RU2741505C1 - Polyether ether ketone carbon-fiber composite and method for production thereof - Google Patents
Polyether ether ketone carbon-fiber composite and method for production thereof Download PDFInfo
- Publication number
- RU2741505C1 RU2741505C1 RU2020110910A RU2020110910A RU2741505C1 RU 2741505 C1 RU2741505 C1 RU 2741505C1 RU 2020110910 A RU2020110910 A RU 2020110910A RU 2020110910 A RU2020110910 A RU 2020110910A RU 2741505 C1 RU2741505 C1 RU 2741505C1
- Authority
- RU
- Russia
- Prior art keywords
- carbon
- ether ketone
- filler
- carbon fiber
- fibre
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Изобретение относится к полимерным композиционным материалам и способу их получения, предназначенным в качестве суперконструкционных полимерных материалов, включающий в себя ПЭЭК и УВ, аппретированное полигидроксэфиром.SUBSTANCE: invention relates to polymeric composite materials and a method for their production, intended as superstructure polymeric materials, including PEEK and HC, finished with polyhydroxether.
Развитие многих передовых технологий, например, аддитивных, требует использования композиционных материалов с улучшенными теплофизическими и физико-механическими характеристиками. Низкие прочностные свойства многих полимерных композиционных материалов (ПКМ), обусловливаются низкими межслоевыми взаимодействиями на границе наполнитель-полимер. Повысить адгезию между полимерной матрицей и наполнителем можно с помощью различных аппретов.The development of many advanced technologies, for example, additive technologies, requires the use of composite materials with improved thermophysical and physical-mechanical characteristics. Low strength properties of many polymer composite materials (PCMs) are due to low interlayer interactions at the filler-polymer interface. It is possible to increase the adhesion between the polymer matrix and the filler using various finishing agents.
Известны полимерные композиции, содержащие полиэфиркетоны.Known polymer compositions containing polyether ketones.
Патент EP 0224236 A2 посвящен созданию композиций полимеров с улучшенной химической стойкостью и стабильной формовкой для литья под давлением, которые содержат полиэфиркетон (ПЭК), (не полиэфирэфиркетон (ПЭЭК)), ароматический полисульфон и наполнители, в том числе и углеродное волокно. Patent EP 0224236 A2 is devoted to the creation of polymer compositions with improved chemical resistance and stable molding for injection molding, which contain polyether ketone (PEC), (not polyether ether ketone (PEEK)), aromatic polysulfone and fillers, including carbon fiber.
В патенте EP 0316681 A2 также описаны волокнистые композиционные материалы из полиэфирсульфона, полифиркетона (не полиэфирэфиркетона) и углеродного волокна. В обоих патентах приводятся композиты, полученные из смеси двух полимеров - полиэфирсульфона, полифиркетона, наполненных волокнами. В них не приведены сведения об аппретировании углеродных волокон для получения ПКМ с повышенными механическими свойствами.EP 0316681 A2 also describes fibrous composites of polyethersulfone, polypyrketone (not polyetheretherketone) and carbon fiber. Both patents describe composites made from a mixture of two polymers - polyethersulfone, polypyrketone, filled with fibers. They do not provide information on the sizing of carbon fibers to obtain PCMs with enhanced mechanical properties.
В патенте РФ № 2278126, опубл. 20.06.2006, бюл. № 17, приведены композиции, используемые для сшивания цепей. В этой работе предлагается использовать смесь полиэфиркетона (не ПЭЭК) с концевыми аминогруппами и сополимеры полиэфирсульфона (ПЭС) и сополиэфирэфирсульфона (ПЭЭС) с концевыми ангидридными группами. Смесь растворяют в высококипящем растворителе - N-метилпирролидоне и обрабатывают ею углеродные волокна. In the patent of the Russian Federation No. 2278126, publ. 20.06.2006, bul. No. 17, shows the compositions used for linking chains. In this work, it is proposed to use a mixture of polyether ketone (not PEEK) with terminal amino groups and copolymers of polyether sulfone (PES) and copolyether ether sulfone (PEES) with terminal anhydride groups. The mixture is dissolved in a high-boiling solvent - N-methylpyrrolidone and treated with carbon fibers.
