RU2750260C1 - Способ управления режимами электроэнергетической системы - Google Patents

Способ управления режимами электроэнергетической системы Download PDF

Info

Publication number
RU2750260C1
RU2750260C1 RU2020144102A RU2020144102A RU2750260C1 RU 2750260 C1 RU2750260 C1 RU 2750260C1 RU 2020144102 A RU2020144102 A RU 2020144102A RU 2020144102 A RU2020144102 A RU 2020144102A RU 2750260 C1 RU2750260 C1 RU 2750260C1
Authority
RU
Russia
Prior art keywords
energy
tld
clusters
mode
parameters
Prior art date
Application number
RU2020144102A
Other languages
English (en)
Inventor
Андрей Анатольевич Лебедев
Евгений Александрович Волошин
Евгений Игоревич Рогозинников
Александр Александрович Волошин
Александрина Александровна Алексеева
Степан Андреевич Шапкин
Махсуд Мансурович Султанов
Илья Анатольевич Болдырев
Алексей Алексеевич Смирнов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority to RU2020144102A priority Critical patent/RU2750260C1/ru
Application granted granted Critical
Publication of RU2750260C1 publication Critical patent/RU2750260C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof

Abstract

Изобретение относится к области электротехники, в частности к способу управления режимами электроэнергетической системы (ЭЭС). Технический результат - снижение потерь активной мощности при эксплуатации ЭЭС. Согласно способу, центры управления сетями энергокластеров оснащают устройствами сбора и хранения оперативных данных, поступающих с подстанций от автоматизированных системы управления технологическим процессом, и дополнительными вычислительными устройствами (ДВУ) с мультиагентными системами управления. Через ДВУ выявляют ограничения от ДВУ смежных энергокластеров для поддержания уровней граничных напряжений и перетоков активной мощности. С учетом собранных в ДВУ данных измерений и полученных ограничений реализуют рабочие алгоритмы управления с локальной оптимизацией режимов ЭЭС по напряжению и реактивной мощности. Управление режимом работы ЭЭС проводят всеми ДВУ в параллельном режиме и начинают с проведения каждым ДВУ оптимизации режима внутри своего энергокластера. С каждого ДВУ по вычислительной сети отправляют ДВУ смежных энергокластеров сообщения со значениями напряжений и параметрами перетоков активной мощности, которые были получены в ходе расчета оптимального режима для своего энергокластера. Каждым ДВУ от ДВУ смежных энергокластеров получают сообщения с ограничениями, наложенными по напряжению и параметрам перетока активной мощности и представленными для каждого ДВУ в виде целевой функции потерь, обеспечивающей поддержание уровней граничных напряжений и перетоков активной мощности. С учетом этих ограничений, а также критериев, обусловленных бизнес-интересами, корректируют оптимизацию режима своего энергокластера. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области распределения электрической энергии и предназначено для использования при осуществлении интеллектуального управления режимами эксплуатации электроэнергетической системы (ЭЭС) с несколькими субъектами, участвующими при проведении оптимизации.
Известен мультиагентный способ управления режимами электрической сети (патент CN 101777769 В, МПК H02J 3/06, опубл. 20.06.2012), основной направленностью которого является оптимизация работы микроэнергосистемы путем управления распределенными источниками генерации. Способ заключается в том, что собирают данные с помощью агентов оборудования с фрагмента электрической сети и передают локальному агенту микроэнергосистемы. Информацию ото всех локальных агентов микроэнергосистемы передают в единый вычислительный центр, где рассчитывают оптимальный режим. Вычисленные команды управления для реализации оптимизированного режима отправляют обратно локальным агентам микроэнергосистемы.
Недостатками способа являются: централизованный расчет команд управления и сбор информации в едином центре. При таком подходе отсутствует возможность учета разных интересов субъектов, участвующих в оптимизационном процессе.
