RU2750602C1 - Способ упрочнения стали с применением комбинированной технологии - Google Patents

Способ упрочнения стали с применением комбинированной технологии Download PDF

Info

Publication number
RU2750602C1
RU2750602C1 RU2020126286A RU2020126286A RU2750602C1 RU 2750602 C1 RU2750602 C1 RU 2750602C1 RU 2020126286 A RU2020126286 A RU 2020126286A RU 2020126286 A RU2020126286 A RU 2020126286A RU 2750602 C1 RU2750602 C1 RU 2750602C1
Authority
RU
Russia
Prior art keywords
hardening
armor
carried out
temperature
hardened
Prior art date
Application number
RU2020126286A
Other languages
English (en)
Inventor
Андрей Викторович Киричек
Дмитрий Львович Соловьев
Сергей Александрович Силантьев
Original Assignee
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ filed Critical Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority to RU2020126286A priority Critical patent/RU2750602C1/ru
Application granted granted Critical
Publication of RU2750602C1 publication Critical patent/RU2750602C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к военной технике и может быть использовано при изготовлении средств бронезащиты, в частности в броневых конструкциях, состоящих из нескольких слоев и предназначенных для защиты от пуль стрелкового оружия. Способ упрочнения стального листа брони включает предварительное деформационное воздействие ударными волнами посредством статико-импульсной обработки дважды в разных направлениях, проведение двухсторонней цементации в твердом карбюризаторе при температуре 930°С в течение 7 ч, осуществление двухступенчатой закалки. На первой ступени закалку проводят при температуре 930°С в течение 30 мин. На второй ступени закалку осуществляют при температуре 790°С в течение 30 мин с охлаждением в масле. Отпуск проводят при температуре 180°С. Обеспечивается получение упрочненной структуры, включающей цементованные поверхностные слои и гетерогенно-упрочненную сердцевину по всей толщине стального листа брони. 4 з.п. ф-лы, 2 ил., 1 пр.