Недостатком решения является использование растворителя с высокой точкой кипения (203°С), который трудно удалить из композиции, а его остатки при высоких температурах эксплуатации изделий приведут к появлению в отливках пузырей, и как следствие, к понижению эксплуатационных свойств.The disadvantage of this solution is the use of a solvent with a high boiling point (203 ° C), which is difficult to remove from the composition, and its residues at high operating temperatures of products will lead to the appearance of bubbles in the castings, and as a result, to a decrease in operational properties.
Обнаружить работы, посвященные композитам, состоящим из «чистых» полиэфирэфиркетонов и аппретированных углеродных волокон (УВ) в литературе не удалось.It was not possible to find works devoted to composites consisting of "pure" polyetheretherketones and sized carbon fibers (HC) in the literature.
Из уровня техники известны различные виды аппретирующих добавок, используемых при создании полимерных композиционных материалов. Так, в патенте на изобретение RU 2057767 приводится полимерный композиционный материал, в состав которого входят полисульфоновый полимер и углеродные волокна. Углеродные волокна содержат на поверхности в качестве аппретирующего слоя сополимер, состоящий из звеньев метакриловой кислоты, диэтиленгликоля и бензосульфокислоты в молярном соотношении от 49,5:49,5:1 до 49:49:2 в количестве 0,52-5,0% от массы волокна при следующем соотношении компонентов, мас.%: углеродные армирующие волокна, содержащие сополимер, 25-75; полисульфоновая матрица остальное. По словам авторов изобретения, использование в качестве аппретирующего слоя указанного сополимера позволяет в 1,8-2,2 раза повысить межслоевую прочность при сдвиге полисульфоновых углепластиков. Various types of sizing additives are known from the prior art, which are used to create polymer composites. So, in the patent for invention RU 2057767, a polymer composite material is given, which includes a polysulfone polymer and carbon fibers. Carbon fibers contain on the surface as a finishing layer a copolymer consisting of units of methacrylic acid, diethylene glycol and benzosulfonic acid in a molar ratio from 49.5: 49.5: 1 to 49: 49: 2 in the amount of 0.52-5.0% of fiber mass at the following ratio of components, wt%: carbon fiber reinforcing, containing copolymer, 25-75; polysulfone matrix the rest. According to the authors of the invention, the use of the specified copolymer as a finishing layer makes it possible to increase the interlayer shear strength of polysulfone carbon plastics by 1.8-2.2 times.
Основным недостатком предлагаемого решения является использование водной среды для нанесения на углеродную ленту смеси мономеров. Так как углеродные волокна и ленты являются гидрофобными, добиться равномерного распределения водного раствора смеси мономеров сложно. В результате полимеризации также возможна неполная конверсия мономеров, что может привести к образованию и выделению воды на других этапах получения полимерного композита, что приведет к образованию пор и снижению прочностных характеристик. Присутствие в водной среде бензолсульфокислоты будет способствовать к накоплению ионов, что будет ухудшать диэлектрические свойства материалов.The main disadvantage of the proposed solution is the use of an aqueous medium for applying a mixture of monomers to the carbon tape. Since carbon fibers and ribbons are hydrophobic, it is difficult to achieve a uniform distribution of an aqueous solution of a mixture of monomers. As a result of polymerization, incomplete conversion of monomers is also possible, which can lead to the formation and release of water at other stages of obtaining a polymer composite, which will lead to the formation of pores and a decrease in strength characteristics. The presence of benzenesulfonic acid in an aqueous medium will contribute to the accumulation of ions, which will worsen the dielectric properties of materials.
