RU2750634C1 - Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций - Google Patents
Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций Download PDFInfo
- Publication number
- RU2750634C1 RU2750634C1 RU2020110000A RU2020110000A RU2750634C1 RU 2750634 C1 RU2750634 C1 RU 2750634C1 RU 2020110000 A RU2020110000 A RU 2020110000A RU 2020110000 A RU2020110000 A RU 2020110000A RU 2750634 C1 RU2750634 C1 RU 2750634C1
- Authority
- RU
- Russia
- Prior art keywords
- sensors
- acoustic
- time
- linear
- values
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Использование: для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции; полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки либо выход за установленные рамки имеет высокое значение. Технический результат: обеспечение возможности предсказывать наступление критических событий, связанных с внутренними неисправностями строительных или технологических конструкций.
Description
Изобретение относится к области техники, а более конкретно - к способу использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций.
Настоящее изобретение может найти применение при создании, эксплуатации, управлении и мониторинге строительных и технологических конструкций различного назначения, включая конструкции, используемые в промышленности, энергетике, машиностроении, коммунальном хозяйстве и других отраслях.
В основу настоящего изобретения положена задача создания такого способа использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций, который позволил бы предсказывать наступление критических событий, в первую очередь, связанных с внутренними неисправностями и сбоями, либо критическим ростом каких-либо значений показателей, описывающих строительные или технологические конструкции и связанных с появлением сигналов акустической эмиссии от внутренних дефектов, а также от других датчиков, учитывающих наклон конструкции, ее линейное перемещение и другие параметры.
Согласно ГОСТ 27655-88, Акустическая эмиссия (Эмиссия волн напряжений, Звуковая эмиссия, Ультразвуковая эмиссия, Акустическое излучение) - испускание объектом контроля (испытаний) акустических волн.
Наиболее близким к данному изобретению является патент RU 2371691 C1 СПОСОБ МОНИТОРИНГА МАШИН И СООРУЖЕНИЙ (2008.04.22), включающий измерение посредством, по крайней мере, одного датчика параметров вибрации объекта, определение и анализ значений параметров вибрации объекта мониторинга в месте установки датчика, отличающийся тем, что используют датчик, синфазно измеряющий три ортогональных проекции вектора ускорения, определяют вектор деформации объекта мониторинга в месте установки датчика, накапливают массив векторных величин деформации, отображают на мониторе, по крайней мере, для одной частоты вибрации годограф вектора деформации относительно системы координат, связанной с объектом мониторинга, и определяют наличие анизотропии в деформациях элемента объекта мониторинга в месте установки датчика.
Однако рассмотренный прототип имеет следующие существенные недостатки:
- не является универсальным для различных типов строительных и технологических конструкций;
- зависит от процессов вибрации и не учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций;
- не позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов;
- не предназначен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.
Задачи изобретения решены и недостатки прототипа устранены в реализованном согласно настоящему изобретению способе комплексного мониторинга и прогнозирования состояния строительных и технологических конструкций, предусматривающий следующие стадии:
1) на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции;
2) полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют;
3) по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;
и отличающийся тем, что сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику:
- пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии;
- активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии;
- критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
- закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
- сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки, либо выход за установленные рамки имеет высокое значение;
4) полученные данные от акустических датчиков, датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, отличающийся тем, что контролируется переход первых двух групп источников в последующие две группы, а также появление критических или закритических сигналов от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения.
5) данные, полученные на предыдущей стадии используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, определяя скорость и предположительное время развития дефектов.
За счет реализации заявленного авторами способа достигаются следующие технические результаты:
- он является универсальным для различных типов строительных и технологических конструкций;
- не зависит от процессов вибрации и учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций;
- позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов;
- предназначен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.
Настоящее изобретение будет раскрыто в нижеследующем описании мониторинга и предсказания состояния водонапорной башни, имеющей емкость для хранения воды и электромеханический турбинный насос для ее нагнетания в емкость.
На поверхности водонапорной башни прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов как в строительных конструкциях водонапорной башни, так и в насосе, также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона башни и по меньшей мере один датчик ее линейного перемещения конструкции. Сигналы от датчиков, полученные на первой стадии, сохраняют.
По разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;
С течением времени фиксируют пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, связанный с протечкой воды из бака, а также активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, связанный с проседанием конструкции бака и образованием трещин в его стенках.
Кроме того, фиксируют - критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, связанный с износом подшипников насоса.
В некоторый момент времени фиксируют закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, связанный с разрушением подающего шланга насоса.
Полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы. Так, при разрушении шланга производится немедленное оповещение коммунальных служб.
От датчиков виброперемещения получают информацию о постепенном разрушении опорных конструкций насоса, приводящих к появлению вибрации, о от датчиков наклона - нарастающий во времени уклон конструкций башни и линейное перемещение ее верхней части в одну сторону.
Данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, в частности, прогнозируется время текущего ремонта протечки из бака, заделка трещин и смена подшипников. Кроме того, планируется монтаж подпорки стены водонапорной башни в целях предотвращения ее дальнейшего уклона, а также укрепление опорных конструкций насоса и монтаж резиновых шайб с целью уменьшения вибрации.
По сравнению со способами известными авторам, заявляемый способ обладает высокой универсальностью и гибкостью и позволяет достичь лучших результатов, является универсальным для различных типов строительных и технологических конструкций, не зависит от процессов вибрации и учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций, позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов, удобен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени, а также обеспечивает комплексный учет сигналов от всех датчиков.
Литература
1. Математическая энциклопедия. - М.: Советская энциклопедия. И.М. Виноградов. 1977-1985.
2. М.Г. Сухарев Методы прогнозирования - Серия Прикладная математика в инженерном деле М: 2009.
3. ГОСТ 27655-88 ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР. АКУСТИЧЕСКАЯ ЭМИССИЯ. Термины, определения и обозначения. - УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.03.88 №787.
Claims (13)
- Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций, предусматривающий следующие стадии:
- 1) на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции;
- 2) полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют;
- 3) по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;
- и отличающийся тем, что сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику:
- - пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии;
- - активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии;
- - критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
- - закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
- - сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки либо выход за установленные рамки имеет высокое значение;
- 4) полученные данные от акустических датчиков, датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников,
- отличающийся тем, что контролируется переход первых двух групп источников в последующие две группы, а также появление критических или закритических сигналов от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения;
- 5) данные, полученные на предыдущей стадии, используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, определяя скорость и предположительное время развития дефектов.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020110000A RU2750634C1 (ru) | 2020-03-10 | 2020-03-10 | Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций |
PCT/RU2020/000548 WO2021182992A1 (ru) | 2020-03-10 | 2020-10-19 | Способ сбора данных для мониторинга состояния строительных конструкций |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020110000A RU2750634C1 (ru) | 2020-03-10 | 2020-03-10 | Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2750634C1 true RU2750634C1 (ru) | 2021-06-30 |
Family
ID=76755851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020110000A RU2750634C1 (ru) | 2020-03-10 | 2020-03-10 | Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2750634C1 (ru) |