Description

Изобретение относится к военной технике и может быть использовано при изготовлении средств бронезащиты, в частности в броневых конструкциях, состоящих из нескольких слоев и предназначенных для защиты от пуль стрелкового оружия.
Изобретение может быть также использовано при создании бронетанковой, ракетной, инженерной техники, кораблей.
В настоящее время сталь остается наиболее распространенным броневым материалом. При упрочнении броневых материалов необходимо получение структуры, обладающей одновременно высокой твердостью и пластичностью. Такой эффект достигается при формировании определенного распределения твердых и мягких (вязко-пластичных) участков, т.е. гетерогенно упрочненной структуры, причем полученной по всей толщине брони.
Известен способ статико-импульсной обработки поверхностным пластическим деформированием (ППД) металлических материалов, при котором происходит формирование упрочненной структуры материала под действием ударных волн деформации, в результате чего на упрочняемой поверхности образуется совокупность пластических отпечатков с определенным размером, перекрытием и кратностью приложения [Киричек А.В., Соловьев Д.Л., Лазуткин А.Г. Технология и оборудование статико-импульсной обработки поверхностным пластическим деформированием. Библиотека технолога. М.: Машиностроение, 2004. 288 с; Патент №2098259 РФ, МКИ B24B 39/00. Способ статико-импульсной обработки поверхностным пластическим деформированием / А.Г. Лазуткин, А.В. Киричек, Д.Л. Соловьев. Бюлл. №34, 1997]. При использовании статико-импульсной обработки может быть получен упрочненный поверхностный слой, в том числе с гетерогенно упрочненной структурой, глубиной до 8-10 мм.
Недостатком является невысокая, как требуется для брони, достигаемая твердость упрочненной поверхности, которая в зависимости от упрочняемого металла составляет не более 35-45 HRC.
Известен способ получения гетерогенной брони, полученной цементацией одной поверхности, в результате которого твердость лицевого слоя достигает 62-67 HRC и твердость тыльного слоя 46-51 HRC. Такая твердость обеспечивает защиту при толщине лицевого слоя, равной 20-40% от общей толщины брони. [Патент РФ №2090828. Кирель Л.А., Михайлова О.М., Журавлев С.А. Противопульная гетерогенная броня из легированной стали для средств индивидуальной защиты и способ ее получения, 1997].
Недостатком является невозможность создания гетерогенных упрочненных слоев под цементованным слоем.
Известен способ комбинированного упрочнения, обеспечивающий высокую твердость поверхностного слоя, включающий предварительное поверхностное пластическое деформирование обкатыванием шариком диаметром 10 мм с силой 1500 Н и последующую цементацию. Способ обеспечивает высокую производительность процесса цементации за счет дефектов кристаллического строения, полученных при обкатывании, которые создают благоприятную энергетическую ситуацию в структуре для зарождения и развития зерен, карбидообразования и формирования новых элементов структуры при дальнейшей цементации. При этом наибольший эффект упрочнения получили режимы ППД, обеспечивающие примерно равную толщину упрочненного ППД и упрочненного при цементации слоев [Папшев Д.Д., Пронин A.M., Кубышкин А.Б. Эффективность упрочнения цементованных деталей машин // Вестник машиностроения. 1990, №8. - С. 61-64].
Недостатком является малая глубина наклепанного слоя, что снижает интенсивность проникновения углерода на большую глубину, а также невозможность создания гетерогенных упрочненных слоев под цементованным слоем.
Известен способ комбинированного упрочнения, включающий предварительное деформационное упрочнение ударными волнами в результате статико-импульсной обработки, и последующее химико-термическое упрочнение в результате цементации, закалки и отпуска. Режимы упрочнения: волновое деформационное упрочнение образцов с одной стороны с удельной энергией ударов 3,57-5 Дж/мм, цементация 930°С, подстуживание 550°С, закалка 840°С в масло, отпуск 180°С. В результате достигается создание упрочненных слоев с гетерогенной структурой под цементованным слоем [Тарасов Д.Е. Повышение контактной выносливости комбинированным упрочнением статико-импульсной обработкой и цементацией / Диссертация на соискание ученой степени кандидата технических наук, автореферат, 2013 г., Киричек А.В., Соловьев Д.Л., Тарасов Д.Е. Повышение долговечности деталей машин комбинированной упрочняющей обработкой. // Вестник Брянского государственного технического университета. 2016. №2 (50). С. 52-58].
Для повышения пулестойкости наружной металлической пластины -лицевого дробяще-отклоняющего слоя многослойной брони такой способ упрочнения будет недостаточно эффективным, поскольку при комбинированном упрочнении применялось однократное волновое деформационное упрочнение и комбинированному упрочнению подвергался только поверхностный слой листа. Кроме того, недостатком такого способа является воздействие высокой удельной энергией ударов, что может привести к созданию значительных остаточных напряжений внутри упрочняемой пластины, а с учетом ее небольшой толщины (5-6 мм) к искажениям ее формы, что недопустимо при изготовлении броневых конструкций. Для создания листов брони, когда необходимо получить заданную структуру по всей толщине листа, предлагаемый далее способ комбинированного упрочнения не применялся.
Техническим результатом предлагаемого способа должно быть создание упрочненной структуры, включающей цементованные поверхностные слои и гетерогенно упрочненную сердцевину по всей толщине броневого листа при неоднократном, но более щадящем воздействии на броневой лист при волновом деформационном упрочнении, как части комбинированной технологии упрочнения.