По патенту РФ №2201423 получены полимерные композиции из полимерного связующего (аппрета) и стеклоткани или углеродного наполнителя. Сначала получают связующее - олигомер реакцией тетранитрила ароматической тетракарбоновой кислоты и ароматического бис-о-цианамина при температурах 170-180°С. Связующее получается в виде порошка.According to RF patent No. 2201423, polymer compositions were obtained from a polymer binder (sizing) and glass fabric or carbon filler. First, a binder, an oligomer, is obtained by the reaction of tetranitrile of aromatic tetracarboxylic acid and aromatic bis-o-cyanamine at temperatures of 170-180 ° C. The binder is obtained in powder form.
Основным недостатком этого решения является сложность процесса получения связующего. При неполной конверсии мономеров во время синтеза, может происходить выделение побочных низкомолекулярных продуктов реакции во время совмещения связующего с наполнителем при повышенной температуре, следствием чего будет иметь место образование пустот в композиционном материале. Указанное приведет к ухудшению прочностных характеристик материала. Кроме этого, порошкообразные аппреты могут недостаточно равномерно покрывать поверхность наполнителя.The main disadvantage of this solution is the complexity of the binder preparation process. With incomplete conversion of monomers during synthesis, the release of low molecular weight by-products of the reaction may occur during the combination of the binder with the filler at an elevated temperature, as a result of which voids will form in the composite material. This will lead to a deterioration in the strength characteristics of the material. In addition, powdered finishes may not evenly coat the filler surface.
Известны полиэфиримидные композиты по патенту США №4049613. Чтобы увеличить смачиваемость углеродного волокна полимерной матрицей, авторы предлагают выдерживать наполнитель в горячей азотной кислоте в течение трех суток, что в технологическом и экономическом плане невыгодны.Known polyetherimide composites according to US patent No. 4049613. To increase the wettability of the carbon fiber by the polymer matrix, the authors propose to keep the filler in hot nitric acid for three days, which is technologically and economically disadvantageous.
Наиболее близким аналогом выступает способ аппретирования углеродного волокна по патенту РФ №2054015 «Способ аппретирования углеродного волокна для производства полисульфонового углепластика». The closest analogue is the method of finishing carbon fiber according to RF patent No. 2054015 "Method for finishing carbon fiber for the production of polysulfone carbon fiber".
По предлагаемому способу, проводят смешение блоксополимера с растворителем. Блоксополимером, состоящим из звеньев бисметакрилоилоксидиэтиленгликольфталата и бисметакрилоилокси-триэтиленгликольфталата, осуществляют пропитку углеродного наполнителя с последующей сушкой для удаления растворителя и полимеризации пленки аппрета на волокне, отличающийся тем, что смешение проводят в воде с одновременным воздействием ультразвукового излучения при частоте от 15 до 44 кГц и длительности воздействия от 5 до 14 минут. According to the proposed method, the block copolymer is mixed with a solvent. A block copolymer consisting of units of bismethacryloyloxydiethylene glycolphthalate and bismethacryloyloxy-triethylene glycolphthalate impregnates the carbon filler followed by drying to remove the solvent and polymerize the sizing film on the fiber, characterized in that mixing is carried out in water with simultaneous exposure to ultrasonic radiation from 15 to 44 kHz exposure from 5 to 14 minutes.
Недостатками способа являются использование водных растворов блоксополимеров для смачивания гидрофобных поверхностей углеродного волокна и необходимость дальнейшей полимеризации на поверхности наполнителя. Следствием может быть неравномерное смачивание наполнителя, а, следовательно, понижение свойств получаемого углепластика.The disadvantages of this method are the use of aqueous solutions of block copolymers to wet the hydrophobic surfaces of the carbon fiber and the need for further polymerization on the surface of the filler. The consequence can be uneven wetting of the filler, and, consequently, a decrease in the properties of the resulting carbon fiber reinforced plastic.
