RU2747909C1 - Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью - Google Patents

Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью Download PDF

Info

Publication number
RU2747909C1
RU2747909C1 RU2020134323A RU2020134323A RU2747909C1 RU 2747909 C1 RU2747909 C1 RU 2747909C1 RU 2020134323 A RU2020134323 A RU 2020134323A RU 2020134323 A RU2020134323 A RU 2020134323A RU 2747909 C1 RU2747909 C1 RU 2747909C1
Authority
RU
Russia
Prior art keywords
voltage
resistance
measuring
signal
period
Prior art date
Application number
RU2020134323A
Other languages
English (en)
Inventor
Сергей Иванович Малафеев
Original Assignee
Сергей Иванович Малафеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Иванович Малафеев filed Critical Сергей Иванович Малафеев
Priority to RU2020134323A priority Critical patent/RU2747909C1/ru
Application granted granted Critical
Publication of RU2747909C1 publication Critical patent/RU2747909C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к электроизмерительной технике и релейной защите и предназначено для повышения безопасности в электрических сетях переменного, постоянного и двойного рода тока с изолированной нейтралью. Сущность: способ основан на измерении тока утечки от вспомогательного источника тестового напряжения в форме периодической последовательности импульсов вида
Figure 00000067
где U1, U2 - постоянные напряжения, U1>U2; τ - временной интервал, Т - период следования импульсов тестового напряжения,
Figure 00000068
. Измеряют период напряжения контролируемой сети Tc. Период следования импульсов тестового напряжения устанавливают равным четному числу измеренных периодов напряжения контролируемой сети Т=kТc, где k=2, 4,…. Тестовое напряжение подключают через звезду резисторов к фазам контролируемой сети, измеряют ток утечки путем измерения падения напряжения на измерительном сопротивлении, включенном последовательно с источником тестового напряжения, формируют задержанный по отношению к падению напряжения на измерительном сопротивлении на интервал
Figure 00000069
сигнал, вычитают задержанный сигнал из падения напряжения на измерительном сопротивлении, преобразуют полученный при этом сигнал uи(t) в соответствии с уравнением
Figure 00000070
где ε - малый интервал времени, ΔT ≤ ε < τ; ΔT - максимальное значение приращения периода тестового напряжения, вычисляют скользящее среднее значение
Figure 00000071
сигнала uк(t) на интервале, равном периоду Тс напряжения контролируемой сети, вычисляют сопротивление изоляции по формуле
Figure 00000072
где rт - внутреннее сопротивление источника; r0 - сопротивление измерительного резистора. Сравнивают полученное значение с уставкой R0 и при rиз ≤ R0 производят отключение электрооборудования. Технический результат: повышение точности контроля электрического сопротивления изоляции и надежности защиты электрической сети с изолированной нейтрально при изменении частоты контролируемой сети. 2 ил.

