RU2743679C1 - Способ улучшения цветовых характеристик природного касситерита методом термообработки - Google Patents

Способ улучшения цветовых характеристик природного касситерита методом термообработки Download PDF

Info

Publication number
RU2743679C1
RU2743679C1 RU2020129090A RU2020129090A RU2743679C1 RU 2743679 C1 RU2743679 C1 RU 2743679C1 RU 2020129090 A RU2020129090 A RU 2020129090A RU 2020129090 A RU2020129090 A RU 2020129090A RU 2743679 C1 RU2743679 C1 RU 2743679C1
Authority
RU
Russia
Prior art keywords
crystals
cassiterite
heat treatment
natural
color
Prior art date
Application number
RU2020129090A
Other languages
English (en)
Other versions
RU2743679C9 (ru
Inventor
Эдуард Анварович Ахметшин
Дмитрий Александрович Петроченков
Original Assignee
Дмитрий Александрович Петроченков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Александрович Петроченков filed Critical Дмитрий Александрович Петроченков
Priority to RU2020129090A priority Critical patent/RU2743679C9/ru
Application granted granted Critical
Publication of RU2743679C1 publication Critical patent/RU2743679C1/ru
Publication of RU2743679C9 publication Critical patent/RU2743679C9/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • C04B41/0081Heat treatment characterised by the subsequent cooling step
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Adornments (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к области физико-химической обработки ювелирных камней и минералов, в частности обработки природного касситерита черного и темно-коричневого цветов. Технический результат заключается в упрощении процесса обработки кристаллов природного касситерита при улучшении его цветовых характеристик. Способ заключается в том, что предварительно отбирают кристаллы касситерита размером более 5 мм, промывают их в воде, сушат, отбирают прозрачные кристаллы или кристаллы, содержащие прозрачные зоны, и затем подвергают их термообработке в окислительной среде при атмосферном давлении, при температуре в диапазоне от 600 до 1000°С в течение времени до 30 мин, при скорости нагрева от 3 до 5°С/мин, охлаждение кристаллов касситерита проводят в естественных условиях до комнатной температуры. 2 з.п. ф-лы, 1 табл., 7 ил.