Известен способ управления режимами ЭЭС, раскрытый в патенте US 8315743, МПК H02J 4/00, опубл. 20.11.2012, основной направленностью которого является распределенная минимизация потерь активной мощности в группе подстанций ЭЭС. Способ заключается в том, что центры управления сетями (ЦУС) энергокластеров ЭЭС с группами объединенных станций и подстанций (ПС) оснащают устройствами сбора и хранения оперативных данных, поступающих с ПС от автоматизированных системы управления технологическим процессом (АСУТП), и программно-техническими платформами в виде распределенных мультиагентных систем (MAC), с помощью которых осуществляют сбор информации с устройств сбора и хранения оперативных данных в составах соответствующих ЦУС, объединяют ЦУС глобальной вычислительной сетью (ГВС), обмениваются по ней информацией между ЦУС, определяют необходимые уставки и выдают команды к объектам управления на ПС энергокластеров ЭЭС.
Недостатком данного способа является невозможность учета интересов различных участников процесса оптимизации режима, а также ограниченность совокупности операций для оптимизации режимов ЭЭС, позволяющей существенно уменьшить рабочие потери в группе энергокластеров.
Технической задачей настоящего изобретения является оптимизация режимов ЭЭС с учетом различных интересов участников процесса оптимизации.
Техническим результатом является снижение потерь активной мощности при эксплуатации электроэнергетической системы, снижение затрат на транспортировку электроэнергии в магистральных сетях и продление ресурса средств компенсации реактивной мощности и регулирования напряжения.
Это достигается тем, что в известном способе управления режимами ЭЭС, содержащей энергокластеры с группами объединенных станций и ПС, ЦУС и АСУТП, а также линии электропередач между энергокластерами, согласно которому ЦУС энергокластеров ЭЭС оснащают устройствами сбора и хранения оперативных данных, поступающих с ПС от АСУТП в рамках соответствующих энергокластеров, и программно-техническими платформами с программными агентами мультиагентной системы (MAC), объединяют ЦУС между собой глобальной вычислительной сетью и обмениваются по ней сообщениями от MAC, с помощью которых определяют параметры распределенной оптимизации, отправляют с ЦУС команды для реализации оптимизированного режима обратно в АСУТП ПС в рамках своих энергокластеров, согласно изобретению в качестве программно-технических платформ ЦУС с программными агентами MAC используют дополнительные вычислительные устройства (ДВУ) на основе промышленных серверов, в начале процесса управления режимами ЭЭС в каждом ДВУ для сбора информации запускают агенты MAC и рассчитывают оптимальный режим работы энергокластера, управляемого из данного ДВУ, с использованием программных комплексов расчета режимов электроэнергии, оптимизируют агентами MAC режим внутри своего энергокластера и определяют граничные параметры напряжения и активной мощности для создания общего режима с другими энергокластерами на основе интересов собственника энергокластера, каждым ДВУ обнаруживают ДВУ смежных энергокластеров, связанных общими линиями электропередач с энергокластером данного ДВУ, причем управление режимом работы ЭЭС начинают всеми ДВУ одновременно и проводят в параллельном режиме, с каждого ДВУ по глобальной вычислительной сети отправляют ДВУ смежных энергокластеров полученные в ходе расчета оптимального режима каждого энергокластера значения напряжений и параметры перетоков активной мощности по линиям электропередач между энергокластерами, каждым ДВУ от ДВУ смежных энергокластеров получают сообщения с ограничениями, наложенными по напряжению и параметрам перетока активной мощности по линиям электропередач и представленными для каждого ДВУ в виде целевой функции (ЦФ) потерь, обеспечивающей поддержание уровней граничных напряжений линий электропередач и перетоков активной мощности, и с учетом этих ограничений, а также критериев, обусловленных бизнес интересами, корректируют оптимизацию режима своего энергокластера, прекращают взаимодействие ДВУ друг с другом при совпадении уровней граничных напряжений линий электропередач смежных энергокластеров и параметров перетоков активной мощности, а также при учете интересов всех субъектов процесса оптимизации.
