RU2749309C2 - Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата - Google Patents

Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата Download PDF

Info

Publication number
RU2749309C2
RU2749309C2 RU2019128083A RU2019128083A RU2749309C2 RU 2749309 C2 RU2749309 C2 RU 2749309C2 RU 2019128083 A RU2019128083 A RU 2019128083A RU 2019128083 A RU2019128083 A RU 2019128083A RU 2749309 C2 RU2749309 C2 RU 2749309C2
Authority
RU
Russia
Prior art keywords
copper
leaching
gold
stage
solution
Prior art date
Application number
RU2019128083A
Other languages
English (en)
Other versions
RU2019128083A3 (ru
RU2019128083A (ru
Inventor
Руслан Нурлович Набиулин
Андрей Владимирович Богородский
Станислав Сергеевич Баликов
Original Assignee
Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет" filed Critical Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет"
Priority to RU2019128083A priority Critical patent/RU2749309C2/ru
Publication of RU2019128083A3 publication Critical patent/RU2019128083A3/ru
Publication of RU2019128083A publication Critical patent/RU2019128083A/ru
Application granted granted Critical
Publication of RU2749309C2 publication Critical patent/RU2749309C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области гидрометаллургии драгоценных металлов и может быть использовано для извлечения золота и меди из сульфидного золотомедного флотоконцентрата. Способ включает тонкое измельчение до крупности P80% класса минус 20 мкм или меньше, выщелачивание минерального сырья раствором серной кислоты при атмосферном давлении с барботажем кислородсодержащего газа в реакторе открытого типа при температуре, не приводящей к кипению раствора. Выщелачивание сульфидного золотомедного флотоконцентрата раствором серной кислоты проводят в две стадии при температуре 40-105°С и продолжительности стадий 2-48 ч. Первую стадию выщелачивания проводят с барботажем воздуха до степени окисления сульфидов 1-25%, а вторую стадию выщелачивания проводят с барботажем кислорода до степени окисления сульфидов 1-50%. Изобретение позволяет повысить извлечение золота и меди, а также снизить расход цианида при переработке флотоконцентрата, а также снизить затраты на его переработку. 2 з.п. ф-лы, 5 табл., 2 пр.