Задача настоящего изобретения заключается в получении композиционного материала с более высокими физико-механическими свойствами на основе матричного полимера полиэфирэфиркетона (ПЭЭК) армированного аппретированным углеродным волокном (УВ) и разработка способа его получения.The objective of the present invention is to obtain a composite material with higher physical and mechanical properties based on a matrix polymer of polyetheretherketone (PEEK) reinforced with sized carbon fiber (HC) and to develop a method for its production.
Поставленная задача достигается тем, что композиционные материалы, армированные углеродными наполнителями, получают предварительной обработкой углеродного волокна аппретирующим компонентом, представляющим собой полигидроксиэфир (ПГЭ) формулы: The task is achieved by the fact that composite materials reinforced with carbon fillers are obtained by pretreating carbon fiber with a finishing component, which is a polyhydroxyether (PGE) of the formula:
Матричный полиэфирэфиркетон представляет собой промышленный полимер PEEK 450, являющийся продуктом поликонденсации 1,4-диоксибензола и 4,4'-дифторбензофенона формулы: Matrix polyetheretherketone is an industrial polymer PEEK 450, which is a polycondensation product of 1,4-dioxybenzene and 4,4'-difluorobenzophenone of the formula:
При этом берут следующие соотношения (мас.%) компонентов в наполнителе (УВ+ПГЭ):In this case, the following ratios (wt%) of the components in the filler (HC + PGE) are taken:
Количество аппретированного углеродного волокна в композиционном материале соответствует 20 мас.%. Такая обработка аппретирующим составом повышает смачиваемость наполнителя полиэфирэфиркетоном, дает возможность многократно проводить при необходимости термообработку получаемого изделия без изменения свойств аппрета. The amount of finished carbon fiber in the composite material corresponds to 20% by weight. Such treatment with a sizing composition increases the wettability of the filler with polyetheretherketone, makes it possible to repeatedly carry out, if necessary, heat treatment of the resulting product without changing the properties of the sizing.
Углеродный наполнитель покрывают аппретирующим составом путем обработки в хлорированных органических растворителях, диоксане, N,N-диметилацетамиде, преимущественно в хлороформе, затем высушивают до постоянной массы. The carbon filler is coated with a sizing composition by treatment in chlorinated organic solvents, dioxane, N, N-dimethylacetamide, mainly in chloroform, and then dried to constant weight.
Композиционные материалы по настоящему изобретению получают путем предварительного смешения полимерной матрицы и аппретированного углеволокна с использованием высокоскоростного гомогенизатора Multi function disintegrator VLM-40B. Затем полимерная смесь подвергается экструзии с использованием лабораторного двухшнекового экструдера с тремя зонами нагрева при температурных режимах переработки 200°С, 315°С, 355°С. Использованы углеродное волокно марки RK-306 (IFI Technical Production) и промышленный полиэфирэфиркетон марки PEEK 450 с приведенной вязкостью 0,32 дл/г, измеренной для 1%-го раствора в концентрированной серной кислоте.The composites of the present invention are prepared by premixing a polymer matrix and finished carbon fiber using a VLM-40B Multi function disintegrator high speed homogenizer. Then the polymer mixture is extruded using a laboratory twin-screw extruder with three heating zones at processing temperatures of 200 ° C, 315 ° C, 355 ° C. Used carbon fiber grade RK-306 (IFI Technical Production) and industrial polyetheretherketone grade PEEK 450 with a reduced viscosity of 0.32 dl / g, measured for a 1% solution in concentrated sulfuric acid.
Ниже представлены примеры, иллюстрирующие способ получения аппретированных углеродных волокон.Below are examples illustrating a method for producing finished carbon fibers.