Description

Изобретение относится к области физико-химической обработки ювелирных камней и минералов, в частности обработки природного касситерита черного и темно-коричневого цветов, и может найти применение в ювелирной промышленности.
Касситерит (SnO2) является основным источником олова и добывается в больших объёмах в различных регионах мира. Стоимость олова в концентрате ― около 15000 $/тонна. При этом касситерит по своим геммологическим характеристикам: высоким показателям преломления (1,9-2,1), дисперсии (0,07), твердости (около 7 по шкале Мооса), несовершенной спайности - не уступает многим известным ювелирным разновидностям минералов. В рудах касситерит содержится преимущественно в виде мелких (менее 1 мм) кристаллов черного цвета. Крупные (более 10 мм) прозрачные кристаллы, используемые в огранке, редки, что позволило отнести касситерит к нетрадиционной группе ювелирных камней. В связи с этим касситерит мало известен широкому кругу ювелиров. В настоящее время на мировом рынке ограненные кристаллы касситерита чёрного, коричневого и серого цветов, редко бесцветные присутствуют в крайне ограниченном количестве и стоят от 100 долларов США за карат.
Метод термообработки широко используется для облагораживания природных рубинов, сапфиров, берилла, граната, топаза и ряда других ювелирных минералов.
Известен способ улучшения цвета драгоценных камней, включающий воздействие комбинации драгоценного камня и по меньшей мере одного воздействующего агента, не содержащего глинозем, в котором воздействующий агент содержит тонкоизмельченную форму кобальта или оксида кобальта в условиях, подходящих для улучшения цвета драгоценного камня, не вызывая значительной степени поверхностного повреждения драгоценного камня. В качестве драгоценного камня может быть выбран топаз, хризоберилл, сапфир, кварц или гранат. В качестве воздействующего агента может выступать кобальт или оксид кобальта. Драгоценный камень может быть очищен перед воздействием условий, подходящих для улучшения цвета драгоценного камня. Условия, подходящие для улучшения цвета драгоценного камня, включают воздействие на указанную комбинацию температуры в диапазоне от примерно 825° до примерно 1050°С в течение некоторого времени, который может составлять от около 3 до около 200 ч. Может проводиться дополнительная термическая обработка драгоценного камня в диапазоне от примерно 825°С до примерно 1050°С в течение от около 3 до около 200 ч без использования воздействующего агента. Драгоценный камень может подвергаться очистке после воздействия указанных условий. (Патент США № US6635309, МПК C04B35/63; A44C17/00; B05D1/12; B05D3/02; C30B29/00, опубл. 21.10.2003).
Также известен способ придания цвета или улучшения цвета таких драгоценных камней, как топаз и сапфир, включающий нанесение на подложку из драгоценных камней цветоиндуцирующего или цветоусиливающего материала и нагревания до температуры в диапазоне от 900 до 1250°С в течение периода от 30 мин до 10 ч. Подходящими материалами покрытия являются металлы, оксиды металлов, другие металлические соединения и сплавы. Путем выбора подходящего материала покрытия, например кобальта, железа, хрома, а также соединений и их смесей, могут быть получены различные цвета, включая синий, зеленый, оранжевый и красный. (Европейская заявка № EP1394293, МПК C30B33/00, C30B29/34, A44C17/00, опубл. 03.03.2004; международная заявка WO9848944.)
Известен способ получения цветных алмазов, используемых, например, в декоративных целях. Способ заключается в преобразовании цветного монокристаллического алмаза в другой цвет, включает стадии, на которых цветной монокристаллический алмаз получают методом химического осаждения из паровой фазы (ХОПФ) и осуществляют термическую обработку полученного алмаза при температуре от 1200 до 2500°С и давлении, стабилизирующем алмаз, или в инертной или стабилизирующей атмосфере. Полученный монокристаллический алмаз может иметь форму толстого слоя или фрагмента слоя, например, ограненного как драгоценный камень. Изобретение позволяет получать алмазы с широким диапазоном цветовой гаммы (от бесцветного до различных фантазийных цветовых оттенков). (Патент РФ № 2328563, МПК C30B 25/02; C30B 33/02; C30B 29/04; H01L 21/02; A44C 17/00, опубл. 10.07.2008.)
Известен способ выращивания монокристаллов с целью повышения их ювелирной ценности, где бесцветный монокристалл содержит кислород и по крайней мере один элемент в матрице монокристалла, которая может быть выполнена в том числе со структурой касситерита. Дополнительно в монокристалл в качестве просветляющей примеси вводят неодим, никель и/или кобальт. Содержание просветляющей примеси составляет от 10-8 до 10-2 мас.%. Кроме того, кристалл может содержать дополнительную просветляющую примесь (кальций, стронций и/или магний), причем содержание дополнительной просветляющей примеси составляет от 10-8 до 10-2 мас.%. (Заявка РФ № 94008773, МПК C30B 29/16, опубл. 27.04.1996.)