Для решения поставленной задачи предложена комбинированная технология упрочнения, в которой перед химико-термической обработкой лист брони подвергается волновому деформационному упрочнению дважды в разных направлениях. Как вариант между первым и вторым направлениями обработки волновым деформационным упрочнением обеспечивается угол 90±5°. Лист брони может подвергаться волновому деформационному упрочнению и в первый, и во второй раз только с лицевой стороны или в первый раз с лицевой стороны, а второй раз - с тыльной стороны. Волновое деформационное упрочнение с удельной энергией 1,8…3,8 Дж/мм и различным перекрытием отпечатков. В результате формируется гетерогенно наклепанная структура по всей толщине брони с максимумами деформационного упрочнения, расположенными, как на лицевом, так и на тыльном слое стального листа.
Механизм деформационного упрочнения статико-импульсной обработкой заключается в следующем. Для упрочнения ударными волнами деформации используется генератор импульсов, обеспечивающий энергию и частоту ударов соответственно 50-200 Дж и 7-40 Гц, а основными элементами такого генератора являются боек и волновод.
При упрочнении боек ударяет по волноводу статически поджатому к упрочняемой поверхности, в результате в ударной системе генерируются плоские акустические волны, которые характеризуются амплитудой волны деформации во времени, максимальным значением сил, временем действия сил (длительностью волны деформации) и энергией волны деформации. Эти характеристики зависят от геометрии соударяющихся бойка и волновода, свойств их материалов и скорости соударения. Волна деформации состоит из последовательности импульсов, длительность каждого из которых равна периоду волны. Форма ударного импульса (изменение силы по времени), поступающего в очаг деформации, будет определять эффективность динамического нагружения. Предварительное статическое поджатие волновода способствует наиболее полному использованию импульсной нагрузки для пластического деформирования упрочняемого материала. При упрочнении форма ударных импульсов максимально адаптируется к свойствам материала и условиям нагружения, что увеличивает КПД процесса, расширяет технологические возможности обработки, позволяя создавать глубокий упрочненный слой. Технология статико-импульсной обработки ударными волнами деформации позволяет достаточно точно регулировать равномерность упрочнения, создавая как равномерно, так и гетерогенно упрочненную структуру.
При изготовлении стальных броневых листов сначала производится предварительное поверхностное пластическое деформирование статико-импульсной обработкой, осуществляющей упрочнение ударными волнами деформации. При упрочнении листа брони ударной волной деформации, пластическая деформация и соответствующие ей дефекты кристаллического строения распространяются градиентно по всей толщине листа, причем максимумы деформационного упрочнения формируются как на поверхности, на которую воздействуют ударные волны (лицевой слой стального листа), так и на противоположной поверхности (тыльный слой стального листа). Причем проведенные исследования показали, что упрочнение тыльного слоя наблюдается только при осуществлении ППД воздействием ударных волн деформации.
Далее, после упрочнения ударными волнами деформации, производится двухсторонняя цементация лицевой и тыльной сторон листа и последующая ступенчатая закалка с низким отпуском.
В результате применения предлагаемого способа упрочнения стали с применением комбинированной технологии, упрочнение осуществляется по всей толщине листа брони, при этом формируется лицевой цементованный слой, промежуточный гетерогенно упрочненный слой и тыльный цементованный слой.
Пример.
Предлагаемый способ упрочнения стали с применением комбинированной технологии применялся к стальным листам многослойной брони, состоящей из наружной металлической пластины из стали 10ХСНД, промежуточного рассеивающего слоя, выполненного из листов неметаллического материала и внутренней металлической пластины из стали 10ХСНД.
Для упрочнения листов из стали 10ХСНД многослойной брони статико-импульсной обработкой в качестве инструмента использовались стержневые ролики диаметром 10 мм и шириной b=40-80 мм. Нагружение волной деформации осуществлялось с энергией удара А=150 Дж, соответственно удельная энергия волны деформации (а=А/b) составляла 1,8-3,8 Дж/мм. Равномерность ППД воздействием ударных волн деформации регулировалась изменением коэффициента перекрытия пластических отпечатков от инструмента на листе стали K=1-S/(δƒ60), где δ - размер пластического отпечатка, измеряемый в направлении подачи, в мм, S - скорость подачи заготовки (листа стали) относительно инструмента, мм/мин; ƒ - частота ударов, Гц. Значения коэффициента перекрытия пластических отпечатков выбирались из диапазона K=0,2-0,6.
После упрочнения статико-импульсной обработкой проводилась цементация в твердом карбюризаторе длительностью 7 часов при температуре 930°С, затем проводилась ступенчатая закалка: 1 ступень - закалка при температуре 930°, время - 30 мин., 2 ступень - закалка при температуре 790°, время - 30 мин. с охлаждением в масле, и последующий отпуск при температуре 180°.
На полученных образцах проведено исследование твердости образцов как после цементации, так и после предлагаемого способа упрочнения в целом. Для исследования микротвердости образцы разрезались вдоль по направлению подачи воздействия волной деформации, а затем из них изготавливались шлифы. Измерение осуществлялось как по глубине упрочненного поверхностного слоя, так и вдоль упрочненной поверхности.
Результаты измерений представлены на поясняющих фигурах.
Фиг. 1 - изменение твердости по Виккерсу (на фиг. 1 значения указаны вдоль оси ординат как HV, МПа) в зависимости от глубины упрочненного поверхностного слоя (на фиг. 1 значения указаны вдоль оси абсцисс как hv, мм).
