). Остальная часть с концентрацией воды 1,8% масс. направляется в сушилку с калорифером (9) и с концентрацией воды 0,2% масс. далее направляется на ленточный транспортер (10) и далее на склад готовой продукции (11). Для регулирования размеров кристаллов СА в трубопровод между кристаллизатором (2) и испарителем (5) с помощью насоса подается конденсат. Расход конденсата в промышленных установках составляет 0,4 т/час. Результаты проведения процесса по прототипу приведены в таблице.
Примеры 2-10. Процесс проводят также, как и в примере 1, с той лишь разницей, что создают дополнительный циркуляционный контур (см. фиг. 2) путем отбора из зоны кристаллизации части потока циркуляционного контура с помощью патрубка (12) и дополнительного насоса (13) с промежуточным нагреванием этой части потока в дополнительном теплообменнике (14) и вводом потока в верхнюю часть вертикальной центральной трубы (7). В дополнительный циркуляционный контур из емкости (15) вводят 0,01-0,02% масс. раствор хлорида магния. Процесс проводят таким образом, что массовое отношение потока циркуляционного контура и потока дополнительного циркуляционного контура было равным (2-4):1. Результаты ведения процесса по примерам 2-10 приведены в таблице.
Организация дополнительного циркуляционного контура позволяет улавливать значительную часть мелких кристаллов сульфатов аммония, растворять их и возвращать в раствор сульфата аммония на стадию кристаллообразования. Отбор этого дополнительного циркуляционного контура должен осуществляться из верхней половины вертикальной центральной трубы - в зоне наибольшей концентрации мелких кристаллов сульфата аммония.
Figure 00000003
Оптимальные результаты достигаются при массовом отношении потока циркулирующего контура и потока дополнительного циркуляционного контура равного (2-4):1, что подтверждается результатами испытаний (см. таблицу). Введение хлорида магния улучшает гранулометрический состав и способствует росту кристаллов, что подтверждается результатами испытаний (см. таблицу).
Как видно из результатов испытаний, проведение предлагаемого способа получения кристаллического СА в соответствии с оговоренными техническими решениями:
1) наличие дополнительного циркуляционного контура,
2) введение в дополнительный циркуляционный контур хлорида магния с концентрацией 0,01 - 0,02% масс,
3) массовое соотношение потока циркуляционного контура и потока дополнительного циркуляционного контура равное (2-4):1,
4) положение точки отбора части потока циркуляционного контура в верхней половине вертикальной центральной трубы,
позволяет получать целевой продукт с устойчивым содержанием кристаллической фракции СА 1,5-2,5 мм 80% и выше (см. примеры 1,2,6-8).
Снижение концентрации хлорида магния до 0,005% масс. (см. пример 4) приводит к снижению выхода этой кристаллической фракции, а увеличение его концентрации до 0,025% (см. пример 5) не приводит к заметному увеличению выхода этой фракции.
Изменение массового соотношения обоих потоков как в меньшую, так и в большую сторону, не приводит к желаемому положительному техническому эффекту - выход кристаллов СА фракции 1,5-2,5 мм меньше 80% (см. примеры 9 и 10).
При отборе части потока циркуляционного контура в точке, находящейся посередине или в нижней половине вертикальной центральной трубы, снижается производительность процесса кристаллизации СА.
Наличие дополнительного циркуляционного контура увеличивает время роста кристаллов в цикле и способствует интенсификации перемешивания суспензии в кристаллизаторе, что, в конечном итоге приводит к увеличению доли крупных кристаллов СА.

Claims (10)

  1. Способ получения кристаллического сульфата аммония кристаллизацией исходного раствора сульфата аммония путем:
  2. - подачи исходного раствора сульфата аммония в емкость для исходного раствора сульфата аммония;
  3. - подачи исходного раствора сульфата аммония из емкости для исходного раствора сульфата аммония тремя потоками: в нижнюю часть кристаллизатора, в гидроклассификатор и в трубопровод, соединяющий кристаллизатор и испаритель;
  4. - отделения кристаллов от маточного раствора выпариванием в кристаллизаторе, который имеет:
  5. - зону испарения, расположенную в верхней части;
  6. - зону кристаллизации, расположенную в средней и нижней частях в форме вертикальной центральной трубы;
  7. с получением двух потоков, первый из которых, отбираемый из нижней части кристаллизатора, направляют в гидроклассификатор, а второй поток, отбираемый из средней части кристаллизатора, направляют с помощью трубопровода и циркуляционного насоса в испаритель с получением парожидкостного потока, причем второй поток вместе с трубопроводами, соединяющими среднюю часть кристаллизатора, циркуляционный насос, испаритель и зону испарения, расположенную в верхней части кристаллизатора, и вместе с вертикальной центральной трубой образуют циркуляционный контур;
  8. - направления парожидкостного потока из испарителя с помощью трубопровода в зону испарения, расположенную в верхней части кристаллизатора;
  9. - ввода конденсата, получаемого в испарителе, в трубопровод, соединяющий испаритель и зону испарения, расположенную в верхней части кристаллизатора;
  10. - направления по трубопроводу из гидроклассификатора кристаллического сульфата аммония в растворе в накопитель раствора сульфата аммония, откуда часть раствора подают по трубопроводу в емкость для исходного раствора сульфата аммония, другую часть подают по трубопроводу в центрифугу для отделения кристаллов сульфата аммония от маточного раствора, который поступает по трубопроводу в емкость для исходного раствора сульфата аммония, а кристаллы сульфата аммония поступают в сушилку с калорифером, на ленточный транспортер и на склад готовой продукции, отличающийся тем, что создают дополнительный циркуляционный контур за счет отбора с помощью насоса из зоны кристаллизации части потока циркуляционного контура, содержащего мелкие кристаллы сульфата аммония, нагреванием этой части потока и вводом в верхнюю часть вертикальной центральной трубы, а процесс проводят с вводом в дополнительный циркуляционный контур водного раствора хлорида магния с концентрацией 0,01-0,02 мас.%, а процесс проводят при массовом соотношении потока циркуляционного контура и потока дополнительного циркуляционного контура равном (2-4):1, причем точка отбора части потока циркуляционного контура находится в верхней половине вертикальной центральной трубы.
RU2020129128A 2020-09-02 2020-09-02 Способ получения кристаллического сульфата аммония RU2753014C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020129128A RU2753014C1 (ru) 2020-09-02 2020-09-02 Способ получения кристаллического сульфата аммония