Пример 1Example 1
В трехгорловую круглодонную колбу, снабженную прямым холодильником, устройством для подачи газообразного азота, нагревателем и механической мешалкой, помещают 24,5 г (98 мас.%) дискретного УВ с длиной волокон 0,2 мм и приливают раствор, полученный растворением 0,5 г (2 мас.%) ПГЭ в 120 мл хлороформа (0,28 %-й раствор). Включают мешалку, подачу азота и перемешивают в течение 30 мин при комнатной температуре. Далее проводят нагревание содержимого колбы и отгонку хлороформа по режиму: 40°С - 30 мин; 50°С - 30 мин; 65°С - 30 мин; 75°С - 30 мин; 85°С - 30 мин.In a three-necked round-bottom flask equipped with a direct condenser, a device for supplying gaseous nitrogen, a heater and a mechanical stirrer, 24.5 g (98 wt.%) Of discrete HC with a fiber length of 0.2 mm is poured and a solution obtained by dissolving 0.5 g (2 wt%) PHE in 120 ml of chloroform (0.28% solution). Turn on the stirrer, supply nitrogen and stir for 30 minutes at room temperature. Next, the contents of the flask are heated and the chloroform is distilled off according to the following regime: 40 ° C - 30 min; 50 ° С - 30 min; 65 ° C - 30 min; 75 ° C - 30 min; 85 ° C - 30 min.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 90-95°С 2 часа.The sized fiber is dried in an oven under vacuum at 90-95 ° C for 2 hours.
Пример 2Example 2
В трехгорловую круглодонную колбу, снабженную прямым холодильником, устройством для подачи газообразного азота, нагревателем и механической мешалкой, помещают 24,375 г (97,5 мас.%) дискретного УВ с длиной волокон 0,2 мм и приливают раствор, полученный растворением 0,625 г (2,5 мас.%) ПГЭ в 120 мл хлороформа (0,35%-й раствор). Включают мешалку, подачу азота и перемешивают в течение 30 мин при комнатной температуре. Далее проводят нагревание содержимого колбы и отгонку хлороформа по режиму: 40°С - 30 мин; 50°С - 30 мин; 65°С - 30 мин; 75°С - 30 мин; 85°С - 30 мин.In a three-necked round-bottom flask equipped with a direct condenser, a device for supplying gaseous nitrogen, a heater and a mechanical stirrer, 24.375 g (97.5 wt.%) Of discrete HC with a fiber length of 0.2 mm is poured and the solution obtained by dissolving 0.625 g (2 , 5 wt.%) PGE in 120 ml of chloroform (0.35% solution). Turn on the stirrer, supply nitrogen and stir for 30 minutes at room temperature. Next, the contents of the flask are heated and the chloroform is distilled off according to the following regime: 40 ° C - 30 min; 50 ° С - 30 min; 65 ° C - 30 min; 75 ° C - 30 min; 85 ° C - 30 min.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 90-95°С 2 часа.The sized fiber is dried in an oven under vacuum at 90-95 ° C for 2 hours.
Пример 3Example 3
В трехгорловую круглодонную колбу, снабженную прямым холодильником, устройством для подачи газообразного азота, нагревателем и механической мешалкой, помещают 24,25 г (97,0 мас.%) дискретного УВ с длиной волокон 0,2 мм и приливают раствор, полученный растворением 0,75 г (3 мас.%) ПГЭ в 120 мл хлороформа (0,42 %-й раствор). Включают мешалку, подачу азота и перемешивают в течение 30 мин при комнатной температуре. Далее проводят нагревание содержимого колбы и отгонку хлороформа по режиму: 40°С - 30 мин; 50°С - 30 мин; 65°С - 30 мин; 75°С - 30 мин; 85°С - 30 мин.In a three-necked round-bottom flask equipped with a direct condenser, a device for supplying gaseous nitrogen, a heater and a mechanical stirrer, 24.25 g (97.0 wt.%) Of discrete HC with a fiber length of 0.2 mm is poured, and the solution obtained by dissolving 0, 75 g (3 wt.%) PGE in 120 ml of chloroform (0.42% solution). Turn on the stirrer, supply nitrogen and stir for 30 minutes at room temperature. Next, the contents of the flask are heated and the chloroform is distilled off according to the following regime: 40 ° C - 30 min; 50 ° С - 30 min; 65 ° C - 30 min; 75 ° C - 30 min; 85 ° C - 30 min.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 90-95°С 2 часа.The sized fiber is dried in an oven under vacuum at 90-95 ° C for 2 hours.