Также известен способ выращивания монокристаллов с целью расширения гаммы окраски монокристалла. Окрашенный монокристалл, содержащий кислород, по крайней мере один элемент А в матрице монокристалла, по крайней мере один элемент М в качестве окрашивающей примеси, а также по крайней мере одну дополнительную примесь Ме. Валентность ионов дополнительной примеси отличается от валентности ионов окрашивающей примеси М и/или матрицы монокристалла А. В качестве элемента монокристалл А содержит вольфрам, молибден, ниобий, тантал, фосфор, ванадий, цирконий, гафний, кремний, германий, титан, теллур, свинец, галлий, алюминий, индий, скандий, лютеций, тулий, иттербий, эрбий, иттрий, гольмий, диспрозий, тербий, гадолиний, европий, самарий, неодим, празеодим, лантан, висмут, бор, кальций, стронций, магний, цинк, барий, кобальт, натрий, калий и/или литий. В качестве элемента М он содержит титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, молибден, родий, серебро, кадмий, олово, сурьму, церий, празеодим, самарий, европий, тербий, диспрозий, гольмий, эрбий, тулий, иттербий и/или золото. В качестве элемента Me монокристалл содержит литий, водород, магний, кремний, кальций, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, германий, стронций, ниобий, молибден, олово, сурьму, церий, празеодим, тербий, неодим, самарий, европий, иттербий, висмут, свинец, цирконий, вольфрам, гафний, радий, иридий, платину, калий, натрий, фосфор, бор и/или барий. Содержание окрашивающей и дополнительной примесей не превышает 30 мол.% для каждой. Матрица монокристалла может быть выполнена, в частности, со структурой ростерита, бромеллита, периклаза, рутила, касситерита, оксида иттрия, александрита, шеелита, алюмината иттрия, титаната стронция, ниобата лития, ниобата бария и натрия или танталата лития. (Заявка РФ № 94008750, МПК C30B 15/00, C30B 29/22, опубл. 27.04.1996.)
Недостатком указанных известных технологических решений является то, что их объектом являются искусственные кристаллы с использованием искусственных реагентов, изменяющих цвет минерала. Известные технологии существенно отличаются от природных процессов и не могут переноситься на природные кристаллы касситерита. Кристаллы касситерита не синтезируются с помощью данных технических решений.
Наиболее близким по достигаемому результату к заявляемому техническому решению является способ окрашивания бесцветных и бледно-голубых сапфиров, бесцветных топазов, кварца, предназначенный для использования в ювелирной промышленности, который включает помещение ювелирных камней в тонко измельченный порошок оксида кобальта с соотношением закисной и окисной форм кобальта 1:1, смешанный с оксидом цинка в соотношении оксид кобальта к оксиду цинка как 1:(0,25-3), и последующую термообработку в окислительной атмосфере при 900–1250°С. Способ обеспечивает получение устойчивых окрасок природных и синтетических ювелирных камней в широком спектре цветов. (Патент РФ № 2215455, МПК A44C 17/00, C30B 31/02, C30B 33/02, опубл. 10.11.2003.)
Недостатком указанных выше известных технологических решений является то, что они не могут автоматически переноситься на другие ювелирные минералы, в том числе на касситерит. Кроме того, в указанных способах используются искусственные компоненты, усиливающие или изменяющие цвет кристалла. Подчеркнём, что технологии облагораживания природных кристаллов касситерита для ювелирного использования не зарегистрированы.
Преимуществом заявленной технологии осветления и изменения цвета кристаллов касситерита является то, что в ней не используются искусственные реагенты и она полностью соответствует природным процессам. В результате облагороженные кристаллы идентичны природным – не облагороженным.
Технической задачей, на решение которой направлено заявляемое изобретение, является упрощение процесса обработки кристаллов касситерита при улучшении цветовых характеристик за счет оптимизации процесса термообработки кристаллов и повышении ювелирной ценности кристаллов.
Поставленная техническая задача решается тем, что предварительно подготовленные кристаллы сырья подвергаются термообработке в течение определенного времени. Предварительная подготовка заключается в том, что отбирают кристаллы касситерита размером более 5 мм, промывают их в воде, сушат, отбирают прозрачные кристаллы или кристаллы, содержащие прозрачные зоны. Зоны черного и темно-коричневого цветов, а также зоны с трещинами и минеральными включениями могут быть отпилены или сошлифованы.
Кристаллы касситерита подвергаются термообработке в окислительной среде при атмосферном давлении, при температуре в диапазоне от 600 до 1000°С в течение времени до 30 мин, при скорости нагрева от 3 до 5°С/мин; охлаждение кристаллов касситерита проводят в естественных условиях до комнатной температуры.
После термообработки отбирают кристаллы с неудовлетворительными результатами и проводят дальнейшую термообработку с увеличением температуры от 800 до 1000°С.
Оптимизация процесса термообработки кристаллов касситерита основана на комплексе исследований кристаллов касситерита ювелирного качества, проведённых авторами, которые привели к следующим результатам.
Цвет касситерита определяется комплексом факторов. Чёрный цвет кристаллов обусловлен близким расположением последовательно-параллельных окрашенных зон роста. Тёмная окраска зон роста связана с микродефектами кристалла, содержащимися в них микровключениями, в первую очередь аморфного и графитизированного углеродистого вещества. Чёрная и серая окраска касситерита определяется также дефицитом кислорода в кристаллической структуре. Коричневый цвет обусловлен радиационными центрами окраски, которые могут разрушаться при нагревании. Жёлтая окраска проявляется преимущественно в периферийных частях кристаллов и определяется избытком кислорода в кристаллической структуре. Красным цветом окрашены только узкие зоны роста. Оптические эффекты могут создавать впечатление широких зон красного и оранжевого цветов. Красный цвет определяется тонкодисперсными выделениями оксида железа в зонах структурных нарушений.
