RU2741392C1 - Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута - Google Patents

Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута Download PDF

Info

Publication number
RU2741392C1
RU2741392C1 RU2020111929A RU2020111929A RU2741392C1 RU 2741392 C1 RU2741392 C1 RU 2741392C1 RU 2020111929 A RU2020111929 A RU 2020111929A RU 2020111929 A RU2020111929 A RU 2020111929A RU 2741392 C1 RU2741392 C1 RU 2741392C1
Authority
RU
Russia
Prior art keywords
temperature
fuel oil
stability
low
mol
Prior art date
Application number
RU2020111929A
Other languages
English (en)
Inventor
Марат Иматдинович Фахрутдинов
Дмитрий Владимирович Нелюбов
Original Assignee
Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" filed Critical Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации"
Priority to RU2020111929A priority Critical patent/RU2741392C1/ru
Application granted granted Critical
Publication of RU2741392C1 publication Critical patent/RU2741392C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к методам контроля качества топлив, в частности к контролю стабильности низкотемпературной прокачиваемости флотского мазута. Изобретение касается способа оценки стабильности температуры застывания флотского мазута, включающего нагрев пробы мазута до 373 К, охлаждение до 295±2 К и выдерживание при данной температуре с отбором аликвот через отрезки времени (τi) 1 сутки и 7 суток. Нагретую до 373 К пробу флотского мазута объемом 250 мл термостатируют в герметичных условиях в течение 2 ч с фиксацией времени окончания термостатирования, а из охлажденной до 295±2 К пробы дополнительно к отобранным аликвотам через 1 сутки и 7 суток отбирают аликвоты через 10 и 14 суток, каждую из которых нагревают до 323±3 К и охлаждают со скоростью (υ) 0,53±0,05 К/мин до достижения эффективной вязкости 10,0±0,1 Па⋅с с фиксацией значений эффективной вязкости (μ) и температуры (T) через каждые 5-6 мин охлаждения, по которым определяют значение энергии активации вязкого течения Ei(υ) каждой аликвоты по формуле:где Ei(υ) - энергия активации вязкого течения, кДж/моль;i - номер аликвоты;R - универсальная газовая постоянная (8,314 Дж/моль⋅К);ln - натуральный логарифм;μ - эффективная вязкость, Па⋅с;Т - температура, К,строят графики зависимости Ei(υ) от значений температуры (Ti), полученных при регистрации эффективной вязкости, по которым определяют максимальное значение Ei(υ)max, строят графическую зависимость Ei(υ)maxот каждого отрезка времени отбора (τi) данной аликвоты, по которой определяют скорость изменения максимума энергии активации, которую принимают в качестве критерия стабильности низкотемпературной прокачиваемости флотского мазута, и при значении Кс≤0,346 кДж/(моль⋅сут.) делают вывод о стабильности низкотемпературной прокачиваемости анализируемого флотского мазута. Технический результат - повышение достоверности оценки стабильности низкотемпературной прокачиваемости флотского мазута при снижении длительности и трудоемкости испытания топлива. 3 ил., 4 табл., 1 пр.