Пример 4Example 4
В трехгорловую круглодонную колбу, снабженную прямым холодильником, устройством для подачи газообразного азота, нагревателем и механической мешалкой, помещают 24,125 г (96,5 мас.%) дискретного УВ с длиной волокон 0,2 мм и приливают раствор, полученный растворением 0,875 г (3,5 мас.%) ПГЭ в 120 мл хлороформа (0,49 %-й раствор). Включают мешалку, подачу азота и перемешивают в течение 30 мин при комнатной температуре. Далее проводят нагревание содержимого колбы и отгонку хлороформа по режиму: 40°С - 30 мин; 50°С - 30 мин; 65°С - 30 мин; 75°С - 30 мин; 85°С - 30 мин.In a three-necked round-bottom flask equipped with a direct condenser, a device for supplying gaseous nitrogen, a heater and a mechanical stirrer, 24.125 g (96.5 wt.%) Of discrete HC with a fiber length of 0.2 mm is poured and the solution obtained by dissolving 0.875 g (3 , 5 wt%) PHE in 120 ml of chloroform (0.49% solution). Turn on the stirrer, supply nitrogen and stir for 30 minutes at room temperature. Next, the contents of the flask are heated and the chloroform is distilled off according to the following regime: 40 ° C - 30 min; 50 ° С - 30 min; 65 ° C - 30 min; 75 ° C - 30 min; 85 ° C - 30 min.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 90-95°С 2 часа.The sized fiber is dried in an oven under vacuum at 90-95 ° C for 2 hours.
Пример 5Example 5
В трехгорловую круглодонную колбу, снабженную прямым холодильником, устройством для подачи газообразного азота, нагревателем и механической мешалкой, помещают 24,0 г (96 мас.%) дискретного УВ с длиной волокон 0,2 мм и приливают раствор, полученный растворением 1,0 г (4 мас.%) ПГЭ в 120 мл хлороформа (0,56%-й раствор). Включают мешалку, подачу азота и перемешивают в течение 30 мин при комнатной температуре. Далее проводят нагревание содержимого колбы и отгонку хлороформа по режиму: 40°С - 30 мин; 50°С - 30 мин; 65°С - 30 мин; 75°С - 30 мин; 85°С - 30 мин.In a three-necked round-bottom flask equipped with a direct condenser, a device for supplying gaseous nitrogen, a heater and a mechanical stirrer, 24.0 g (96 wt.%) Of discrete HC with a fiber length of 0.2 mm is poured and a solution obtained by dissolving 1.0 g is poured (4 wt%) PGE in 120 ml of chloroform (0.56% solution). Turn on the stirrer, supply nitrogen and stir for 30 minutes at room temperature. Next, the contents of the flask are heated and the chloroform is distilled off according to the following regime: 40 ° C - 30 min; 50 ° С - 30 min; 65 ° C - 30 min; 75 ° C - 30 min; 85 ° C - 30 min.
Аппретированное волокно сушат в сушильном шкафу под вакуумом при 90-95°С 2 часа. Из аппретированных УВ и ПЭЭК получены ПКМ, содержащие 20 мас.% УВ (таблица 1).The sized fiber is dried in an oven under vacuum at 90-95 ° C for 2 hours. PCMs containing 20 wt% HC were obtained from smoothed hydrocarbons and PEEK (Table 1).
Таблица 1Table 1
Приведенные в таблице данные показывают, что композиционные материалы, содержащие аппретированные УВ (примеры №, № 1-5), обладают более высокими значениями физико-механических свойств по сравнению с неаппретированным образцом (первая строка). The data in the table show that composite materials containing sized HC (examples No. 1-5) have higher values of physical and mechanical properties compared to the uncoated sample (first line).