Установлено, что глубина цементованного слоя после цементации без комбинированной обработки с использованием статико-импульсной обработки ударными волнами деформации составила 1,2 мм (кривая 1), а по предлагаемому способу после комбинированной обработки с использованием статико-импульсной обработки ударными волнами деформации - 1,8 мм (кривая 2) при одинаковом времени цементации, таким образом, произошло повышение производительности при цементации в 1,5 раза.
Фиг. 2 - карты твердости упрочненного поверхностного слоя шлифов. На картах твердости для каждого изображения сечения двух шлифов по оси абсцисс указан линейный размер исследованной области в направлении подачи, мм; по оси ординат глубина упрочненного слоя hv, мм; слева на фиг. 2 для наглядности расположена шкала измеренной твердости по Виккерсу, HV, МПа. Более темный цвет на шкале означает более высокое значение твердости на шлифе. На фиг. 2а изображена карта твердости для сечения шлифа после 7 часов цементации без комбинированной обработки с использованием статико-импульсной обработки ударными волнами деформации, а на фиг. 2б изображена карта твердости для сечения шлифа после 7 часов цементации после использования предлагаемого способа комбинированной обработки листа с использованием статико-импульсной обработки ударными волнами деформации (а=1,8 Дж/мм, К=0,4) с одной стороны броневого листа. Сравнивая фиг. 2а и фиг. 2б можно сделать вывод, что использование предлагаемого способа позволило значительно повысить твердость упрочняемого листа стали, причем максимумы деформационного упрочнения формируются как на поверхности, на которую воздействуют ударные волны (лицевой слой стального листа), так и на противоположной поверхности (тыльный слой стального листа), что было отмечено ранее. Кроме того, использование волнового деформационного упрочнения и ступенчатой закалки позволило повысить твердость нецементованного промежуточного гетерогенного слоя, что также достаточно важно для повышения пулестойкости броневых листов.
Для сравнительных испытаний был изготовлен броневой пакет 1, состоящий из лицевого листа из стали 10ХСНД толщиной 5,52 мм и тыльного листа из стали 10ХСНД толщиной 5,22 мм и промежуточного рассеивающего слоя из пластин стекломагнезита толщиной 8 мм, суммарной толщиной 32 мм. Наружная и внутренняя металлические пластины подвергались упрочнению по комбинированной технологии с одной стороны как описано в источнике [5].
Для сравнительных испытаний был изготовлен броневой пакет 2, состоящий из лицевого листа из стали 10ХСНД толщиной 5,72 мм и тыльного листа из стали 10ХСНД толщиной 5,05 мм и промежуточного рассеивающего слоя из пластин стекломагнезита толщиной 8 мм, суммарной толщиной 32 мм. Внутренняя металлическая пластина подвергалась упрочнению по комбинированной технологии с одной стороны как описано в источнике [5]. Наружная металлическая пластина подвергалась упрочнению по предлагаемому в настоящей заявке способу: волновое деформационное упрочнение дважды (между первым и вторым направлениями обработки волновым деформационным упрочнением обеспечивался угол 90±5°), двухсторонняя цементация и двухступенчатая закалка.
В результате испытаний на баллистическую стойкость по классу защиты Бр 5 зафиксировано пробитие броневого пакета 1 и непробитие броневого пакета 2.
Изготовленные броневые пакеты сравнивались по массе с серийным образцом броневого пакета, который состоит из лицевого листа из стали Ц-85 толщиной 6,5 мм (базовая термообработка), тыльного листа из стали Ц-85 толщиной 6,5 мм (базовая термообработка) и промежуточного рассеивающего слоя из листов стекломагнезита толщиной 10 мм, суммарной толщиной 40 мм. Снижение массы металлической части броневого пакета 2, с лицевым листом после предлагаемого комбинированного упрочнения, относительно серийного броневого пакета, составило 20,7%.
Таким, образом, достигается заявленный технический результат при осуществлении упрочнения стали по предлагаемому способу с применением комбинированной технологии упрочнения, при этом по предлагаемому способу волновое деформационное упрочнение при удельной энергии удара 1,8 Дж/мм, как составная часть технологии упрочнения, осуществлялось дважды при движении листа относительно инструмента в двух разных направлениях обработки (между первым и вторым направлениями обработки волновым деформационным упрочнением обеспечивался угол 90±5°). Показано на примере, что предлагаемый способ позволяет повысить пулестойкость и достаточно точно регулировать уровень упрочнения стали, создавая как равномерно, так и гетерогенно упрочненную структуру.
Источники информации, принятые во внимание
1. Киричек А.В., Соловьев Д.Л., Лазуткин А.Г. Технология и оборудование статико-импульсной обработки поверхностным пластическим деформированием. Библиотека технолога. М.: Машиностроение, 2004. 288 с.
2. Патент №2098259 РФ, МКИ B24B 39/00. Способ статико-импульсной обработки поверхностным пластическим деформированием / А.Г. Лазуткин, А.В. Киричек, Д.Л. Соловьев. Бюлл. №34, 1997.
3. Патент РФ №2090828. Кирель Л.А., Михайлова О.М., Журавлев С.А. Противопульная гетерогенная броня из легированной стали для средств индивидуальной защиты и способ ее получения, 1997.
4. Папшев Д.Д., Пронин A.M., Кубышкин А.Б. Эффективность упрочнения цементованных деталей машин // Вестник машиностроения. 1990, №8. - С. 61-64
5. Тарасов Д.Е. Повышение контактной выносливости комбинированным упрочнением статико-импульсной обработкой и цементацией / Диссертация на соискание ученой степени кандидата технических наук, автореферат, 2013 г.
6. Киричек А.В., Соловьев Д.Л., Тарасов Д.Е. Повышение долговечности деталей машин комбинированной упрочняющей обработкой. // Вестник Брянского государственного технического университета. 2016. №2(50). С. 52-58.