Исходя из результатов исследований проведён комплекс экспериментов по облагораживанию касситерита. В процессе экспериментов изучены кристаллы касситерита из месторождений Мерек, Иультин, Тенкергин, Пыркакай, Укачилкан, Фестивальное (Россия), Вилоко (Боливия) и провинции Сичуань (Китай), охватывающие основные промышленные типы. Всего было проведено более 100 экспериментов.
Облагораживание касситерита происходит путем термообработки кристаллов при определенной температуре и времени, которые получены экспериментальным путем.
Тенденции изменения окраски кристаллов касситерита из различных месторождений достаточно близкие. В интервале 300–400°С визуальных изменений окраски кристаллов не наблюдалось. При этом происходило разрушение части кристаллов, иногда до мелких фракций. В интервале 500–800°С происходит осветление кристаллов и окрашивание прозрачных светлых зон. Окрашивание начинается с появления жёлтого цвета. При дальнейшем нагревании образуются зоны оранжевого цвета, а затем и красного, увеличивается их насыщенность. Оранжевый и красный цвета локализуются в узких зонах кристаллов. В интервале 800–1000°С наблюдается усиление насыщенности цвета и осветление кристаллов при невысокой интенсивности. При этом происходит более интенсивное увеличение числа и размера микротрещин, ухудшающих качество кристаллосырья и вызывающих разрушение кристаллов. Дальнейшая термообработка кристаллов до 1200°С приводит к появлению многочисленных внутренних трещин, а на поверхности - мелких каверн и полному их разрушению.
Результаты облагораживания кристаллов, при общей описанной тенденции, индивидуальны. Тёмные, непрозрачные кристаллы или зоны в них при термообработке не осветляются и не окрашиваются. Термообработка начиная с 300°С приводит к увеличению числа и размера микропор и микротрещин, ухудшая прозрачность кристаллов, часто и к полному их разрушению. Быстрая скорость нагрева и охлаждения кристаллов увеличивает степень их разрушения. Время термообработки кристаллосырья от 30 мин до 5 ч не оказывает существенного влияния на результаты облагораживания. Указанные факты необходимо учитывать при подготовке кристаллосырья и выборе оптимального режима облагораживания.
Изменения цвета касситерита при термообработке в атмосфере воздуха в зависимости от температуры нагрева приведены в Таблице. Примеры реализации метода проиллюстрированы рисунками:
На фиг. 1 показано разрушение пластины касситерита 16×16×3,5 мм месторождения Мерек при термообработке в атмосфере воздуха при 350 °С. Изменение цвета не происходит.
На фиг. 2 показано изменение цвета кристалла касситерита 21×18×17 мм месторождения Мерек при термообработке в атмосфере воздуха при 500 и 1000°С.
На фиг. 3 показано изменение цвета пластины касситерита 14×10×4 мм месторождения Мерек при термообработке в атмосфере воздуха при 500, 700, 1000 и 1200°С.
На фиг. 4 показано изменение цвета пластины касситерита 17×15×4 мм месторождения Иультин при термообработке в атмосфере воздуха при 500, 700, 1000 и 1200°С.
На фиг. 5 показано изменение цвета пластины касситерита 12×12×4 мм месторождения Тенкергин при термообработке в атмосфере воздуха при 500, 700, 1000 и 1200°С.
На фиг. 6 показаны огранённые кристаллы необлагороженного касситерита: месторождение Мерек, 5,7 мм, 1,3 кар; месторождение Иультин, 6,5 мм, 2,2 кар; 2–4 мм. Коллекция Д.А. Петроченкова.
На фиг. 7 показаны кристаллы касситерита, термообработанные в атмосфере воздуха: месторождение Мерек, 6,7 мм, 2,2 кар; 8,3×5,9 мм, 3,3 кар; 2–4 мм. Коллекция Д.А. Петроченкова.
Таблица
Т, °С Цвет образца
- Чёрный, в краях прозрачные серые зоны, с прозрачными коричневыми и серыми зонами
300 Изменений нет
400 Изменений цвета нет; разрушение отдельных образцов
500 Осветление прозрачных зон; появление жёлтого цвета слабой насыщенности
600 Расширение и осветление прозрачных зон; появление оранжевого и красного цветов; усиление насыщенности жёлтого
700 Расширение и осветление прозрачных зон; усиление насыщенности жёлтого, оранжевого и красного цветов
800 Расширение и осветление прозрачных зон; усиление насыщенности оранжевого и красного цветов
900-1000 Незначительное расширение прозрачных зон; слабое усиление насыщенности оранжевого и красного цветов; существенное увеличение видимых трещин; частичное разрушение образцов; чёрные непрозрачные зоны остаются без изменения
1000-1200 Слабое усиление насыщенности оранжевого и красного цветов; существенное увеличение видимых трещин и разрушение образцов
В предложенной технологии важное место занимает методика отбора кристаллов или их фрагментов для облагораживания. Кроме того, подбор оптимальных режимов термообработки кристаллов позволяет получить качественные кристаллы, пригодные для использования в ювелирной промышленности.
Заявленный способ является оригинальным, базируется на разработанной теоретической базе и большом количестве экспериментов, позволяет получить кристаллы касситерита, пригодные для огранки, с яркой жёлтой, оранжевой и красной окраской, исключительно редко встречающиеся в природе.