Description

Предлагаемое изобретение относится к электроизмерительной технике и релейной защите и предназначено для повышения безопасности в электрических сетях переменного, постоянного и двойного рода тока с изолированной нейтрально.
Известны способы контроля сопротивления изоляции и защиты электрической сети с изолированной нейтрально, основанные на измерении тока утечки от вспомогательного источника тестового напряжения, при которых в контролируемую сеть через звезду резисторов подают тестовое напряжение в виде периодической последовательности разнополярных импульсов, производят измерение тока утечки в течение части времени действия импульса, соответствующей заряженной до постоянного напряжения емкости контролируемой сети, производят вычисление сопротивления изоляции, сравнивают полученное значение с допустимым значением и при уменьшении измеренного сопротивления изоляции ниже допустимого значения производят отключение электрической сети (Патент РФ №2144679. МКИ G01R 27/18, Н02Н 3/16 - Опубл. 20.01.2000. Бюлл. №2; Патент РФ №2321008, МПК G01R 27/16, 2006 г.; Патент РФ №2437109, МПК G01R 27/18, 2011 г.; Патент РФ №2722468. МПК G01R 27/18; Н02Н 3/16. Патент РФ №2725898. МПК G01R 27/18. Опубл. 07.07.2020. Бюлл. №19; Опубл. 01.06.2020. Бюлл. №16;
Авторское свидетельство СССР №1737363, МПК G01R 27/18, 1992 г.).
В известных способах измерение сопротивления изоляции производится циклически с использованием источника тестового напряжения в виде периодической последовательности разнополярных импульсов специальной формы. В каждом цикле предусматривается два основных этапа: заряд емкости сети до заданного постоянного напряжения и непосредственное измерение тока утечки в установившемся для постоянного тока режиме в электрической сети. Далее по измеренным значениям токов утечки при положительном и отрицательном напряжениях вычисляют сопротивление изоляции, которое сравнивают с допустимым значением. При уменьшении сопротивления ниже допустимого значения производится отключение электрической сети.
При возникновении утечки в сети через измерительный резистор протекают токи, вызванные как тестовым напряжением, так и напряжениями фаз контролируемой сети. Токи, обусловленные действием переменных напряжений контролируемой сети, представляют собой помеху при измерении сопротивления изоляции, которая снижает точность измерения. Для обеспечения помехоустойчивого измерения время непосредственного измерения тока утечки обычно принимается равным одному или нескольким периодам контролируемой сети. В автономных электрических системах, например, с дизель-генераторами, а также локальных электрических сетях переменного тока, частота напряжения изменяется. При этом усреднение сигнала, пропорционального току утечки, происходит на интервале времени, не кратном периоду напряжения контролируемой сети. В результате этого возрастают погрешности измерения тока утечки и вычисления сопротивления изоляции, и снижается надежность защиты электрической сети.
Следовательно, недостатками известных способов контроля сопротивления изоляции и защиты электрической сети с изолированной нейтрально являются низкие точность измерения сопротивления изоляции и надежность защиты при изменении частоты напряжения контролируемой сети.
Из известных способов наиболее близким по достигаемому результату к предлагаемому является способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтрально, при котором формируют тестовое напряжение в форме периодической последовательности импульсов вида
Figure 00000001
где U1, U2 - постоянные напряжения, U1>U2; τ - временной интервал, Т - период следования импульсов тестового напряжения,
Figure 00000002
; подключают тестовое напряжение через звезду резисторов к фазам контролируемой сети, измеряют ток утечки путем измерения падения напряжения на измерительном сопротивлении, включенном последовательно с источником тестового напряжения, формируют задержанный по отношению к падению напряжения на измерительном сопротивлении на интервал
Figure 00000003
сигнал, вычитают задержанный сигнал из падения напряжения на измерительном сопротивлении, преобразуют полученный при этом сигнал uи(t) путем коррекции в сигнал uк(t), вычисляют скользящее среднее значение
Figure 00000004
сигнала uк(t) на интервале, равном периоду Тc напряжения контролируемой сети, вычисляют сопротивление изоляции по формуле
Figure 00000005
где rт - внутреннее сопротивление источника; r0 - сопротивление измерительного резистора, сравнивают полученное значение с уставкой R0 и при rиз ≤ R0 производят отключение электрооборудования, а сигнал uи(t) преобразуют в соответствии с уравнением
Figure 00000006
где ε - малый интервал времени, ε < τ.
(Патент РФ №2732790. МПК G01R 27/18 (2020.05); Н02Н 3/00(2020.05). Опубл. 22.09.2020. Бюлл. №27).
Способ основан на измерении тока утечки от вспомогательного источника тестового напряжения в форме периодической последовательности импульсов вида
Figure 00000007
где U1, U2 - постоянные напряжения, U1 > U2; τ - временной интервал, Т - период следования импульсов тестового напряжения,
Figure 00000008
. Тестовое напряжение подключают через звезду резисторов к фазам контролируемой сети, измеряют ток утечки путем измерения падения напряжения на измерительном сопротивлении, включенном последовательно с источником тестового напряжения, формируют задержанный по отношению к падению напряжения на измерительном сопротивлении на интервал
Figure 00000009