WO (1) | WO2021182992A1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2371691C1 (ru) * | 2008-04-22 | 2009-10-27 | Анатолий Алексеевич Сперанский | Способ мониторинга машин и сооружений |
US20110185814A1 (en) * | 2008-08-08 | 2011-08-04 | A.E.T. International S.R.L. | Method for non-destructive investigation of the bottom of metallic tank structures |
RU2480742C1 (ru) * | 2011-10-10 | 2013-04-27 | Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" | Способ акустико-эмиссионного контроля |
RU2011152257A (ru) * | 2011-12-21 | 2013-06-27 | Общество с ограниченной ответственностью "Научно-Технический Центр Информационные Технологии" | Способ контроля деградации железобетонных опор контактной сети железной дороги |
CN107271564A (zh) * | 2017-03-06 | 2017-10-20 | 北京航空航天大学 | 基于eaf和lap复合策略的桥式起重机箱式梁声发射检测装置及损伤检测方法 |
-
2020
- 2020-03-10 RU RU2020110000A patent/RU2750634C1/ru active
- 2020-10-19 WO PCT/RU2020/000548 patent/WO2021182992A1/ru active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2371691C1 (ru) * | 2008-04-22 | 2009-10-27 | Анатолий Алексеевич Сперанский | Способ мониторинга машин и сооружений |
US20110185814A1 (en) * | 2008-08-08 | 2011-08-04 | A.E.T. International S.R.L. | Method for non-destructive investigation of the bottom of metallic tank structures |
RU2480742C1 (ru) * | 2011-10-10 | 2013-04-27 | Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" | Способ акустико-эмиссионного контроля |
RU2011152257A (ru) * | 2011-12-21 | 2013-06-27 | Общество с ограниченной ответственностью "Научно-Технический Центр Информационные Технологии" | Способ контроля деградации железобетонных опор контактной сети железной дороги |
CN107271564A (zh) * | 2017-03-06 | 2017-10-20 | 北京航空航天大学 | 基于eaf和lap复合策略的桥式起重机箱式梁声发射检测装置及损伤检测方法 |
Non-Patent Citations (1)
Title |
---|
Shiotani, Tomoki; Luo, Xiu; Haya, Hiroshi, Damage diagnosis of railway concrete structures by means of one-dimensional AE sources, Journal of Acoustic Emission, January 1, 2006. * |
Also Published As
Publication number | Publication date |
---|---|
WO2021182992A1 (ru) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Detecting damage size and shape in a plate structure using PZT transducer array | |
JP6423219B2 (ja) | 構造物の安全性診断システム | |
Gaponenko et al. | Improving the methodology for assessing the technical condition of equipment during the transportation of energy carrier in energy systems and complexes | |
Belostotsky et al. | Adaptive finite-element models in structural health monitoring systems | |
JP2015102363A (ja) | 振動解析装置 | |
Zielińska et al. | Internal imaging of concrete fracture based on elastic waves and ultrasound computed tomography | |
WO2011054323A1 (en) | A method and equipment for determination of damage rate of a structure | |
RU2750634C1 (ru) | Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций | |
JP4187250B2 (ja) | 光ファイバによる構造物の診断方法及びシステム | |
Hassani et al. | Smart bridge monitoring | |
RU2750534C1 (ru) | Способ использования акустико-эмиссионного сбора данных в целях мониторинга и прогнозирования состояния строительных и технологических конструкций | |
Camassa et al. | Modal testing of masonry constructions by ground-based radar interferometry for structural health monitoring: a mini review | |
Kontoni et al. | Damage detection in reinforced concrete structures using advanced automatic systems: An overview | |
Nicoletti et al. | Operational modal analysis for supporting the retrofit design of bridges | |
RU2382270C1 (ru) | Способ экстренной диагностики магистрального трубопровода | |
Ellis et al. | NON-DESTRUCTIVE DYNAMIC TESTING OF STONE PINNACLES ON THE PALACE OF WESTMINSTER. | |
RU2750532C1 (ru) | Способ непрерывного или периодического акустико-эмиссионного сбора данных в целях прогнозирования технического состояния объектов | |
WO2015059956A1 (ja) | 構造物診断装置、構造物診断方法、及びプログラム | |
Shiotani et al. | Advanced NDT contributing performance evaluation of civil structures | |
RU2672532C2 (ru) | Способ мониторинга технического состояния строительных объектов и система мониторинга технического состояния строительных объектов | |
RU2750635C1 (ru) | Способ прогнозирования критической неисправности движущегося узла по акустико-эмиссионным данным | |
RU2392403C1 (ru) | Способ определения изменений напряженно-деформированного состояния конструкций здания или сооружения | |
Aoki et al. | Safety assessment of the Sanctuary of Vicoforte, Italy | |
Aulakh et al. | Piezo Sensors Based Operational Strain Modal Analysis for SHM | |
Asahina et al. | A New System for the Direct Visual Observation and Measurement of the Sliding Behavior of Rock-Like Materials Under Triaxial Compression |