Технический результат предлагаемого изобретения заключается в улучшении физико-механических свойств создаваемого полиэфирэфиркетонного углеволокнистого композита за счет введения аппретирующего полимера, который повышает смачиваемость углеродного волокна и увеличивает межмолекулярные взаимодействия между наполнителем и полиэфирэфиркетонной матрицей.The technical result of the present invention is to improve the physical and mechanical properties of the created polyetheretherketone carbon fiber composite by introducing a finishing polymer that increases the wettability of the carbon fiber and increases intermolecular interactions between the filler and the polyetheretherketone matrix.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020110910A RU2741505C1 (en) | 2020-03-16 | 2020-03-16 | Polyether ether ketone carbon-fiber composite and method for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020110910A RU2741505C1 (en) | 2020-03-16 | 2020-03-16 | Polyether ether ketone carbon-fiber composite and method for production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2741505C1 true RU2741505C1 (en) | 2021-01-26 |
Family
ID=74213114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020110910A RU2741505C1 (en) | 2020-03-16 | 2020-03-16 | Polyether ether ketone carbon-fiber composite and method for production thereof |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2741505C1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2770098C1 (en) * | 2021-04-01 | 2022-04-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) | Polymer composites of polyphenylene sulphide, finished carbon fibre and method for production thereof |
RU2770088C1 (en) * | 2021-04-01 | 2022-04-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) | Polyphenylene sulphide composite materials with carbon fibres and method for production thereof |
RU2793888C1 (en) * | 2022-02-28 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М.Бербекова" (КБГУ) | Polymer composite material based on polyetheretherketone and carbon fiber and a method for its production |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0224236A2 (en) * | 1985-11-29 | 1987-06-03 | Sumitomo Chemical Company, Limited | Thermoplastic resin composition with improved chemical resistance |
RU2054015C1 (en) * | 1994-04-28 | 1996-02-10 | Московский авиационный технологический институт им.К.Э.Циолковского | Process for finishing carbon fiber for manufacture of polysulfonic carbon plastic material |
RU2057767C1 (en) * | 1993-06-17 | 1996-04-10 | Московский авиационный технологический институт им.К.Э.Циолковского | Polymeric composite material |
US6020063A (en) * | 1997-07-31 | 2000-02-01 | Virginia Tech Intellectual Properties, Inc. | Composites of thermosetting resins and carbon fibers having polyhydroxyether sizings |
-
2020
- 2020-03-16 RU RU2020110910A patent/RU2741505C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0224236A2 (en) * | 1985-11-29 | 1987-06-03 | Sumitomo Chemical Company, Limited | Thermoplastic resin composition with improved chemical resistance |
RU2057767C1 (en) * | 1993-06-17 | 1996-04-10 | Московский авиационный технологический институт им.К.Э.Циолковского | Polymeric composite material |
RU2054015C1 (en) * | 1994-04-28 | 1996-02-10 | Московский авиационный технологический институт им.К.Э.Циолковского | Process for finishing carbon fiber for manufacture of polysulfonic carbon plastic material |
US6020063A (en) * | 1997-07-31 | 2000-02-01 | Virginia Tech Intellectual Properties, Inc. | Composites of thermosetting resins and carbon fibers having polyhydroxyether sizings |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2770098C1 (en) * | 2021-04-01 | 2022-04-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) | Polymer composites of polyphenylene sulphide, finished carbon fibre and method for production thereof |
RU2770088C1 (en) * | 2021-04-01 | 2022-04-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ) | Polyphenylene sulphide composite materials with carbon fibres and method for production thereof |
RU2793866C1 (en) * | 2022-02-15 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for obtaining dressed carbon fibres and polyesterimide composite |
RU2793864C1 (en) * | 2022-02-28 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Carbon fibre polyesteretherketone composite and method for its production |
RU2793890C1 (en) * | 2022-02-28 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for obtaining finished carbon fibre and polyether ether ketone composite based on it |