Claims (3)

1. Способ улучшения цветовых характеристик природного касситерита, включающий предварительную подготовку кристаллосырья и его термообработку в течение определенного времени, отличающийся тем, что предварительно отбирают кристаллы касситерита размером более 5 мм, промывают их в воде, сушат, отбирают прозрачные кристаллы или кристаллы, содержащие прозрачные зоны, и затем подвергают их термообработке в окислительной среде при атмосферном давлении, при температуре в диапазоне от 600 до 1000°С в течение времени до 30 мин, при скорости нагрева от 3 до 5°С/мин, охлаждение кристаллов касситерита проводят в естественных условиях до комнатной температуры.
2. Способ по пп. 1 и 2, отличающийся тем, что перед термообработкой у кристаллов касситерита отпиливают или сошлифовывают непрозрачные зоны черного и темно-коричневого цветов и зоны с трещинами и минеральными включениями.
3. Способ по п. 1, отличающийся тем, что после термообработки отбирают кристаллы с неудовлетворительными результатами и проводят дальнейшую термообработку с увеличением температуры до 800°С (1000°С).
RU2020129090A 2020-09-02 2020-09-02 Способ улучшения цветовых характеристик природного касситерита методом термообработки RU2743679C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020129090A RU2743679C9 (ru) 2020-09-02 2020-09-02 Способ улучшения цветовых характеристик природного касситерита методом термообработки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020129090A RU2743679C9 (ru) 2020-09-02 2020-09-02 Способ улучшения цветовых характеристик природного касситерита методом термообработки