сигнал, вычитают задержанный сигнал из падения напряжения на измерительном сопротивлении, преобразуют полученный при этом сигнал uи(t) в соответствии с уравнением
Figure 00000010
где ε - малый интервал времени, ε < τ.
Время непосредственного измерения тока утечки обычно принимается равным одному или нескольким периодам напряжения контролируемой сети с целью обеспечения помехоустойчивого измерения. В автономных электрических системах, например, с дизель-генераторами, а также локальных электрических сетях переменного тока, частота напряжения изменяется. При этом усреднение сигнала, пропорционального току утечки, происходит на интервале времени, не кратном периоду напряжения контролируемой сети. В результате этого возрастают погрешности измерения тока утечки и вычисления сопротивления изоляции и снижается надежность защиты электрической сети.
Следовательно, недостатками известного способа контроля сопротивления изоляции и защиты электрической сети с изолированной нейтрально являются низкие точность измерения сопротивления изоляции и надежность защиты при изменении частоты контролируемой сети.
Цель предлагаемого изобретения - повышение точности контроля электрического сопротивления изоляции и надежности защиты электрической сети с изолированной нейтрально при изменении частоты контролируемой сети.
Поставленная цель достигается тем, что в известном способе контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью, при котором формируют тестовое напряжение в форме периодической последовательности импульсов вида
Figure 00000011
где U1, U2 - постоянные напряжения, U1 > U2; τ - временной интервал, Т - период следования импульсов тестового напряжения,
Figure 00000012
; подключают тестовое напряжение через звезду резисторов к фазам контролируемой сети, измеряют ток утечки путем измерения падения напряжения на измерительном сопротивлении, включенном последовательно с источником тестового напряжения, формируют задержанный по отношению к падению напряжения на измерительном сопротивлении на интервал
Figure 00000013
сигнал, вычитают задержанный сигнал из падения напряжения на измерительном сопротивлении, преобразуют полученный при этом сигнал uи(t) путем коррекции в сигнал uк(t), вычисляют скользящее среднее значение
Figure 00000014
сигнала uк(t) на интервале, равном периоду Тс напряжения контролируемой сети, вычисляют сопротивление изоляции по формуле
Figure 00000015
где rт - внутреннее сопротивление источника; r0 - сопротивление измерительного резистора, сравнивают полученное значение с уставкой R0 и при rиз ≤ R0 производят отключение электрооборудования, дополнительно измеряют период напряжения контролируемой сети Tc, устанавливают период следования импульсов тестового напряжения равным четному числу измеренных периодов напряжения контролируемой сети Т=kТc, где k=2, 4,…, а сигнал uи(t) преобразуют в соответствии с уравнением
Figure 00000016
где ε - малый интервал времени, ΔT ≤ ε < τ; ΔT - максимальное значение приращения периода тестового напряжения.
По сравнению с наиболее близким аналогичным решением предлагаемое техническое решение имеет следующие новые признаки (операции):
- измеряют период напряжения контролируемой сети Тс;
- сигнал uи(t) преобразуют в соответствии с уравнением
Figure 00000017
- устанавливают период следования импульсов тестового напряжения равным четному числу измеренных периодов напряжения контролируемой сети Т=kТc, где k=2, 4,….
Следовательно, заявляемое техническое решение соответствует требованию «новизна».
При реализации предполагаемого изобретения повышаются точность контроля сопротивления изоляции и надежность защиты электрооборудования. Повышение точности измерения достигается компенсацией помех при алгебраическом суммировании сигналов, пропорциональных току утечки, но сдвинутых во времени, и усреднением результата суммирования на скользящем интервале, равном периоду напряжения контролируемой сети. При этом интервал задержки
Figure 00000018
и интервал усреднения регулируются пропорционально периоду Тc напряжения контролируемой сети. Благодаря этому достигается высокий уровень компенсации помех при усреднении сигнала на скользящем интервале, строго равном периоду напряжения контролируемой сети. Следовательно, предлагаемый способ обеспечивает повышение точности контроля электрического сопротивления изоляции и надежности защиты электрической сети с изолированной нейтрально при изменениях напряжения контролируемой сети.
Следовательно, заявляемое техническое решение соответствует требованию «положительный эффект».
По каждому отличительному признаку проведен поиск известных технических решений в области измерительной техники и релейной защиты.
Операции:
- измеряют период напряжения контролируемой сети Тc;
- сигнал uи(t) преобразуют в соответствии с уравнением
Figure 00000019
в известных способах аналогичного назначения не обнаружены.
Операция:
- устанавливают период следования импульсов тестового напряжения равным четному числу измеренных периодов напряжения контролируемой электрической сети Т=kТc, где k=2, 4,…,
используется в известных способах контроля сопротивления изоляции и защиты электрической сети с изолированной нейтрально, например: Патент РФ №2732790. МПК G01R 27/18 (2020.05); Н02Н 3/00 (2020.05). Опубл. 22.09.2020. Бюлл. №27. Но в известных технических решениях, в отличие от предлагаемого способа, период следования тестовых импульсов не регулируется, а всегда имеет постоянное значение.