Кроме того, ЦФ потерь формируют на основе объемов инструментов, задействованных при изменении конфигурации конкретного энергокластера ЭЭС, и величины отклонения потерь от исходного оптимума, причем в ЦФ при граничных условиях учитывают величину потерь активной мощности, выход электрических величин за допустимые границы, стоимость потерь для данного энергокластера и расход ресурса для реализации данного режима, а также в ЦФ включают штрафную функцию за отклонение граничных параметров от средней точки между смежными энергокластерами и за выход параметров по напряжению за допустимые пределы, начальный расчет граничных условий в ДВУ энергокластера ЭЭС производят с учетом своей ЦФ с помощью локального модуля расчета режимов, а смежные энергокластеры представляют в виде эквивалентов, с учетом оптимальных режимов энергокластеров и выбранных для них ЦФ начинают процесс торгов и устремления к единому режиму между смежными энергокластерами, при получении каждым ДВУ сообщения от смежного энергокластера о его граничных параметрах по напряжению и перетоку активной мощности рассчитывают среднее значение граничных параметров между своими параметрами и параметрами смежного энергокластера, при определении степени приближения среднего значения граничных параметров в каждом из смежных энергокластеров проводят локальную оптимизацию с учетом ограничений по средней точке, при завершении локальной оптимизации отправляют агентами MAC друг другу величины изменения ЦФ в ходе изменения режима, по изменению ЦФ определяют степень приближения к средней точке для каждого из смежных энергокластеров на данной итерации алгоритма торгов, после получения изменения ЦФ от смежного агента MAC текущим агентом производят окончательное изменение режима в сторону средней точки с учетом изменения ЦФ от смежного энергокластера в виде коэффициента штрафа при расчете своей ЦФ.
Кроме того, для расчета оптимального режима энергокластера ЭЭС при заданных ограничениях и параметрах компенсации реактивной мощности используют программный комплекс «Rastrwin3».
Кроме того, в MAC используют агенты оборудования, топологии, телеизмерений, режимного мониторинга, оценки состояния, регулирования напряжения, оптимизации, а также сервисные агенты.
Сущность изобретения поясняется чертежами, где на фиг. 1 приведена общая структура системы управления режимами ЭЭС, поясняющая реализацию предложенного способа, а на фиг. 2 представлена схема взаимодействия агентов MAC ДВУ с учетом ЦФ от смежного энергокластера ЭЭС, показывающая принцип распределенного нахождения единого режима для всей ЭЭС.
Общая структура системы управления режимами ЭЭС содержит ДВУ 1-3, которые связаны с ГВС 4 и с АСУТП ПС 5-13.
Схема взаимодействия агентов MAC ДВУ содержит соседние энергокластеры 13 и 14 и их эквиваленты 15 и 16. Для ДВУ левого энергокластера 13 его соседний энергокластер 14 представлен в виде эквивалента 15, а для ДВУ правого энергокластера 14 его соседний энергокластер 13 представлен в виде эквивалента 16.
ДВУ 1-3 выполнены в виде комплексов технических и программных средств на основе промышленных серверов. В частности, в ДВУ 1-3 установлены устройства сбора и хранения оперативных данных, и программно-технические платформы с программными агентами MAC.
В качестве агентов в распределенной MAC используют агенты оборудования, топологии, телеизмерений, режимного мониторинга, оценки состояния, регулирования напряжения, оптимизации, а также сервисные агенты.
ГВС 4 выполнена с возможностью обеспечения обмена информацией (телеинформацией) между ДВУ без ограничения расстояния.
ГВС 4 может быть выполнена с использованием общедоступных каналов связи, например на базе телефонной линии связи, радиосвязи и систем спутниковой связи.
АСУТП ПС 5-13 выполнены в виде программно-аппаратного комплекса.
Предлагаемый способ управления режимами электроэнергетической системы осуществляется следующим образом.
Выявляют ограничения от ДВУ 1-3 смежных энергокластеров ЭЭС для поддержания уровней граничных напряжений и перетоков активной мощности и с учетом собранных в ДВУ 1-3 данных измерений и полученных ограничений реализуют рабочие алгоритмы управления с локальной оптимизацией режимов ЭЭС по напряжению и реактивной мощности.