Publications (2)

Publication Number Publication Date
RU2743679C1 true RU2743679C1 (ru) 2021-02-24
RU2743679C9 RU2743679C9 (ru) 2021-05-31

Family

ID=74672730

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020129090A RU2743679C9 (ru) 2020-09-02 2020-09-02 Способ улучшения цветовых характеристик природного касситерита методом термообработки

Country Status (1)

Country Link
RU (1) RU2743679C9 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888918A (en) * 1997-04-25 1999-03-30 Pollak; Richard Method for enhancing the color of minerals useful as gemstones
US6635309B2 (en) * 2001-03-12 2003-10-21 Richard D. Pollak Process for the color enhancement of gemstones
RU2215454C1 (ru) * 2002-06-18 2003-11-10 Институт экспериментальной минерологии РАН Способ окрашивания природных и синтетическх ювелирных камней
RU2215455C1 (ru) * 2002-06-18 2003-11-10 Институт экспериментальной минералогии РАН Способ окрашивания природных и синтетических ювелирных камней

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888918A (en) * 1997-04-25 1999-03-30 Pollak; Richard Method for enhancing the color of minerals useful as gemstones
US6635309B2 (en) * 2001-03-12 2003-10-21 Richard D. Pollak Process for the color enhancement of gemstones
RU2215454C1 (ru) * 2002-06-18 2003-11-10 Институт экспериментальной минерологии РАН Способ окрашивания природных и синтетическх ювелирных камней
RU2215455C1 (ru) * 2002-06-18 2003-11-10 Институт экспериментальной минералогии РАН Способ окрашивания природных и синтетических ювелирных камней

Also Published As

Publication number Publication date
RU2743679C9 (ru) 2021-05-31

Similar Documents

Publication Publication Date Title
US7137275B2 (en) Coatings for gemstones and other decorative objects
US7172655B2 (en) Colored diamond
KR102094575B1 (ko) 내열 합성 장신구 재료
Nassau Heat treating ruby and sapphire: technical aspects
US7732011B2 (en) Method to produce tone-controlled colors in colorless crystals
RU2743679C1 (ru) Способ улучшения цветовых характеристик природного касситерита методом термообработки
EP1017504B1 (en) Method for enhancing the color of minerals useful as gemstones
KR100856109B1 (ko) 발색조절된 사파이어 제조방법
CN1572541A (zh) 用于制造饰件的方法
US6872422B2 (en) Process for imparting and enhancement of colours in gemstone minerals and gemstone minerals obtained thereby
RU2738536C1 (ru) Способ термической обработки минерала и термически обработанный минерал
Crowningshield et al. The heat and diffusion treatment of natural and synthetic sapphires
US6376031B1 (en) Method for enhancing the color of minerals useful as gemstones
CN106637417A (zh) 一种人工蓝宝石晶体的改色方法
Sakthivel et al. Effect of fusion mixture treatment on the surface of low grade natural ruby
Kwansirikul et al. EXPERIMENTAL HEAT TREATING OF TRAPICHELIKE BLUE SAPPHIRE OF SOUTHERN VIETNAM.
SU1673470A1 (ru) Способ окраски халцедонов и агатов
KR100698610B1 (ko) 천연루비의 열처리에 의한 색향상 기술
JP6333506B2 (ja) 血液由来成分含有物質の製造方法、および血液由来成分含有物質
SU1175723A1 (ru) Способ облагораживани изделий из природного камн
US1775870A (en) Synthetic spinel gem resembling blue zircon
Nikolaeva Spectral Analysis of Heat-Treated Corundum Natural Crystals
Shigley et al. NEW TECHNIQUES
KR101561269B1 (ko) 보석 색향상 방법
RU2111192C1 (ru) Способ окраски природных минералов группы халцедона

Legal Events

Date Code Title Description
TH4A Reissue of patent specification