Таким образом, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию «существенные отличия».
Сущность предполагаемого изобретения поясняется чертежами. На фиг. 1 показана упрощенная принципиальная схема трехфазной электрической сети, поясняющая способ контроля сопротивления изоляции и защитного отключения электрической сети при наличии в сети тиристорного выпрямителя ТВ. На фиг. 2 показаны осциллограммы тестового напряжения и диаграммы сигналов, формируемых при обработке данных в микроконтроллере 13.
На фиг. 1 обозначено: 1 - источник трехфазного переменного напряжения Еc; 2, 3 и 4 - добавочные резисторы, сопротивления добавочных резисторов rтА=rтВ=rтС=rт; 5 - источник тестового напряжения uт(t); 6 - измерительный резистор сопротивлением r0; 7 - датчик напряжения контролируемой сети; 8 - усилитель; 9, 11 и 14 - сопротивления изоляции фаз А, В и С контролируемой сети соответственно rA, rB, rC; 10, 12 и 15 - емкости фаз А, В и С контролируемой сети соответственно CA, СB, CC; 13 - микроконтроллер; 16 - тиристорный выпрямитель; 17 - блок индикации; 18 и 20 -сопротивления изоляции сети постоянного тока (для фидеров, подключенных к положительному и отрицательному полюсам тиристорного выпрямителя ТВ) соответственно rп1, rп2; 19 и 21 - емкости сети постоянного тока; Cп1, Cп2; 22 - исполнительное реле ИР; 23 - комплексное сопротивление нагрузки тиристорного выпрямителя ZH.
Напряжение от источника 5 через звезду добавочных резисторов 2, 3 и 4 поступает в контролируемую трехфазную сеть. Ток, протекающий в контуре: «источник тестового сигнала» uт(t) - добавочные резисторы 2, 3 и 4 -сопротивление изоляции - земля, контролируется по величине падения напряжения на измерительном резисторе 6 (r0). Напряжение с измерительного резистора 6 через усилитель 8 поступает на вход микроконтроллера 13. Величина сопротивления изоляции вычисляется в зависимости от измеренного падения напряжения на измерительном резисторе 6 и известного тестового напряжения. Исполнительное реле ИР 22, управляющий вход которого соединен с выходом микроконтроллера МК 13, предназначено для отключения защищаемого участка сети.
Датчик напряжения контролируемой сети 7, подключенный входом к фазам А и В сети, формирует сигнал, пропорциональный напряжению контролируемой сети. Этот сигнал поступает на вход микроконтроллера 13. Диаграмма напряжения контролируемой сети показана на фиг. 2а. В микроконтроллере 13 выполняется измерение периода напряжения контролируемой сети Тc и формирование сигнала управления источником тестового напряжения 5. Форма тестового сигнала показана на фиг. 26. Тестовое напряжение uт(t) представляет собой последовательность разнополярных импульсов специальной формы. Период следования импульсов тестового напряжения устанавливается микроконтроллером 13 равным четному числу периодов напряжения контролируемой сети Т=kTc, где k=2, 4,…
В интервале времени 0 < t ≤ τ напряжение uт(t)=U1 и обеспечивает ускоренный процесс перехода электрической системы в установившееся состояние, а именно, форсированный заряд емкостей в цепях переменного и постоянного тока. В момент времени t=τ напряжение на емкости достигает значения uе(τ) ≈ U2. В интервале времени
Figure 00000020
источник тестового напряжения 5 формирует напряжение uт(t)=U2.
При 0 < t ≤ τ, т.е. при ускоренном заряде емкости ток, протекающий через измерительный резистор, равен
Figure 00000021
где
Figure 00000022
- постоянная времени цепи заряда;
Uп - напряжение участка сети постоянного тока;
ξ(t) - составляющая тока утечки, вызванная напряжениями фаз контролируемой сети.
В течение интервала времени
Figure 00000023
ток, протекающий через измерительный резистор 6, определяется выражением
Figure 00000024
При u(τ) ≈ U2 выражение для тока через измерительный резистор в интервале
Figure 00000025
принимает вид
Figure 00000026
где ΔU - разность напряжений заряженной емкости и тестового напряжения U2 в момент времени t=τ;
ζ(t) - составляющая тока, протекающего через измерительный резистор, и обусловленная переходным процессом при переключении тестового напряжения,
Figure 00000027
Напряжение ΔU << U2, a ζ(t) - монотонно убывающая функция.
При
Figure 00000028
происходит ускоренный заряд емкости. Ток, протекающий через измерительный резистор, равен
Figure 00000029
В течение интервала времени
Figure 00000030
ток, протекающий через измерительный резистор 6, определяется выражением
Figure 00000031
При
Figure 00000032
выражение для тока через измерительный резистор в интервале
Figure 00000033
принимает вид
Figure 00000034
где ΔU' - разность напряжений заряженной емкости и тестового напряжения - U2 в момент времени
Figure 00000035
.
Падение напряжения на измерительном сопротивлении 6 равно
u(t)=r0iи(t)
Осциллограмма падения напряжения u(t) на измерительном резисторе показана на фиг. 2в. Напряжение u(t) через усилитель 8 поступает на вход контроллера 13. Далее в математических выражениях для упрощения коэффициент передачи усилителя 8 принимается равным 1. В микроконтроллере 13 выполняется обработка данных. Формируется сигнал
Figure 00000036
путем задержки сигнала u(t) на половину периода тестового напряжения. Осциллограмма сигнала uз(t) показана на фиг. 2г. Далее в микроконтроллере 13 вычисляется разность
Figure 00000037
Осциллограмма сигнала
Figure 00000038
показана на фиг 2д. Сигнал uи(t) корректируется в соответствии с уравнением
Figure 00000039
Осциллограмма скорректированного сигнала uк(t) показана на фиг. 2е. Коррекция выполняется для исключения из процедуры обработки сигнала составляющих, соответствующих заряду емкости сети с учетом изменений периода тестовых импульсов. Для этого при - ε < t ≤ τ + ε сигналу uк(t) присваивается постоянное значение uи(-ε), зафиксированное в конце второго полупериода предыдущего цикла измерения. При
Figure 00000040
сигналу uк(t) присваивается постоянное значение
Figure 00000041
. Величина ε выбирается из соотношения ΔT ≤ ε < τ, где ΔT - максимальное приращение периода тестового напряжения. Моменты начала и окончания корректирующих изменений сигнала показаны на фиг. 2д точками.
В интервале
Figure 00000042
сигнал uк(t) равен
Figure 00000043
В случае, если период тестового напряжения Т равен целому четному числу периодов напряжения контролируемой сети Тc, составляющие тока утечки, обусловленные напряжениями фаз контролируемой сети,
Figure 00000044
Figure 00000045
С учетом (2) и (3) выражение (1) принимает вид
Figure 00000046
Аналогично в интервале
Figure 00000047
сигнал uк(t) равен
Figure 00000048
С учетом выражений (4) и (5), а также монотонно-убывающего характера функции ζ(t), значения сигнала uк(t) в интервалах 0 < t ≤ τ и
Figure 00000049
при допущении ζ(t) ≈ 0, равны соответственно:
Figure 00000050
Таким образом, за счет операций задержки сигнала, пропорционального току утечки, на половину периода тестового напряжения, и вычитания задержанного сигнала из исходного при строгом соответствии периода тестового напряжения периоду напряжения контролируемой сети обеспечивается, во-первых, инвариантность результата измерения по отношению к изменениям частоты контролируемой сети и напряжению сети постоянного тока, и, во-вторых, компенсация в измерительном сигнале составляющей тока утечки, обусловленной напряжением контролируемой сети.
При усреднении скорректированного сигнала uк(t) на скользящем интервале, равном периоду напряжения контролируемой сети, формируется сигнал
Figure 00000051
Решение уравнения (6) относительно rиз дает формулу для вычисления сопротивления изоляции
Figure 00000052
Осциллограмма усредненного сигнала
Figure 00000053
показана на фиг. 2ж.
Процедура вычисления значения сопротивления изоляции в соответствии с формулой (7) выполняется микроконтроллером 13. Микроконтроллер непрерывно формирует сигнал, пропорциональный усредненному за период напряжения контролируемой сети сопротивлению изоляции. При этом задержка в определении факта снижения сопротивления изоляции и, следовательно, срабатывании защиты, не превышает
Figure 00000054
.
Алгоритм формирования сигнала аварийного отключения содержит:
- вычисление значения эквивалентного сопротивления изоляции rиз;
- сравнение rиз с уставкой R0 (например, 10 кОм);
- формирование сигнала отключения для исполнительного реле 22.
Таким образом, предлагаемый способ контроля сопротивления изоляции и защитного отключения электрической сети обеспечивает повышенные точность измерения сопротивления изоляции и надежность защиты за счет:
- регулирования периода тестового напряжения пропорционально периоду напряжения контролируемой сети;
- компенсации помех при алгебраическом суммировании сигналов, пропорциональных току утечки, но сдвинутых во времени;
- усреднения результата суммирования на скользящем интервале, равном периоду напряжения контролируемой сети;
- непрерывного вычисления значения сопротивления изоляции в микроконтроллере.
Следовательно, использование в предлагаемом способе контроля сопротивления изоляции и защиты электрической сети с изолированной нейтрально, при котором формируют тестовое напряжение в форме периодической последовательности импульсов вида
Figure 00000055
где U1, U2 - постоянные напряжения, U1 > U2; τ - временной интервал, Т - период следования импульсов тестового напряжения,
Figure 00000056
; подключают тестовое напряжение через звезду резисторов к фазам контролируемой сети, измеряют ток утечки путем измерения падения напряжения на измерительном сопротивлении, включенном последовательно с источником тестового напряжения, формируют задержанный по отношению к падению напряжения на измерительном сопротивлении на интервал
Figure 00000057
сигнал, вычитают задержанный сигнал из падения напряжения на измерительном сопротивлении, преобразуют полученный при этом сигнал uи(t) путем коррекции в сигнал uк(t), вычисляют скользящее среднее значение
Figure 00000058
сигнала uк(t) на интервале, равном периоду Тc напряжения контролируемой сети, вычисляют сопротивление изоляции по формуле
Figure 00000059
где rт - внутреннее сопротивление источника; r0 - сопротивление измерительного резистора, сравнивают полученное значение с уставкой R0 и при rиз ≤ R0 производят отключение электрооборудования, дополнительно измерения периода напряжения контролируемой сети Тс, установления периода следования импульсов тестового напряжения равным четному числу периодов напряжения контролируемой сети Т=kТc, где k=2, 4,…, и преобразование сигнала uи(t) в соответствии с уравнением
Figure 00000060
где ε - малый интервал времени, ΔT ≤ ε < τ; ΔT - максимальное значение приращения периода тестового напряжения, повышает точность контроля электрического сопротивления изоляции и надежность защиты электрической сети с изолированной нейтрально при изменении частоты контролируемой электрической сети.
Использование предлагаемого технического решения в электрических системах различного назначения позволит повысить надежность и безопасность работы электрооборудования.

Claims (7)

  1. Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью, при котором формируют тестовое напряжение в форме периодической последовательности импульсов вида
  2. Figure 00000061
  3. где U1, U2 - постоянные напряжения, U1>U2; τ - временной интервал, Т - период следования импульсов тестового напряжения,
    Figure 00000062
    ; подключают тестовое напряжение через звезду резисторов к фазам контролируемой сети, измеряют ток утечки путем измерения падения напряжения на измерительном сопротивлении, включенном последовательно с источником тестового напряжения, формируют задержанный по отношению к падению напряжения на измерительном сопротивлении на интервал
    Figure 00000063
    сигнал, вычитают задержанный сигнал из падения напряжения на измерительном сопротивлении, преобразуют полученный при этом сигнал uи(t) путем коррекции в сигнал uк(t), вычисляют скользящее среднее значение
    Figure 00000064
    сигнала uк(t) на интервале, равном периоду Тс напряжения контролируемой сети, вычисляют сопротивление изоляции по формуле
  4. Figure 00000065
  5. где rт - внутреннее сопротивление источника; r0 - сопротивление измерительного резистора, сравнивают полученное значение с уставкой R0 и при rиз ≤ R0 производят отключение электрооборудования, отличающийся тем, что дополнительно измеряют период напряжения контролируемой сети Tc, устанавливают период следования импульсов тестового напряжения равным четному числу периодов напряжения контролируемой сети Т=kTc, где k=2, 4,…, а сигнал uи(t) преобразуют в соответствии с уравнением
  6. Figure 00000066
  7. где ε - малый интервал времени, ΔT ≤ ε < τ; ΔT - максимальное значение приращения периода тестового напряжения.
RU2020134323A 2020-10-19 2020-10-19 Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью RU2747909C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020134323A RU2747909C1 (ru) 2020-10-19 2020-10-19 Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020134323A RU2747909C1 (ru) 2020-10-19 2020-10-19 Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью

Publications (1)

Publication Number Publication Date
RU2747909C1 true RU2747909C1 (ru) 2021-05-17

Family

ID=75920006

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020134323A RU2747909C1 (ru) 2020-10-19 2020-10-19 Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью

Country Status (1)

Country Link
RU (1) RU2747909C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757068C1 (ru) * 2020-11-20 2021-10-11 Сергей Иванович Малафеев Способ контроля сопротивления изоляции в электрической сети двойного рода тока
RU2806402C1 (ru) * 2023-06-19 2023-10-31 Сергей Иванович Малафеев Способ непрерывного контроля сопротивления изоляции в электрической сети двойного рода тока с изолированной нейтралью

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128387A (ja) * 1993-10-29 1995-05-19 Kawaju Bosai Kogyo Kk 非接地配線方式の電路の絶縁監視装置
RU2144679C1 (ru) * 1998-02-20 2000-01-20 Малафеев Сергей Иванович Способ контроля сопротивления изоляции и защиты электрической сети
EP1586910A1 (en) * 2004-04-18 2005-10-19 Deif A/S Method of and device for insulation monitoring
RU2478975C1 (ru) * 2011-11-23 2013-04-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Способ контроля состояния изоляции в трехфазной электрической сети
CN206773076U (zh) * 2017-06-09 2017-12-19 伍俊 高压绝缘电阻在线监测报警仪
RU2722468C1 (ru) * 2020-02-20 2020-06-01 Сергей Иванович Малафеев Способ контроля сопротивления изоляции и защитного отключения электрической сети
RU2725898C1 (ru) * 2020-01-27 2020-07-07 Сергей Иванович Малафеев Способ контроля сопротивления изоляции в электрической сети с изолированной нейтралью

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128387A (ja) * 1993-10-29 1995-05-19 Kawaju Bosai Kogyo Kk 非接地配線方式の電路の絶縁監視装置
RU2144679C1 (ru) * 1998-02-20 2000-01-20 Малафеев Сергей Иванович Способ контроля сопротивления изоляции и защиты электрической сети
EP1586910A1 (en) * 2004-04-18 2005-10-19 Deif A/S Method of and device for insulation monitoring
RU2478975C1 (ru) * 2011-11-23 2013-04-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Способ контроля состояния изоляции в трехфазной электрической сети
CN206773076U (zh) * 2017-06-09 2017-12-19 伍俊 高压绝缘电阻在线监测报警仪
RU2725898C1 (ru) * 2020-01-27 2020-07-07 Сергей Иванович Малафеев Способ контроля сопротивления изоляции в электрической сети с изолированной нейтралью
RU2722468C1 (ru) * 2020-02-20 2020-06-01 Сергей Иванович Малафеев Способ контроля сопротивления изоляции и защитного отключения электрической сети

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757068C1 (ru) * 2020-11-20 2021-10-11 Сергей Иванович Малафеев Способ контроля сопротивления изоляции в электрической сети двойного рода тока
RU2806402C1 (ru) * 2023-06-19 2023-10-31 Сергей Иванович Малафеев Способ непрерывного контроля сопротивления изоляции в электрической сети двойного рода тока с изолированной нейтралью

Similar Documents

Publication Publication Date Title
JP5956333B2 (ja) ネットワーク状態の監視方法および装置
JP6490249B2 (ja) 電力変換装置および電力変換システム
KR101359232B1 (ko) 고정밀 현장 저항 측정방법
AU2019203540B2 (en) Impedance compensation
RU2747909C1 (ru) Способ контроля сопротивления изоляции и защиты электрической сети с изолированной нейтралью
RU2722468C1 (ru) Способ контроля сопротивления изоляции и защитного отключения электрической сети
CN111474403A (zh) 一种漏电流检测方法、装置及光伏逆变系统
JP6889026B2 (ja) 電力変換装置
RU2806402C1 (ru) Способ непрерывного контроля сопротивления изоляции в электрической сети двойного рода тока с изолированной нейтралью
RU2725898C1 (ru) Способ контроля сопротивления изоляции в электрической сети с изолированной нейтралью
EP1204198B1 (en) Method and system for detecting a zero current level in a line commutated converter
Günter et al. A method to measure the network harmonic impedance
RU2437109C2 (ru) Способ контроля электрического сопротивления изоляции и защитного отключения электрооборудования
US20220229100A1 (en) Apparatus for measuring an impedance of load
RU2757068C1 (ru) Способ контроля сопротивления изоляции в электрической сети двойного рода тока
RU2609277C1 (ru) Способ контроля сопротивления изоляции разветвленных сетей постоянного тока
RU2732790C1 (ru) Способ контроля сопротивления изоляции и защиты электрической сети
Shen et al. Small-signal impedance measurement in medium-voltage dc power systems
RU2554308C1 (ru) Устройство для измерения сопротивления изоляции сетей переменного тока
US11469692B2 (en) Thyristor starter
CN108139347B (zh) 负载控制装置、负载控制装置的电流测量方法
RU60225U1 (ru) Устройство для измерения сопротивления изоляции электрических сетей
SU1569745A1 (ru) Способ определени сопротивлени изол ции электрической цепи посто нного тока
Zexue et al. An Online Fault Location Method for DC Distribution Networks Using Adaptive Kalman Filter
CN112865059B (zh) 一种适用于链式柔性消弧测量控制的方法及系统