Claims (5)

1. Способ упрочнения стального листа брони, включающий цементацию, закалку и отпуск, отличающийся тем, что предварительно проводят деформационное воздействие ударными волнами посредством статико-импульсной обработки дважды в разных направлениях, при этом цементацию проводят в твердом карбюризаторе при температуре 930°С в течение 7 ч и выполняют двухсторонней, закалку проводят двухступенчатой, причем на первой ступени закалку осуществляют при температуре 930°С в течение 30 мин, на второй ступени закалку осуществляют при температуре 790°С в течение 30 мин с охлаждением в масле, а отпуск проводят при температуре 180°С.
2. Способ по п. 1, отличающийся тем, что между первым и вторым направлениями упомянутого деформационного воздействия ударными волнами обеспечивают угол 90±5°.
3. Способ по п. 1 или 2, отличающийся тем, что стальной лист брони подвергают деформационному воздействию ударными волнами в первый и во второй разы с лицевой стороны.
4. Способ по п. 1 или 2, отличающийся тем, что стальной лист брони подвергают деформационному воздействию ударными волнами в первый раз с лицевой стороны, а второй раз - с тыльной стороны.
5. Способ по любому из пп. 1-4, отличающийся тем, что деформационное воздействие ударными волнами выполняют с удельной энергией ударов 1,8-3,8 Дж/мм.
RU2020126286A 2020-08-06 2020-08-06 Способ упрочнения стали с применением комбинированной технологии RU2750602C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020126286A RU2750602C1 (ru) 2020-08-06 2020-08-06 Способ упрочнения стали с применением комбинированной технологии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020126286A RU2750602C1 (ru) 2020-08-06 2020-08-06 Способ упрочнения стали с применением комбинированной технологии

Publications (1)

Publication Number Publication Date
RU2750602C1 true RU2750602C1 (ru) 2021-06-29

Family

ID=76755873

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020126286A RU2750602C1 (ru) 2020-08-06 2020-08-06 Способ упрочнения стали с применением комбинированной технологии

Country Status (1)