RU2793886C1 (en) * | 2022-02-28 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Polyetheretherketone carbon fiber composite material and method for its production |
RU2793913C1 (en) * | 2022-02-28 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Dressed carbon fiber and polyesteretherketone composite based on it |
RU2793888C1 (en) * | 2022-02-28 | 2023-04-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М.Бербекова" (КБГУ) | Polymer composite material based on polyetheretherketone and carbon fiber and a method for its production |
RU2802447C1 (en) * | 2022-07-13 | 2023-08-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for obtaining finished carbon fibres and composites based on them |
RU2802624C1 (en) * | 2022-07-14 | 2023-08-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for obtaining finished carbon fibres and polyether ether ketone composite materials based on them |
RU2811291C1 (en) * | 2023-03-15 | 2024-01-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for producing finished carbon fibre and a polymer composite based on it |
RU2811422C1 (en) * | 2023-03-16 | 2024-01-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for obtaining finished carbon fiber and polyether ether ketone composite |
RU2811385C1 (en) * | 2023-03-16 | 2024-01-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for producing finished carbon fibers and polymer composites based on them |
RU2811393C1 (en) * | 2023-03-17 | 2024-01-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) | Method for producing sizing carbon fibers and polyether ether ketone compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2744893C1 (en) | Polymer carbon fiber composition and method for its production | |
RU2741505C1 (en) | Polyether ether ketone carbon-fiber composite and method for production thereof | |
RU2712612C1 (en) | Method for producing coated carbon fibers and composite materials based thereon | |
RU2752625C1 (en) | Polymer composite material based on polyesteresterketone and carbon fiber and a method for its production | |
RU2743995C1 (en) | Polymer composite based on carbon fiber-reinforced polyetheretherketone and method for its production | |
RU2752627C1 (en) | Polymer composite based on polyesteresterketone and carbon fiber and a method for its production | |
RU2798166C1 (en) | Method for obtaining treated carbon fibres and polyether ether ketone compositions based on them | |
RU2757922C2 (en) | Carbon fiber polymer composite material based on polyesteresterketone and a method for its preparation | |
RU2811385C1 (en) | Method for producing finished carbon fibers and polymer composites based on them | |
RU2811393C1 (en) | Method for producing sizing carbon fibers and polyether ether ketone compositions | |
RU2802447C1 (en) | Method for obtaining finished carbon fibres and composites based on them | |
RU2793913C1 (en) | Dressed carbon fiber and polyesteretherketone composite based on it | |
RU2793864C1 (en) | Carbon fibre polyesteretherketone composite and method for its production | |
RU2793760C1 (en) | Dressed carbon fibre and polyetheretherketone composite material based on it | |
RU2793866C1 (en) | Method for obtaining dressed carbon fibres and polyesterimide composite | |
RU2793890C1 (en) | Method for obtaining finished carbon fibre and polyether ether ketone composite based on it | |
RU2811391C1 (en) | Method for producing coated carbon fibers and polyether ether ketone compositions | |
RU2793886C1 (en) | Polyetheretherketone carbon fiber composite material and method for its production | |
RU2793888C1 (en) | Polymer composite material based on polyetheretherketone and carbon fiber and a method for its production | |
RU2802624C1 (en) | Method for obtaining finished carbon fibres and polyether ether ketone composite materials based on them | |
RU2811422C1 (en) | Method for obtaining finished carbon fiber and polyether ether ketone composite | |
RU2819115C1 (en) | Method for producing sized carbon fibres and a polymer composite filled with them | |
RU2769396C1 (en) | Method of producing finishing agent, finished polyester-ether-ketone composite and method for production thereof | |
RU2816362C1 (en) | Method for producing finished carbon fibre and reinforced polymer composition based on it | |
RU2804164C1 (en) | Method for obtaining dressed carbon fibres and reinforced polymer composition |