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020129128A RU2753014C1 (ru) 2020-09-02 2020-09-02 Способ получения кристаллического сульфата аммония

Publications (1)

Publication Number Publication Date
RU2753014C1 true RU2753014C1 (ru) 2021-08-11

Family

ID=77349405

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020129128A RU2753014C1 (ru) 2020-09-02 2020-09-02 Способ получения кристаллического сульфата аммония

Country Status (1)

Country Link
RU (1) RU2753014C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1101408A1 (ru) * 1983-02-09 1984-07-07 Предприятие П/Я В-8973 Способ получени кристаллического сульфата аммони
SU1673150A1 (ru) * 1987-12-18 1991-08-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Микробиологических Производств Способ непрерывной изогидрической кристаллизации
RU2389685C2 (ru) * 2007-06-28 2010-05-20 Открытое акционерное общество "КуйбышевАзот" Способ управления процессом получения сульфата аммония
CN103496717A (zh) * 2013-09-23 2014-01-08 武汉都市环保工程技术股份有限公司 一种序批式硫铵溶液氧化及硫磺浮渣脱除方法
EP2897903B1 (en) * 2012-09-24 2016-12-14 Cap Iii B.V. Process for preparing crystalline ammonium sulfate product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1101408A1 (ru) * 1983-02-09 1984-07-07 Предприятие П/Я В-8973 Способ получени кристаллического сульфата аммони
SU1673150A1 (ru) * 1987-12-18 1991-08-30 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Микробиологических Производств Способ непрерывной изогидрической кристаллизации
RU2389685C2 (ru) * 2007-06-28 2010-05-20 Открытое акционерное общество "КуйбышевАзот" Способ управления процессом получения сульфата аммония
EP2897903B1 (en) * 2012-09-24 2016-12-14 Cap Iii B.V. Process for preparing crystalline ammonium sulfate product
CN103496717A (zh) * 2013-09-23 2014-01-08 武汉都市环保工程技术股份有限公司 一种序批式硫铵溶液氧化及硫磺浮渣脱除方法

Similar Documents

Publication Publication Date Title
US8475597B2 (en) Process and equipment for sugar crystallization by controlled cooling
JP5530366B2 (ja) 晶析による粗大硫安結晶製品の製造方法,及び前記製造方法を実行するための設備
CN109289233B (zh) 用于蒸发结晶的装置、甲硫氨酸的结晶方法
CN109513232B (zh) 用于蒸发结晶的装置、乙基麦芽酚的结晶方法
JP2013180948A (ja) 晶析による粗大硫安製品の製造方法、およびこの製造方法を実施するための装置
CN109453539A (zh) 用于蒸发结晶的装置、三氯蔗糖的结晶方法
RU2753014C1 (ru) Способ получения кристаллического сульфата аммония
US5127921A (en) Multistage recrystallization for superpurifying crystallizable substances
US10138133B2 (en) Process for producing ammonium sulfate crystals
US7175824B2 (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
CN1757599A (zh) 一种生产硫铵的方法
RU2389685C2 (ru) Способ управления процессом получения сульфата аммония
RU2107028C1 (ru) Способ непрерывного получения сульфата калия из сульфата натрия
RU2304012C2 (ru) Способ переработки смеси маточных пентаэритрито-формиатных растворов и выпарная установка для его осуществления
RU2105717C1 (ru) Способ получения сульфата калия
RU2807991C1 (ru) Способ производства диаммонийфосфата
CN115520879B (zh) 异相晶种连续制备颗粒硫酸铵的方法及装置
RU2255046C1 (ru) Способ получения медного купороса
US3679375A (en) Salt production process
CN115520880B (zh) 均一化大颗粒硫酸铵的制备方法、结晶器和生产装置
RU2712250C2 (ru) Способ получения кристаллического l-аланина
US10369493B2 (en) Process for initiating an ammonium sulfate crystallization process
RU2747674C1 (ru) Способ получения медного купороса
JPH0631105A (ja) 結晶化可能な物質を超精製する多段階再結晶化
EP0576718A1 (en) Multistage recrystallization for superpurifying crystallizable substances