Description

Изобретение относится к химической и металлургической промышленности, в частности к области гидрометаллургии драгоценных металлов, и может быть использовано для извлечения золота и меди из сульфидного золотомедного флотоконцентрата.
Известны способы бактериального выщелачивания сульфидного минерального сырья (WO 0118269 А1 опублик. 15.03.2001 г.) и способ «BacTech» (AU 652231 В, опублик. 18.08.1994 г.).
Способ переработки руд с применением этих процессов включает рудоподготовку, обогащение (гравитационное с флотационным или только флотационное), биоокисление полученного концентрата, отделение бактериальных растворов от твердых остатков биоокисления, нейтрализацию растворов в две стадии с применением известняка на первой стадии, извести на второй стадии, сорбционное цианирование твердых продуктов биоокисления, десорбцию металлов и регенерацию сорбента, возвращаемого в процесс цианирования, электролиз золотосодержащего раствора-элюата и плавку катодных осадков с получением сплава золота и серебра - сплава Доре.
Данный способ требует адаптации микроорганизмов, которые чувствительны к мышьяку. При содержании мышьяка в растворе более 1 г/л замедляется образование Fe3+. Кроме того, биоокисление сульфидных минералов очень длительный процесс и для обеспечения высокой активности бактерий требуется поддержания постоянных температур (40-43°С) и значения рН среды в интервале 1,0-1,8.
Известен способ переработки сырья, содержащего драгоценные металлы и сульфиды (Патент 5071477 США, 10.12.1991). По известному способу сырье смешивают с водой или раствором серной кислоты концентрацией 5÷25 г/л, смесь обрабатывают в автоклаве с подачей кислорода при температуре 180÷225°С, с общим давлением 1,7÷3,0 МПа. Окисленную пульпу отмывают водой от серной кислоты, затем смешивают с активированным углем и подвергают выщелачиванию в растворе цианида натрия. Полученный уголь, насыщенный драгоценными металлами, отделяют от пульпы и перерабатывают известными методами с извлечением драгоценных металлов.
Недостатками способа-аналога являются высокие капитальные и эксплуатационные затраты, обусловленные использованием высокотехнологичного и дорогостоящего оборудования, и привлечению высококвалифицированного персонала.
Известен способ-аналог, предусматривающий извлечение цветных и драгоценных металлов из упорного минерального сырья. Метод включает в себя сверхтонкое измельчение до крупности P80 % класса минус 20 мкм, выщелачивание минерального сырья раствором серной кислоты, с ионами трехвалентного железа при атмосферном давление, с барботажем кислородсодержащего газа в реактор открытого типа при температуре в плоть до точки кипения раствора. При этом по крайней мере часть кислоты и ионов трехвалентного железа образуются путем растворения пирита, а часть ионов двухвалентного железа, полученных при выщелачивании, подвергается повторному окислению в растворе, преобразуюсь в ионы трехвалентного железа (Патент WO 96/29439, 26.09.1996).
Недостатками способа-аналога являются низкое извлечение меди по причине недоокисления, высокий расход электроэнергии за счет использования в процессе выщелачивания только кислорода и высокого расхода цианида натрия при последующем цианировании из-за недоизвлечения меди при выщелачивании.
Задачей, на решение которой направлено заявляемое изобретение, является повышение извлечения золота, серебра и меди, а также снижение затрат на переработку упорного сырья, содержащего драгоценные металлы и сульфиды.
Поставленная задача решается за счет технического результата, который заключается в создании более благоприятных условий для извлечения драгоценных металлов при гидрометаллургической переработке.
Указанный технический результат достигается тем, что в способе извлечения драгоценных металлов и меди из упорного сульфидного сырья, включающем сверхтонкое измельчение до крупности Р80% класса минус 20 мкм или меньше, выщелачивание минерального сырья раствором серной кислоты с ионами трехвалентного железа при атмосферном давление и температуре, не приводящей к кипению раствора, согласно изобретению выщелачивание минерального сырья раствором серной кислоты проводят в две или три стадии, первую из которых осуществляют с барботажем воздуха, вторую с барботажем кислорода, третью при необходимости с барботажем воздуха.
Указанный технический результат достигается также тем, что выщелачивание минерального сырья раствором серной кислоты проводят таким образом, чтобы степень окисления сульфидов на первой стадии составляла до 25%, на второй стадии до 50% и при необходимости на третьей стадии до 85%.
Указанный технический результат достигается также тем, что выщелачивание раствором серной кислоты проводят в две стадии и при необходимости в три стадии при температуре 40÷105°С и продолжительности двух или трех стадий 2÷48 часов в реакторах открытого типа.
Сущность способа заключается в том, что выщелачивание упорного сульфидсодержащего сырья осуществляется в две стадии и при необходимости в три стадии. Данный метод выщелачивания позволяет существенно сократить потребление электроэнергии на процесс выщелачивания, так как на генерацию кислорода по расчетам необходимо в 3 раза больше энергии, нежели на то же количество воздуха при использовании компрессорного оборудования.
При окислении пирита в кислых растворах протекают две независимые реакции:
Figure 00000001
Figure 00000002
Далее происходит образование сероводорода:
Figure 00000003
Образование сероводорода протекает более интенсивно при окислении сульфидного сырья с продувкой кислородом. Образовавшийся сероводород взаимодействует с сульфатом меди с выпадением в осадок нерастворимого сульфида меди, что приводит к уменьшению извлечения меди в сернокислотные растворы за счет вторичного осаждения. При окислительном выщелачивании с продувкой воздухом выделение сероводорода резко уменьшается за счет низкой степени окисления пирита, что приводит к более высокому извлечению меди. Однако использование в качестве окислителя воздуха приводит к недостаточному окислению сульфидов и снижению извлечения золота при последующем цианировании. Ввиду этого проведение процесса в две, либо в три стадии с разделением процесса окисления с продувкой воздухом и кислородом является оправданным с точки зрения повышения извлечения меди и драгоценных металлов, со снижением потребления электроэнергии на процесс выщелачивания в сравнении с проведением выщелачивания в одну стадию.
В заявляемом способе параметры выщелачивания берутся в зависимости от химического состава перерабатываемого сырья. При низком содержании сульфидов (2÷3%) в сырье необходимая температура и продолжительность двух стадий может составлять, соответственно, 40÷90°С и 2÷8 часов. При высоком содержании сульфидов (более 20%) необходимая температура и продолжительность двух стадий может составлять, соответственно, 40÷90°С и 8÷48 часов.
Переработка медных сернокислотных растворов с получением товарной меди осуществляется известными способами.
Предлагаемый способ иллюстрируют следующие примеры.
Пример 1.
Исследованию подвергали сульфидный золотомедный флотоконцентрат №1, крупностью 80% класса -0,071 мм, содержащий 22,4 г/т золота. По минеральному составу указанный продукт на 29,4% представлен сульфидами, из которых 21,1 приходится на пирит, 5,4 - на теннантит, 1,7 - на халькопирит, 1,2 - на сфалерит.
Исследования направлены на определение оптимальных параметров предварительной обработки пульпы и их влияние на показатели извлечения меди в процессе окислительного выщелачивания и извлечения золота при последующем цианировании.
Концентрат измельчали в бисерной мельнице до крупности 80% 40, 20 и 10 мкм. Затем пульпу окисляли 24 ч с барботажем кислородом и воздухом, концентрация серной кислоты составила 100 г/л, температура 90-95°С (таблица 1).
Figure 00000004
На оптимальной крупности измельчения P80 % -20 мкм определяли оптимальную продолжительность процесса 1 стадии окисления низкотемпературного атмосферного окисления с барботажем воздухом (по заявляемому способу), концентрация серной кислоты составляла 100 г/л, температура 90-95°С (таблица 2).
Figure 00000005
Оптимальная продолжительность 1 стадии при барботаже воздухом составила 8 ч, так как в данный промежуток времени скорость выщелачивания меди являлась наибольшей и после 8 часов она значительно снижается. Степень окисления сульфидов при оптимальной продолжительности составляет 20,7%, извлечение меди - 80,2%, золота - 83,5%, расход NaCN составил 10,3 кг/т и дальнейшее увеличение продолжительности не приводит к значительному улучшению показателей процесса.
Для выявления оптимальной продолжительности второй стадии, первую стадию проводили с барботажем воздухом при продолжительности 8 часов в оптимальных условиях, а далее в пульпу барботировали кислород при температуре 90-95°С (таблица 3).
Figure 00000006
Оптимальная продолжительность 2 стадии составила 2 ч, при этом степень окисления сульфидов составляет 21,8%, дальнейшее увеличение продолжительности процесса не приводит к значительному повышению динамики извлечения меди и золота. Извлечение меди находится на уровне 83,1%, золота 93,4%, расход NaCN - 9,9 кг/т.
С целью выявления оптимальной температуры двух стадиального низкотемпературного атмосферного окисления провели серию опытов в две стадии окисления в диапазоне температур от 25-95°С (таблица 4).
Figure 00000007
Анализ полученных данных показал, что для максимального извлечения меди, золота и уменьшение расхода цианида необходимо окисление проводить в две стадии, при продолжительности 1 стадии 8 ч, второй 2 ч, температура процесса должна находится в диапазоне 90-95°С. При снижении температуры процесса оптимальные показатели извлечения ценных компонентов можно достигнуть за более продолжительное время обоих стадий.
Пример 2.
Исследованию подвергали сульфидный золотомедный флотоконцентрат №2, крупностью 80% класса -0,071 мм, содержащий 53,0 г/т золота. По минеральному составу указанный продукт на 91,5% представлен сульфидами, из которых 6,0 приходится на пирит, 80,0 - на халькопирит, 4,0 - на сфалерит, 1,5 - на арсенопирит.
Условия проведенных исследований выбирали с использованием результатов, полученных в примере №1 и с корректированных с учетом химического состава флотоконцентрата (содержания сульфидов): крупность измельчения P80 % - 20 мкм, концентрация серной кислоты - 100 г/л, температура - 95°С, продолжительность первой стадии с продувкой воздухом - 12 часов, продолжительность второй стадии с продувкой кислородом - 2 часа. В процессе второй стадии окисления происходило переосаждение меди за счет образующегося в ходе окисления сероводорода. Ввиду этого для доизвлечения меди и снижения расхода цианида провели 3 стадию окисления с барботажем пульпы воздухом при продолжительности 8 ч (таблица 5).
Figure 00000008
Результаты исследований показали, что для максимального извлечения меди, золота и снижения расхода цианида при переработке флотоконцентрата №2 необходимо низкотемпературное атмосферное окисление проводить в три стадии, при продолжительности 1 стадии 8 ч, второй 2 часа, третей 8 часов. При этом степень окисления сульфидов - 82%, извлечение меди - 91,4%, золота - 93,3%, расход цианида составил 10,3 кг/т.