Country Link
RU (1) RU2750602C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2090828C1 (ru) * 1994-06-24 1997-09-20 Леонид Александрович Кирель Противопульная гетерогенная броня из легированной стали для средств индивидуальной защиты и способ ее получения
US6709736B2 (en) * 1999-11-04 2004-03-23 Sgl Carbon Ag Armored products made of fiber-reinforced composite material with ceramic matrix
US9850552B2 (en) * 2011-06-23 2017-12-26 Incident Control Systems Method for increasing ballistic resistant performance of ultra high hard steel alloys

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2090828C1 (ru) * 1994-06-24 1997-09-20 Леонид Александрович Кирель Противопульная гетерогенная броня из легированной стали для средств индивидуальной защиты и способ ее получения
US6709736B2 (en) * 1999-11-04 2004-03-23 Sgl Carbon Ag Armored products made of fiber-reinforced composite material with ceramic matrix
US9850552B2 (en) * 2011-06-23 2017-12-26 Incident Control Systems Method for increasing ballistic resistant performance of ultra high hard steel alloys

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Киричек А.В. и др. Повышение долговечности деталей машин комбинированной упрочняющей обработкой, Вестник Брянского государственного технического университета, 2016, N2 (50), с.51-58. *
Киричек А.В. и др. Повышение долговечности деталей машин комбинированной упрочняющей обработкой, Вестник Брянского государственного технического университета, 2016, N2 (50), с.51-58. Тарасов Д.Е. Повышение контактной выносливости комбинированным упрочнением статико-импульсной обработкой и цементацией, диссертация на соискание ученой степени кандидата технических наук, автореферат, Орел, 2013, с.19. *
Тарасов Д.Е. Повышение контактной выносливости комбинированным упрочнением статико-импульсной обработкой и цементацией, диссертация на соискание ученой степени кандидата технических наук, авто, Орел, 2013, с.19. *

Similar Documents

Publication Publication Date Title
Shao et al. Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution
Maawad et al. Investigation on the surface and near-surface characteristics of Ti–2.5 Cu after various mechanical surface treatments
Gerland et al. Comparison of two new surface treatment processes, laser-induced shock waves and primary explosive: application to fatigue behaviour
Übeyli et al. Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers
US20150147545A1 (en) Elastomeric bilayer armor incorporating surface-hardened substrates
Tan et al. Effects of different mechanical surface treatments on surface integrity of TC17 alloys
RU2750602C1 (ru) Способ упрочнения стали с применением комбинированной технологии
Li et al. Effects of multiple laser shock peening impacts on microstructure and wear performance of wire-based laser directed energy deposition 17-4PH stainless steel
US3573023A (en) Methods for improving hardness and strength of ceramic materials
Wen et al. Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel
Kikuchi et al. Effect of multifunction cavitation on rotating bending fatigue properties of steel rods and its fatigue limit estimation
Altenberger et al. Improvement of fatigue lifetime of mechanically surface treated materials in the low cycle fatigue regime
Lou et al. Surface strengthening using a self-protective diffusion paste and its application for ballistic protection of steel plates
RU2742844C1 (ru) Многослойная гетерогенно упрочненная броня
RU2517632C1 (ru) Способ повышения физико-механических свойств инструментальных и конструкционных материалов методом объемного импульсного лазерного упрочнения (оилу)
CN109423543A (zh) 一种金属表面处理螺旋辊及其处理装置和处理方法
RU2752056C1 (ru) Способ упрочнения сварных швов
Tabatchikova et al. Structure of near-surface layer of high-strength steel subjected to abrasive waterjet cutting
Muller et al. The Influence of Shot Peening on the Fatigue and Corrosion Fatigue Behavior of an Austentic-Ferritic Stainless Steel
Zhou et al. The mechanism and experimental study on laser peen forming of sheet metal
Krylova et al. The Properties of Nonvacuum Electron Beam Melted Composite Coating after Thermal Treatment
JPS5831032A (ja) 装甲板製造方法
RU2784901C1 (ru) Способ обработки режущих пластин из твердого сплава Т15К6
Karagöz Hardness change due to carburization time and material thickness during heat treatment of SAE 8620 (21NiCrMo2) plates
Shassere et al. Microstructure control and correlation to formability of low alloy steel via flash processing

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner