RU2744110C1 - Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты) - Google Patents

Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты) Download PDF

Info

Publication number
RU2744110C1
RU2744110C1 RU2020122335A RU2020122335A RU2744110C1 RU 2744110 C1 RU2744110 C1 RU 2744110C1 RU 2020122335 A RU2020122335 A RU 2020122335A RU 2020122335 A RU2020122335 A RU 2020122335A RU 2744110 C1 RU2744110 C1 RU 2744110C1
Authority
RU
Russia
Prior art keywords
current
interval
transformation
distorted
moment
Prior art date
Application number
RU2020122335A
Other languages
English (en)
Inventor
Юрий Яковлевич Лямец
Иван Юрьевич Никонов
Илья Евгеньевич Петряшин
Original Assignee
Общество с ограниченной ответственностью "Релематика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Релематика" filed Critical Общество с ограниченной ответственностью "Релематика"
Priority to RU2020122335A priority Critical patent/RU2744110C1/ru
Application granted granted Critical
Publication of RU2744110C1 publication Critical patent/RU2744110C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers

Abstract

Использование: в области электротехники. Технический результат - обеспечение простого способа восстановления тока при насыщении измерительного трансформатора в реальном времени. Способ включает в себя выделение из процесса изменения тока интервала неискаженной трансформации и последующего интервала искаженной трансформации. Согласно способу во всех трех вариантах принимается одна и та же модель тока сети с неизвестными гармонической и постоянной составляющими. Для их оценивания привлекается информация о трех моментах времени. Два момента берут на интервале неискаженной трансформации, третий момент - на интервале искаженной трансформации. Именно в выборе третьего момента проявляется особенность каждого варианта. В первом варианте это момент окончания интервала искаженной трансформации. Во втором варианте - момент перехода искаженного тока через нулевое значение. В третьем варианте - момент перехода через нулевое значение формируемого сигнала, пропорционального ненаблюдаемому напряжению модели трансформатора. Восстановленный ток определяют по аналитическим выражениям. 3 н.п. ф-лы, 6 ил.

Description

Изобретение относится к электроэнергетике, где широко распространены трансформаторы тока как измерительные преобразователи, формирующие сигналы для устройств релейной защиты и автоматики. Вместе с тем изобретение относится к электротехнике, поскольку трансформатор тока сам по себе является электротехническим устройством, в обычном исполнении - электромагнитном. Характеристика намагничивания его магнитопровода, выполняемого из электротехнической стали, имеет рабочий участок и участки насыщения. На рабочем участке первичный ток трансформируется во вторичный без искажений, а на участке насыщения - с искажениями. Уровни токов короткого замыкания в энергосистемах настолько высоки, что явление насыщения трансформаторов тока встречается повсеместно, и его глубина возрастает. Последнее объясняется тем, что искажение тока проявляется особенно резко при резистивной нагрузке, которую как раз и представляют собой терминалы цифровых систем защиты и автоматики. Еще одна причина связана с широким применением автоматического повторного включения линий электропередачи (АПВ). В цикле АПВ сказывается остаточная индукция магнитопроводов трансформаторов тока, приводящая к их быстрому насыщению.
Искажение вторичного тока трансформатора тока, поступающего в его нагрузку, создает серьезную проблему для быстродействующей релейной защиты. Опасно ложное срабатывание, но еще более серьезные последствия могут наступить вследствие несрабатывания при коротком замыкании в зоне защиты. Задача восстановления тока, искаженного вследствие насыщения трансформатора тока поставлена довольно давно, предложено несколько способов ее решения. Они так или иначе основываются на разделении интервалов неискаженной и искаженной трансформации тока (сегментация тока). Наиболее простое решение ограничивается выделением интервала неискаженной трансформации, возможно только одного, самого первого [1,2]. Однако при глубоком насыщении интервал оказывается столь коротким, что выделить необходимую для работы релейной защиты синусоидальную составляющую неискаженного тока оказывается невозможным. Возникает необходимость привлечения дополнительной информации из отсчетов тока на интервале искаженной трансформации. Известные технические решения предполагают использование априорных сведений о характеристике намагничивания стального сердечника трансформатора тока [3-5]. Практического значения такие предложения не имеют, так как характеристики неидентичны даже у однотипных трансформаторов, к тому же они подвержены изменению со временем и под влиянием внешних факторов.
В недавнее время были предложены способы восстановления искаженного тока, характерной чертой которых стало частичное привлечение информации с интервала искаженной трансформации и объединение ее с информацией о токе на интервале неискаженной трансформации. Операцией, объединяющей информацию, является экстраполяция неискаженного тока на последующий интервал [6,7]. Эта операция относительно простая. Сложной в исполнении оказалась другая операция, составляющая неотъемлемую часть способа [7], ближайшего к предлагаемому. Имеется в вид синтез корректора тока. Операция легко реализуется в отложенном времени при анализе цифровых осциллограмм наблюдаемого тока, но затрудняет применение способа в реальном времени, что требуется для релейной защиты.
Целью изобретения является упрощение способа восстановления тока при насыщении измерительного трансформатора с тем, чтобы обеспечить возможность применения способа в реальном времени. Способ предлагается в трех вариантах, объединенных друг с другом и с прототипом следующими признаками. Наблюдаемый процесс изменения тока подвергают сегментации, выделяя интервалы двух типов -неискаженной и искаженной трансформации. По меньшей мере выделяют первый интервал после начала короткого замыкания в электрической сети до насыщения трансформатора тока и последующий, второй по счету, интервал, на котором наблюдается искаженный ток. Общее отличие всех трех вариантов предлагаемого способа от прототипа заключается в том, что информация, получаемая на двух разнотипных интервалах, сведена к минимуму. На интервале неискаженной трансформации берется та информация, которую несут два момента времени и отсчеты тока в эти моменты, а на интервале искаженной информации -только один момент времени и, возможно, отсчет тока в этот момент. Получается, всего три момента времени и два или три соответствующих отсчета тока. Различие между вариантами способа заключено в том третьем моменте времени, который должен быть определен на интервале искаженной трансформации. В первом варианте способа это момент окончания указанного интервала. Во втором варианте - момент перехода тока через нулевое значение. Наконец, в третьем варианте - это определяемый по алгоритму обработки искаженного тока момент экстремума неискаженного тока.
На фиг. 1 приведена кривая тока в нагрузке насыщающегося трансформатора тока, где указан третий момент времени, характерный для первого варианта предлагаемого способа. На фиг. 2 показана функциональная схема восстановления тока по первому и второму вариантам. На фиг. 3 указан третий момент времени, характерный для второго варианта и отличающий его от первого. На фиг. 4 показана структурная схема преобразования тока электрической сети измерительным трансформатором тока, что требуется для пояснения наиболее сложного третьего варианта предлагаемого способа. Третий момент времени, определяемый в этом варианте, показан на фиг. 5. Наконец, на фиг. 6 дана функциональная схема восстановления тока по третьему варианту.
Типичная кривая изменения тока в нагрузке насыщающегося трансформатора тока состоит из участка (интервала) неискаженной трансформации 1 и участка искаженной трансформации 2. Предлагаемый способ предполагает получение информации на двух соседних интервала разного типа, сначала на интервале 1, затем на интервале 2. Далее информация объединяется операциями, выполняемыми функциональной схемой по фиг. 3, которая состоит из сегментаторов 3, 4, формирователя отсчетов 5, действующего на интервале 1, анализатора процесса 6, определяющего на интервале 2 характерный момент времени 3, корректора 7, восстанавливающего искаженный ток, и коммутатора 8 с двумя выходами α и β, разделяющими неискаженную и восстановленную части тока. Функциональные элементы схемы управляются выходными сигналами 9,10 сегментаторов 3 и 4. На фиг. 3 изображен тот же процесс, что и на фиг. 1, за тем лишь исключением, что здесь иначе выбран характерный третий момент.
Модель трансформатора тока на фиг. 4 с ветвью нагрузки 11 и ветвью намагничивания 12 требуется для пояснения третьего варианта предлагаемого способа. Наблюдаемый процесс на фиг. 5 тот же, что на фиг. 1 и фиг. 3. Отличие между ними заключается в подходе к определению третьего момента времени. В последней модификации способа для этой цели формируется новый сигнал 13 со своей характерной точкой перехода через нулевое значение. Функциональная схема (фиг. 6) соответственно усложняется. В нее вводятся новые модули: модуль 14 0 формирователь сигнала 13 и модуль 15 - определитель затухания этого сигнала.
Наиболее тяжелые режимы насыщения трансформатора тока вызывает медленно затухающая апериодическая составляющая тока короткого замыкания. Самый опасный с этой точки зрения ток электрической сети представляет собой сумму гармонической и постоянной составляющих
Figure 00000001
где Im1, Im2 - ортогональные составляющие гармонической составляющей, I0 - постоянная составляющая, ω=2πf, f - частота сети. Предлагаемый способ решает следующую задачу. На двух соседних интервалах 1 и 2 наблюдаемого тока i(t), протекающего в нагрузке трансформаторов тока, принимается модель неискаженного тока (1), и определяются оценки трех компонентов модели Iml, Im2, I0. Понятно, что для отыскания трех неизвестных нужны три отсчета неискаженного тока i(t)=ic(t). Казалось бы, их можно взять на интервале 1 неискаженной трансформации. Но от такого варианта необходимо сразу же отказаться. Дело в том, что на этом коротком интервале отсчеты тока связаны зависимостью, близкой к линейной, в силу чего взятый там же третий отсчет ничего не добавит к информации, содержащейся в первом и втором. По этой причине на интервале 1 берутся только два отсчета тока i1 и i2 в моменты времени t1 и t2, что дает два условия оценки параметров тока (1)
Figure 00000002
Figure 00000003
Чтобы информация о токе, получаемая на интервале 1, была менее всего подвержена влиянию помех, желательно разнести моменты t1 и t2 на максимально возможное расстояние, ненамного меньшее этого интервала.
Особую роль в предлагаемом способе играет третий момент времени t3, который должен быть определен на интервале 2. Этот момент призван дать дополнительную информацию о токе сети ic(t). В первом варианте способа момент t3 определяют из условия выхода трансформатора тока из насыщения, иначе из условия окончания интервала 2, когда значение тока i3 находится на изломе кривой i(t). В итоге к условиям (2), (3) добавляется недостающее третье условие
Figure 00000004
и три условия (2) - (4) совместно позволяют восстановить наблюдаемый ток, давая ему описание
Figure 00000005
с параметрами, определенными при t1=0, -
Figure 00000006
Figure 00000007
Figure 00000008
где
D=sin ωt2 cos (ωt3-1)-sin ωt3 cos (ωt2-1).
Функциональная схема по фиг. 2 отражает операции восстановления тока. Сегментатор 3 выделяет интервал 1, а сегментатор 4 выделяет интервал 2. Формирователь отсчетов 5 фиксирует моменты времени t1, t2 и соответствующие отсчеты тока i1, i2. Формирователь третьего отсчета - анализатор 6 определяет момент t3 и отсчет тока i3. Информация, полученная на двух интервалах времени, поступает в корректор тока 7, который реализуем операции (6) - (8) и генерирует восстановленный ток (5) на интервале 2. Коммутатор 8 предназначен для раздельной выдачи тока с разнотипных интервалов. Выходные сигналы 9 и 10 сегментаторов 3 и 4 управляют работой функциональной схемы. Основные операции выполняются под управлением сигнала 10, в том числе и действие коммутатора 8. Если нет насыщения, то коммутатор не переключается, и наблюдаемый ток поступает на основной выход α. Когда случается насыщение, сегментатор 4 подает сигнал 10 на управляющий вход коммутатора 8. Передача входного тока i(t) прерывается коммутатором вплоть до выхода трансформатора тока из насыщения, но восстановленный ток
Figure 00000009
(t) поступит на выход 2 не сразу же, а спустя время синтеза его корректором 7. Отсюда следует, что в первом варианте данного способа время восстановления тока равно суммарной продолжительности интервалов 1 и 2 с добавлением времени действия корректора 7.
Второй вариант способа восстановления тока отличается от первого варианта иным выбором характерного третьего момента времени. Это момент t3' перехода тока i(t) через нулевое значение (фиг. 3). Данная модификация способа рассчитана на нагрузку 11, близкую к резистивной (R >> ωL). На интервале насыщения ток сети (1) устремляется в ветвь намагничивания 12
Figure 00000010
создавая потокосцепление, которое в первом приближении связано с током линейной зависимостью
Figure 00000011
где ψ0 - константа, Lμ,диф - дифференциальная индуктивность ветви намагничивания в области насыщения. Ветвь намагничивания 12 создает на нагрузке 11 напряжение
Figure 00000012
Из (1), (9) и (10) вытекает вывод, что напряжение u(t) на интервале 2 близко к гармоническому
Figure 00000013
а его нулевое значение в момент t3' соответствует экстремуму тока сети ic(t). Если отсчитывать время от момента t3'=0, то на интервале 2 напряжение и ток будут изменяться по закону, близкому к синусоидальному
Figure 00000014
Figure 00000015
а ток сети - по косинусоиде с постоянной составляющей
Figure 00000016
Момент t3' определится из условия
Figure 00000017
а значения t1 и t2 определятся затем по условию t3'=0. Так как на интервале 1 токи i(t) и ic(t) совпадают, то для определения параметров описания (15) достаточно двух отсчетов i1 и i2
Figure 00000018
откуда
Figure 00000019
Figure 00000020
Рассматриваемый вариант восстановления тока иллюстрируется той же функциональной схемой по фиг. 2, что и первый вариант, за тем лишь исключением, что анализатор 6 интервала 2 на этот раз реализует условие (16), определяя момент t3' перехода наблюдаемого тока через нулевое значение.
Второму варианту способа требуется меньшее время наблюдения тока, чем первому варианту. Но второй вариант ограничен условием резистивности нагрузки. Для тех случаев, когда оно не может быть принято, предлагается третий вариант способа восстановления тока, в котором учитывается смешанный характер нагрузки (фиг. 4).
Напряжение u(t) сохраняет закономерность (13) вне зависимости от характера нагрузки, но на этот раз оно вызывает в нагрузке переходный процесс, описываемый дифференциальным уравнением
Figure 00000021
где α=R/L - коэффициент затухания, ν(t)=u(t)/L. Параметры нагрузки R и L неизвестны, но затухание α поддается определению при помощи цифрового фильтра, настраиваемого на подавление суммы гармонической и экспоненциальной составляющих [8]. В функциональной схеме по фиг. 6 эту функцию реализует определитель затухания тока 14, который передает значение α формирователю сигнала 15, который реализует операцию (20), определяя величину, пропорциональную ненаблюдаемому напряжению u(t).
Дальнейшие операции те же, что и во второй модификации способа, только условие (16) определения момента t3' заменяется условием определения момента t3''
Figure 00000022
Если принять t3''=0, то описание тока (15) и операции определения его параметров (18), (19) остаются прежними.
Помимо трех предложенных модификации способа восстановления искаженного тока возможны более сложные варианты, где сочетаются оба характерных момента времени t3 и t3' (или t3''), но основное практическое значение имеют изложенные варианты, так как они дают максимально простое решение стоящей задачи.
Источники информации
1. Патент РФ №2308137, HO2H 3/28,2006.
2. Патент РФ №2647484, HO2H 3/28,2016.
3. Авторское свидетельство СССР №468169, G01R 19/00, 1973.
4. Патент РФ №2457495, G01R 15/18,2008.
5. Патент РФ №2526834, HO1F 2742, HO1F 38/28, 2012.
6. Hajipour Е., Vakilian М., Sanaye-Pasand М. Current-Transformer Saturation Compensation for Transformer Differential Relays. - IEEE Trans. Power Delivery, 2015, 30(5), P. 2293-2302.
7. Патент РФ №2648991, HO2H 3/08, HO2H 3/08, HO2H 7/045,2017 (прототип).
8. Лямец Ю.Я., Романов Ю.В., Зиновьев Д.В. Мониторинг процессов в электрической системе. 4.1. Преобразование, селекция и фильтрация, 4.2. Цифровая обработка осциллограмм токов короткого замыкания. - Электричество, 2006, №10, с. 2-10; №11, с. 2-10.

Claims (19)

1. Способ восстановления тока, искаженного вследствие насыщения трансформатора тока, включающий в себя выделение из процесса изменения тока интервала неискаженной трансформации и последующего интервала искаженной трансформации, отличающийся тем, что на интервале неискаженной трансформации фиксируют два отсчета тока в первый и второй моменты времени, определяют момент окончания интервала искаженной трансформации, фиксируют в этот момент третий отсчет тока и определяют восстановленный ток по следующим выражениям:
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
где i1, i2, i3 - первый, второй и третий отсчеты, t2 и t3 - второй и третий моменты времени, притом что первый момент принят нулевым, ω=2πf, f - частота сети.
2. Способ восстановления тока, искаженного вследствие насыщения трансформатора тока, включающий в себя выделение из процесса изменения тока интервала неискаженной трансформации и последующего интервала искаженной трансформации, отличающийся тем, что на интервале неискаженной трансформации фиксируют два отсчета тока в первый и второй моменты времени, определяют на интервале искаженной трансформации третий момент времени, когда ток переходит через нулевое значение, и определяют восстановленный ток по следующим выражениям:
Figure 00000028
Figure 00000029
Figure 00000030
где i1 и i2 - первый и второй отсчеты, t1 и t2 - первый и второй моменты времени, притом что третий момент принят нулевым, ω=2πf, f - частота сети.
3. Способ восстановления тока, искаженного вследствие насыщения трансформатора тока, включающий в себя выделение из процесса изменения тока интервала неискаженной трансформации и последующего интервала искаженной трансформации, отличающийся тем, что на интервале неискаженной трансформации фиксируют два отсчета тока в первый и второй моменты времени, на интервале искаженной трансформации определяют затухание тока, на том же интервале формируют сигнал, пропорциональный напряжению нагрузки, определяют третий момент времени, когда указанный сигнал переходит через нулевое значение, и восстанавливают ток, причем сигнал, пропорциональный напряжению нагрузки, определяют по выражению
Figure 00000031
где α - коэффициент затухания, а восстановленный ток определяют по выражениям
Figure 00000032
Figure 00000033
Figure 00000034
где i1 и i2 - первый и второй отсчеты, t1 и t2 - первый и второй моменты времени, притом что третий момент времени принят нулевым.
RU2020122335A 2020-06-30 2020-06-30 Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты) RU2744110C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020122335A RU2744110C1 (ru) 2020-06-30 2020-06-30 Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020122335A RU2744110C1 (ru) 2020-06-30 2020-06-30 Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты)

Publications (1)

Publication Number Publication Date
RU2744110C1 true RU2744110C1 (ru) 2021-03-02

Family

ID=74857743

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020122335A RU2744110C1 (ru) 2020-06-30 2020-06-30 Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты)

Country Status (1)

Country Link
RU (1) RU2744110C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449296C1 (ru) * 2011-01-11 2012-04-27 Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" Устройство для компенсации погрешности трансформатора тока
US8791687B2 (en) * 2012-05-24 2014-07-29 Agilent Technologies, Inc. Transformer correction circuit and technique for reducing cross-talk current
RU2526834C2 (ru) * 2012-12-18 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") Способ компенсации погрешности трансформатора тока
RU2644406C1 (ru) * 2016-11-17 2018-02-12 Общество с ограниченной ответственностью Научно-производственное предприятие "ЭКРА" Способ восстановления приведённого первичного тока трансформатора тока в переходном режиме
RU2648991C1 (ru) * 2017-01-23 2018-03-29 Общество с ограниченной ответственностью "Релематика" Способ восстановления тока при насыщении трансформатора

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449296C1 (ru) * 2011-01-11 2012-04-27 Общество с ограниченной ответственностью "Исследовательский центр "Бреслер" Устройство для компенсации погрешности трансформатора тока
US8791687B2 (en) * 2012-05-24 2014-07-29 Agilent Technologies, Inc. Transformer correction circuit and technique for reducing cross-talk current
RU2526834C2 (ru) * 2012-12-18 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") Способ компенсации погрешности трансформатора тока
RU2644406C1 (ru) * 2016-11-17 2018-02-12 Общество с ограниченной ответственностью Научно-производственное предприятие "ЭКРА" Способ восстановления приведённого первичного тока трансформатора тока в переходном режиме
RU2648991C1 (ru) * 2017-01-23 2018-03-29 Общество с ограниченной ответственностью "Релематика" Способ восстановления тока при насыщении трансформатора

Similar Documents

Publication Publication Date Title
Kang et al. A CT saturation detection algorithm
CN103797372B (zh) 借助于电流互感器测量电流的方法和设备
Sahebi et al. Efficient method for discrimination between inrush current and internal faults in power transformers based on the non‐saturation zone
CN102323503B (zh) 基于罗氏线圈的变压器涌流畸变检测方法
CN103513212B (zh) 基于重构的bh曲线特征ct状态识别以及不饱和度计算方法
EP3560054B1 (en) A method for detecting inrush and ct saturation and an intelligent electronic device therefor
Dos Santos et al. CT saturation detection based on the distance between consecutive points in the plans formed by the secondary current samples and their difference-functions
KR20130021386A (ko) 코어 내의 자기 특성 변수를 검출하기 위한 방법 및 장치
Schettino et al. A new method of current-transformer saturation detection in the presence of noise
Lu et al. A morphological scheme for inrush identification in transformer protection
Bhowmick et al. Online detection of an interturn winding fault in single-phase distribution transformers using a terminal measurement-based modeling technique
Sahebi et al. Identifying internal fault from magnetizing conditions in power transformer using the cascaded implementation of wavelet transform and empirical mode decomposition
RU2744110C1 (ru) Способ восстановления тока, искаженного вследствие насыщения трансформатора тока (его варианты)
RU2648991C1 (ru) Способ восстановления тока при насыщении трансформатора
Abd Allah Experimental results and technique evaluation based on alienation coefficients for busbar protection scheme
Marshall et al. Current transformer excitation under transit conditions
CN109375131B (zh) 一种电流互感器的饱和速度及饱和深度识别方法及系统
Wang et al. Research on residual flux characteristics of transformer with single-phase four-limb core under different DC excitation current
Rebizant et al. Prediction of CT saturation period for differential relay adaptation purposes
Wang et al. A current transformer saturation identification method of transmission line based on current sample data
Kang et al. An algorithm for detecting CT saturation using the secondary current third-difference function
Belčević et al. Algorithm for phasor estimation during current transformer saturation and/or DC component presence: definition and application in arc detection on overhead lines
CN108872675A (zh) 一种基于复小波变换的励磁涌流识别方法
RU2748217C1 (ru) Способ восстановления тока, искаженного вследствие насыщения трансформатора тока
Rebizant et al. Differential relay with adaptation during saturation period of current transformers