Claims (3)

1. Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата, включающий тонкое измельчение до крупности P80% класса минус 20 мкм или меньше, выщелачивание минерального сырья раствором серной кислоты при атмосферном давлении с барботажем кислородсодержащего газа в реакторе открытого типа при температуре, не приводящей к кипению раствора, отличающийся тем, что выщелачивание сульфидного золотомедного флотоконцентрата раствором серной кислоты проводят в две стадии при температуре 40-105°С и продолжительности стадий 2-48 ч, причем первую стадию выщелачивания проводят с барботажем воздуха до степени окисления сульфидов 1-25%, а вторую стадию выщелачивания проводят с барботажем кислорода до степени окисления сульфидов 1-50%.
2. Способ по п. 1, отличающийся тем, что в случае недоокисления сульфидов на первых двух стадиях выщелачивания проводят третью стадию выщелачивания раствором серной кислоты.
3. Способ по п. 2, отличающийся тем, что третью стадию выщелачивания раствором серной кислоты проводят до степени окисления сульфидов 1-85%.
RU2019128083A 2019-09-05 2019-09-05 Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата RU2749309C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019128083A RU2749309C2 (ru) 2019-09-05 2019-09-05 Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019128083A RU2749309C2 (ru) 2019-09-05 2019-09-05 Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата

Publications (3)

Publication Number Publication Date
RU2019128083A3 RU2019128083A3 (ru) 2021-03-05
RU2019128083A RU2019128083A (ru) 2021-03-05
RU2749309C2 true RU2749309C2 (ru) 2021-06-08

Family

ID=74857133

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019128083A RU2749309C2 (ru) 2019-09-05 2019-09-05 Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата

Country Status (1)

Country Link
RU (1) RU2749309C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676828A (en) * 1984-05-28 1987-06-30 Societe Des Mines Et Fonderies De La Vieille Montagne Process for the leaching of sulphides containing zinc and iron
WO1996029439A1 (en) * 1995-03-22 1996-09-26 M.I.M. Holdings Limited Atmospheric mineral leaching process
RU2144091C1 (ru) * 1999-05-07 2000-01-10 Открытое акционерное общество "Комбинат Североникель" Способ переработки промпродуктов медно-никелевого производства
EA026943B1 (ru) * 2013-06-07 2017-06-30 Оутотек (Финлэнд) Ой Способ извлечения меди и драгоценных металлов
RU2625146C2 (ru) * 2015-11-03 2017-07-11 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ извлечения драгоценных металлов из упорного золотосульфидного сырья

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676828A (en) * 1984-05-28 1987-06-30 Societe Des Mines Et Fonderies De La Vieille Montagne Process for the leaching of sulphides containing zinc and iron
WO1996029439A1 (en) * 1995-03-22 1996-09-26 M.I.M. Holdings Limited Atmospheric mineral leaching process
RU2144091C1 (ru) * 1999-05-07 2000-01-10 Открытое акционерное общество "Комбинат Североникель" Способ переработки промпродуктов медно-никелевого производства
EA026943B1 (ru) * 2013-06-07 2017-06-30 Оутотек (Финлэнд) Ой Способ извлечения меди и драгоценных металлов
RU2625146C2 (ru) * 2015-11-03 2017-07-11 Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" Способ извлечения драгоценных металлов из упорного золотосульфидного сырья

Also Published As

Publication number Publication date
RU2019128083A3 (ru) 2021-03-05
RU2019128083A (ru) 2021-03-05

Similar Documents

Publication Publication Date Title
US4738718A (en) Method for the recovery of gold using autoclaving
EP0815270B1 (en) Atmospheric mineral leaching process
EP2160480B1 (en) Cyanide process for precious metal recovery from a sulphide ore or concentrate or other sulphur containing feed material
US6833021B1 (en) Method for treating precious metal bearing minerals
US9039806B2 (en) Recycling of solids in oxidative pressure leaching of metals using halide ions
WO2007039664A1 (en) Sodium chloride processing of nickel sulphide ore or concentrates
MXPA03000744A (es) Metodo para la recuperacion de minerales brutos con metal de materiales que contienen metal utilizando lixiviacion de temperatura a presion elevada.
AU2007216422B2 (en) Method for recovering copper from a copper sulphide ore
EA005630B1 (ru) Способ (варианты) и система извлечения меди из содержащего медь материала
CA2974905A1 (en) Process for extraction of copper from arsenical copper sulfide concentrate
EA031994B1 (ru) Выщелачивание минералов
JP2015214731A (ja) 金の回収方法
Parga et al. Copper and cyanide recovery in cyanidation effluents
RU2749309C2 (ru) Способ извлечения золота и меди из сульфидного золотомедного флотоконцентрата
US10323296B2 (en) Process for extraction of copper from arsenical copper sulfide concentrate
CN1594608A (zh) 铂族金属硫化矿提取铂钯和贱金属的方法
RU2749310C2 (ru) Способ переработки сульфидного золотомедного флотоконцентрата
McClincy Unlocking refractory gold ores and concentrates
AU2021309568B2 (en) Alkaline oxidation process and device for treating refractory sulfide ore, in particular refractory gold ore
CA2204424C (en) Process for the extraction and production of gold and platinum-group metals through cyanidation under pressure
AU2002233033B2 (en) A method for the bacterially assisted heap leaching of chalcopyrite
Ben Optimizing the Extraction Conditions of Gold in AuCN Solution A Refinery Overview of the Gold Processing Plant of Porgera Gold
Ozkan et al. Bacterial leaching as a pre-treatment step for gold recovery from refractory ores
CN111690820A (zh) 含铜浮选金精矿常压富氧酸浸法
Parga et al. Cyanide and copper recovery from barren solution of the Merrill Crowe process

Legal Events

Date Code Title Description
TC4A Change in inventorship

Effective date: 20210723