Description

Изобретение относится к методам контроля качества топлив, в частности к контролю стабильности низкотемпературной прокачиваемости флотского мазута.
Флотский мазут применяется на кораблях ВМФ с котлотурбинными энергетическими установками (КТЭУ) (1 - интернет ресурс: http://www.mil.ru, дата доступа 09.03.2020 г. ) и в стационарных котельных, предъявляющих высокие требования к качеству используемого топлива. Основная марка флотского мазута, производимого в России - мазут флотский Ф5 по ГОСТ 10585 (ГОСТ 10585-2013. Топливо нефтяное. Мазут. Технические условия).
Многолетний опыт использования флотского мазута показал, что одной из основных проблем применения является ухудшение его низкотемпературной прокачиваемости при хранении вследствие агрегирования высокоплавких компонентов (2 - Чижов В.Б., Ананьина Н.В. Производство флотского мазута Ф-5 с применением депрессорных присадок // Нефтепереработка и нефтехимия. 2000. №12. С. 21-23; 3 - Митусова Т.Н., Николаева В.Г., Кюрегян С.К. Определение стабильности температуры застывания и расслаиваемости остаточных топлив при хранении / Сборник трудов ВНИИ НП. Вып. 20. 1977. С. 153-157). Единственным показателем, характеризующим низкотемпературную прокачиваемость флотского мазута, включенным в нормативно-техническую документацию, является его температура застывания, определяемая методом Б ГОСТ 20287. Таким образом, ухудшение низкотемпературной прокачиваемости флотского мазута проявляется в увеличении значения его температуры застывания при хранении.
При снижении температуры окружающей среды всего на 1°С ниже температуры застывания флотского мазута данная проблема осложняет выдачу топлива со складов горючего воинских частей, а также запуск котельных установок в отсутствии штатных средств подогрева.
В ГОСТ 10585-2013 установлен 5 летний срок гарантийного хранения флотского мазута, в течение которого его эксплуатационные свойства, определяемые показателями качества, должны соответствовать установленным в стандарте нормам. Для топлив, поставляемых по государственному оборонному заказу этот срок обусловлен необходимостью длительного хранения топлива для создания стратегических и оперативных запасов, а также хранением мазута Ф5 в цистернах кораблей.
Поскольку ГОСТ 10585 не предусматривает методов контроля стабильности низкотемпературной прокачиваемости флотского мазута, разработка способа оценки данного эксплуатационного свойства является актуальной.
Перед авторами стояла задача разработать способ оценки стабильности низкотемпературной прокачиваемости флотского мазута, который отвечал бы следующим требованиям:
- оценка стабильности низкотемпературной прокачиваемости флотского мазута должна осуществляться способом, позволяющим с достаточной достоверностью спрогнозировать изменение данного показателя в пределах 5 летнего срока хранения топлива;
- длительность испытания не должна превышать установленный срок квалификационных (лабораторно-стендовых) испытаний новых и модернизированных образцов топлива (не более 60 суток);
- объем анализируемого образца топлива должен быть минимальным и обеспечивать максимальную интенсивность структурообразований в топливе и достоверность оценки;
- способ должен быть реализован на программируемом испытательном оборудовании, не предусматривающим постоянный контроль проведения испытаний оператором.
Анализ патентной и научно-технической информации в данной области позволил выявить технические решения, частично удовлетворяющие вышеназванным требованиям.
Известен «Способ определения оптимального содержания депрессорной присадки в смазочных композициях» (4 - патент РФ № RU 2583921. Заявл. 09.12.2014). Способ включает определение температуры застывания масел с присадками и оценку эффективности присадки по температуре застывания и по «средней интенсивности микроструктурных процессов», которая равна энергии активации вязкого течения, определенной в диапазоне температур испытания масла. Данный способ обеспечивает повышение достоверности определения низкотемпературной прокачиваемости топлива.
Недостатком способа является длительность оценки стабильности низкотемпературной прокачиваемости топлива при его хранении, которая соответствует времени хранения самого топлива (5 лет), что не позволяет применять такой способ при квалификационных испытаниях флотского мазута (60 суток).
Известна «Установка для определения текучести и температуры текучести вязких технологических жидкостей» (5 - заявка на изобретение 2006126108/28 от 03.07.2006 г.), которая позволяет определять указанные параметры жидкостей по пути ее протекания на термостатируемой панели с канавками и шкалой, что обеспечивает повышение точности определения указанного показателя качества по показателю сходимости до 0,3°С.
Недостатком данного способа также является длительность оценки стабильности низкотемпературной прокачиваемости топлива при его хранении, которая соответствует времени хранения самого топлива (5 лет), что не позволяет применять такой способ при квалификационных испытаниях флотского мазута (60 суток).
Наиболее близким к заявленному изобретению и взятым за прототип является способ определения стабильности температуры застывания остаточных топлив (6 - Разработка и внедрение дизельных, печных, судовых и котельных топлив с депрессорными присадками. Митусова Т.Н., дис. д.т.н. - М: ВНИИ НП, 1992 г. - 343 с., с. 74-75). Этот способ предусматривает отбор пробы, ее нагрев до 100°С, и определение температуры застывания отбираемых аликвот топлива в процессе его хранения при температуре 22±2°С через 1, 7 суток и 1, 3, 6, 12, 60 месяцев хранения топлива.