В процессе управления режимами ЭЭС в каждом ДВУ 1-3 для сбора информации запускают агенты MAC и осуществляют расчет оптимального режима работы энергокластера, управляемого из данного ДВУ, с использованием программных комплексов расчета режимов электроэнергии на основе данных, полученных от АСУТП ПС 5-13 для своих энергокластеров. Агентами MAC в ДВУ 1-3 осуществляют процесс оптимизации внутри своего энергокластера и определяют граничные параметры напряжения и активной мощности для создания общего режима с другими энергокластерами на основе интересов собственника энергокластера. С помощью каждого ДВУ обнаруживают ДВУ, обслуживающих смежные энергокластеры, связанные общими линиями электропередач с энергокластером данного ДВУ. Управление режимом работы ЭЭС начинают всеми ДВУ 1-3 одновременно и проводят в параллельном режиме. При этом процесс управления начинают с проведения каждым ДВУ 1-3 оптимизации режима внутри своего энергокластера. Далее с каждого ДВУ 1-3 по ГВС 4 отправляют ДВУ смежных энергокластеров значения напряжений и параметры перетоков активной мощности по линиям электропередач между энергокластерами, которые были получены в ходе расчета оптимального режима для своего энергокластера. Каждым ДВУ 1-3 от ДВУ смежных энергокластеров получают сообщения с ограничениями, наложенными по напряжению и параметрам перетока активной мощности по линиям электропередач и представленными для каждого ДВУ 1-3 в виде ЦФ потерь, обеспечивающей поддержание уровней граничных напряжений линий электропередач и перетоков активной мощности. С учетом этих ограничений, а также критериев, обусловленных бизнес интересами, корректируют оптимизацию режима своего энергокластера. Взаимодействие ДВУ 1-3 друг с другом прекращают при совпадении уровней граничных напряжений линий электропередач смежных энергокластеров и параметров перетоков активной мощности, а также при учете интересов всех субъектов процесса оптимизации. Процесс распределенной оптимизации выполняют с определением напряжения и перетоков активной мощности на граничных линиях при учете ЦФ каждого ДВУ 1-3.
ЦФ потерь формируют на основе объемов инструментов, задействованных при изменении конфигурации конкретного энергокластера ЭЭС, и величины отклонения потерь от исходного оптимума. В ЦФ при граничных условиях учитывают величину потерь активной мощности, выход электрических величин за допустимые границы, стоимость потерь для данного энергокластера и расход ресурса для реализации данного режима, а также в ЦФ включают штрафную функцию за отклонение граничных параметров от средней точки между смежными энергокластерами и за выход параметров по напряжению за допустимые пределы. Начальный расчет граничных условий в ДВУ энергокластера ЭЭС производят с учетом своей ЦФ с помощью локального модуля расчета режимов, а смежные энергокластеры представляют в виде эквивалентов. С учетом оптимальных режимов энергокластеров и выбранных для них ЦФ начинают процесс торгов и устремления к единому режиму между смежными энергокластерами. При получении каждым ДВУ сообщения от смежного энергокластера о его граничных параметрах по напряжению и перетоку активной мощности рассчитывают среднее значение граничных параметров между своими параметрами и параметрами смежного энергокластера. При определении степени приближения среднего значения граничных параметров в каждом из смежных энергокластеров проводят локальную оптимизацию с учетом ограничений по средней точке. При завершении локальной оптимизации отправляют агентами MAC друг другу величины изменения ЦФ в ходе изменения режима. По изменению ЦФ определяют степень приближения к средней точке для каждого из смежных энергокластеров на данной итерации алгоритма торгов. После получения изменения ЦФ от смежного агента MAC текущим агентом производят окончательное изменение режима в сторону средней точки с учетом изменения ЦФ от смежного энергокластера в виде коэффициента штрафа при расчете своей ЦФ.
Моделирование энергокластеров для ОЭС Востока с помощью симулятора ПАК RTDS показало, что при практической реализации данного способа возможно снижение потерь электроэнергии на 2.883 ГВт⋅ч/год, что эквивалентно 4.32 млн руб при цене 1.5 руб/кВт⋅ч.
Таким образом, в предложенном способе управления режимами ЭЭС достигается улучшенная оптимизация режимов при распределенной минимизации потерь активной мощности в группе энергокластеров ЭЭС. При этом процесс переговоров между участниками процесса оптимизации режима является итеративным, пока не будет достигнут оптимальный режим работы всей ЭЭС и не будет выстроен единый режим работы энергокластеров в ЭЭС.

Claims (4)

1. Способ управления режимами электроэнергетической системы (ЭЭС), содержащей энергокластеры с группами объединенных станций и подстанций (ПС), центрами управления сетями (ЦУС) и автоматизированными системами управления технологическим процессом (АСУТП), а также линии электропередач между энергокластерами, согласно которому ЦУС энергокластеров ЭЭС оснащают устройствами сбора и хранения оперативных данных, поступающих с ПС от АСУТП в рамках соответствующих энергокластеров, и программно-техническими платформами с программными агентами мультиагентной системы (MAC), объединяют ЦУС между собой глобальной вычислительной сетью и обмениваются по ней сообщениями от MAC, с помощью которых определяют параметры распределенной оптимизации, отправляют с ЦУС команды для реализации оптимизированного режима обратно в АСУТП ПС в рамках своих энергокластеров, отличающийся тем, что в качестве программно-технических платформ ЦУС с программными агентами MAC используют дополнительные вычислительные устройства (ДВУ) на основе промышленных серверов, в начале процесса управления режимами ЭЭС в каждом ДВУ для сбора информации запускают агенты MAC и рассчитывают оптимальный режим работы энергокластера, управляемого из данного ДВУ, с использованием программных комплексов расчета режимов электроэнергии, оптимизируют агентами MAC режим внутри своего энергокластера и определяют граничные параметры напряжения и активной мощности для создания общего режима с другими энергокластерами на основе интересов собственника энергокластера, каждым ДВУ обнаруживают ДВУ смежных энергокластеров, связанных общими линиями электропередач с энергокластером данного ДВУ, причем управление режимом работы ЭЭС начинают всеми ДВУ одновременно и проводят в параллельном режиме, с каждого ДВУ по глобальной вычислительной сети отправляют ДВУ смежных энергокластеров полученные в ходе расчета оптимального режима каждого энергокластера значения напряжений и параметры перетоков активной мощности по линиям электропередач между энергокластерами, каждым ДВУ от ДВУ смежных энергокластеров получают сообщения с ограничениями, наложенными по напряжению и параметрам перетока активной мощности по линиям электропередач и представленными для каждого ДВУ в виде целевой функции (ЦФ) потерь, обеспечивающей поддержание уровней граничных напряжений линий электропередач и перетоков активной мощности, и с учетом этих ограничений, а также критериев, обусловленных бизнес-интересами, корректируют оптимизацию режима своего энергокластера, прекращают взаимодействие ДВУ друг с другом при совпадении уровней граничных напряжений линий электропередач смежных энергокластеров и параметров перетоков активной мощности, а также при учете интересов всех субъектов процесса оптимизации.
2. Способ по п. 1, отличающийся тем, что ЦФ потерь формируют на основе объемов инструментов, задействованных при изменении конфигурации конкретного энергокластера ЭЭС, и величины отклонения потерь от исходного оптимума, причем в ЦФ при граничных условиях учитывают величину потерь активной мощности, выход электрических величин за допустимые границы, стоимость потерь для данного энергокластера и расход ресурса для реализации данного режима, а также в ЦФ включают штрафную функцию за отклонение граничных параметров от средней точки между смежными энергокластерами и за выход параметров по напряжению за допустимые пределы, начальный расчет граничных условий в ДВУ энергокластера ЭЭС производят с учетом своей ЦФ с помощью локального модуля расчета режимов, а смежные энергокластеры представляют в виде эквивалентов, с учетом оптимальных режимов энергокластеров и выбранных для них ЦФ начинают процесс торгов и устремления к единому режиму между смежными энергокластерами, при получении каждым ДВУ сообщения от смежного энергокластера о его граничных параметрах по напряжению и перетоку активной мощности рассчитывают среднее значение граничных параметров между своими параметрами и параметрами смежного энергокластера, при определении степени приближения среднего значения граничных параметров в каждом из смежных энергокластеров проводят локальную оптимизацию с учетом ограничений по средней точке, при завершении локальной оптимизации отправляют агентами MAC друг другу величины изменения ЦФ в ходе изменения режима, по изменению ЦФ определяют степень приближения к средней точке для каждого из смежных энергокластеров на данной итерации алгоритма торгов, после получения изменения ЦФ от смежного агента MAC текущим агентом производят окончательное изменение режима в сторону средней точки с учетом изменения ЦФ от смежного энергокластера в виде коэффициента штрафа при расчете своей ЦФ.
3. Способ по п. 1 или 2, отличающийся тем, что для расчета оптимального режима энергокластера ЭЭС при заданных ограничениях и параметрах компенсации реактивной мощности используют программный комплекс «Rastrwin3».
4. Способ по п. 1 или 2, отличающийся тем, что в MAC используют агенты оборудования, топологии, телеизмерений, режимного мониторинга, оценки состояния, регулирования напряжения, оптимизации, а также сервисные агенты.
RU2020144102A 2020-12-30 2020-12-30 Способ управления режимами электроэнергетической системы RU2750260C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020144102A RU2750260C1 (ru) 2020-12-30 2020-12-30 Способ управления режимами электроэнергетической системы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020144102A RU2750260C1 (ru) 2020-12-30 2020-12-30 Способ управления режимами электроэнергетической системы

Publications (1)

Publication Number Publication Date
RU2750260C1 true RU2750260C1 (ru) 2021-06-25

Family

ID=76504816

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020144102A RU2750260C1 (ru) 2020-12-30 2020-12-30 Способ управления режимами электроэнергетической системы

Country Status (1)

Country Link
RU (1) RU2750260C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2793231C1 (ru) * 2022-04-01 2023-03-30 Публичное акционерное общество энергетики и электрификации "Магаданэнерго" Способ интеллектуального управления напряжением и реактивной мощностью энергосистемы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2270469C2 (ru) * 2004-03-11 2006-02-20 Олег Алексеевич Суханов Система управления режимами электроэнергетических систем
CN101777769A (zh) * 2010-03-24 2010-07-14 上海交通大学 电网的多智能体优化协调控制方法
US8315743B2 (en) * 2010-02-19 2012-11-20 The Boeing Company Network centric power flow control
RU2684482C1 (ru) * 2017-12-08 2019-04-09 Общество с ограниченной ответственностью "Интеллектуальные электроэнергетические системы" Способ управления распределенной интеллектуальной микросистемой электроснабжения с персональными энергоблоками (ПЭБ)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2270469C2 (ru) * 2004-03-11 2006-02-20 Олег Алексеевич Суханов Система управления режимами электроэнергетических систем
US8315743B2 (en) * 2010-02-19 2012-11-20 The Boeing Company Network centric power flow control
CN101777769A (zh) * 2010-03-24 2010-07-14 上海交通大学 电网的多智能体优化协调控制方法
RU2684482C1 (ru) * 2017-12-08 2019-04-09 Общество с ограниченной ответственностью "Интеллектуальные электроэнергетические системы" Способ управления распределенной интеллектуальной микросистемой электроснабжения с персональными энергоблоками (ПЭБ)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2793231C1 (ru) * 2022-04-01 2023-03-30 Публичное акционерное общество энергетики и электрификации "Магаданэнерго" Способ интеллектуального управления напряжением и реактивной мощностью энергосистемы

Similar Documents

Publication Publication Date Title
US10317924B2 (en) Collaborative load balancing within a community of energy nodes
Wang et al. AEBIS: AI-enabled blockchain-based electric vehicle integration system for power management in smart grid platform
Lin et al. Optimal scheduling with vehicle-to-grid regulation service
Yang et al. Distributed optimal dispatch of virtual power plant via limited communication
US10078315B2 (en) Collaborative balancing of renewable energy overproduction with electricity-heat coupling and electric and thermal storage for prosumer communities
Leterme et al. A flexible stochastic optimization method for wind power balancing with PHEVs
Dicorato et al. An integrated DC microgrid solution for electric vehicle fleet management
Erden et al. Adaptive V2G peak shaving and smart charging control for grid integration of PEVs
CN110476312B (zh) 用于协调在小单元和电传输网络之间的功率交换的方法
CN112381263B (zh) 基于区块链分布式数据存储多微网日前鲁棒电能交易方法
WO2020117872A1 (en) Distributed and decentralized ders system optimizations
CN111553544B (zh) 基于一致性算法的工业园区分布式综合需求响应方法
Nimalsiri et al. A decentralized electric vehicle charge scheduling scheme for tracking power profiles
Rajaei et al. Transactive energy management framework for active distribution systems
RU2750260C1 (ru) Способ управления режимами электроэнергетической системы
Castelo-Becerra et al. Cooperative distributed aggregation algorithm for demand response using distributed energy storage devices
Ananduta et al. Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach
Hao et al. Distributed piecewise approximation economic dispatch for regional power systems under non-ideal communication
Feng et al. Update scheduling for ADMM-based energy sharing in virtual power plants considering massive prosumer access
CN110535123A (zh) 一种快速的解析式分布式多目标多微网经济调度优化方法
Pourbabak et al. Distributed control algorithm for optimal power allocation of EV parking lots
Zhang et al. A joint offloading and energy cooperation scheme for edge computing networks
Xu et al. Asynchronous distributed dynamic economic dispatch in active distribution networks
KR101981793B1 (ko) 배전 수용성 정보를 이용한 수용가와 배전계통의 효과적 운영 방법
Wang et al. Economic dispatch of microgrid based on multi-agent system