К недостаткам способа относятся большая продолжительность (до 5 лет) и трудоемкость испытания (не менее 14 чел/часов на 7 определений температуры застывания).
Технический результат изобретения - повышение достоверности оценки низкотемпературной прокачиваемости флотского мазута при снижении длительности и трудоемкости испытания топлива.
Указанный технический результат достигается тем, что в известном способе оценки стабильности температуры застывания флотского мазута, включающем нагрев пробы мазута до 373 К, охлаждение до (295±2) К и выдерживание при данной температуре с отбором аликвот через отрезки времени (τi) 1 сутки и 7 суток согласно изобретению нагретую до 373 К пробу флотского мазута объемом 250 мл термостатируют в герметичных условиях в течение 2 ч с фиксацией времени окончания термостатирования, а из охлажденной до (295±2) К пробы дополнительно к отобранным аликвотам через 1 сутки и 7 суток отбирают аликвоты через 10 и 14 суток, каждую из которых нагревают до 323±3 К и охлаждают со скоростью (υ) 0,53±0,05 К/мин до достижения эффективной вязкости 10,0±0,1 Па⋅с с фиксацией значений эффективной вязкости (μ) и температуры (T) через каждые 5-6 мин охлаждения, по которым определяют значение энергии активации вязкого течения Ei(υ) каждой аликвоты по формуле:
Figure 00000001
где Ei(υ) - энергия активации вязкого течения, кДж/моль;
i - номер аликвоты;
R - универсальная газовая постоянная (8,314 Дж/моль⋅К);
ln - натуральный логарифм;
μ - эффективная вязкость, Па⋅с;
Т - температура, К,
строят графики зависимости Ei(υ) от значений температуры (Ti), полученных при регистрации эффективной вязкости, по которым определяют максимальное значение Ei(υ)max, строят графическую зависимость Ei(υ)max от каждого отрезка времени отбора (τi) данной аликвоты по которой определяют скорость изменения максимума энергии активации
Figure 00000002
, которую принимают в качестве критерия стабильности низкотемпературной прокачиваемости флотского мазута, и при значении Кс≤0,346 кДж/(моль⋅сут.) делают вывод о стабильности низкотемпературной прокачиваемости анализируемого флотского мазута.
Суть способа заключается в определении скорости изменения максимумов энергии активации вязкого течения
Figure 00000003
за время выдержки образца флотского мазута при испытании, что характеризует изменение интенсивности микроструктурных процессов во флотском мазуте.
На фиг. 1 представлены зависимости E(υ)max от времени (τ) выдерживания после термостатирования при 373 К образцов флотского мазута Ф5, производная которых
Figure 00000004
на отрезке времени от 1 до 14 суток, является критерием стабильности температуры застывания флотского мазута Ф5.
На фиг. 2 представлена корреляция изменений температуры застывания и максимальных значений энергии активации вязкого течения флотского мазута Ф5.
На фиг. 3 представлена зависимость энергии активации вязкого течения от температуры испытанной аликвоты, отобранной через 1 сутки от термообработанного образца флотского мазута производства ЗАО «КНПЗ-КЭН» 2011 г., по которой определяют максимальной значение энергии активации вязкого течения.
Для пояснения сущности заявленного способа оценки стабильности низкотемпературной прокачиваемости флотского мазута применяют следующие условные обозначения:
Е(υ) - энергия активации вязкого течения при постоянной скорости изменения температуры аликвоты, Дж/моль;
Figure 00000005
- скорость изменения максимума энергии активации вязкого течения анализируемого флотского мазута, кДж/(моль⋅сут.);
μ - эффективная вязкость, Па⋅с;
R - универсальная газовая постоянная (8,314 Дж/моль⋅К);
Т - температура, К.
Существенными признаками изобретения являются:
- фиксированный объем пробы анализируемого флотского мазута (250 мл) - обеспечивает сопоставимость условий испытания различных топлив, а его размер позволяет ускорить процессы структурообразования в топливе за счет интенсификации микроструктурных процессов в емкостях меньшего объема вследствии того, что диффузионный теплообмен в малых объемах не оказывает влияние на процессы структурирования, что было установлено путем сопоставления изменений температур застывания образцов флотского мазута разного объема в процессе хранения при отработке процедур заявляемого способа (таблица 1), при этом установленный размер пробы (250 мл) достаточен для исключения влияния изменения объема пробы при отборе 4 аликвот (11±1) мл мазута на интенсивность его микроструктурирования;
Figure 00000006
- термостатирование отобранной пробы топлива в герметичных условиях в течение 2 ч при температуре 373 К - создает условия для разрушения образовавшихся в мазуте сложных структурных единиц (агрегатов), что обеспечивает восстановление фазовой структуры топлива, соответствующей условиям его выработки в соответствии с стандартным методом определения низшей температуры застывания темных нефтепродуктов по ГОСТ 20287, характеризующей наиболее высокий уровень низкотемпературной прокачиваемости мазута, а значит и наиболее однородную и мелкодисперсную фазовую структуру;
- нагрев отобранных аликвот анализируемого мазута до 323±3 К с последующим их охлаждением со скоростью 0,53±0,03 К/мин и фиксацией эффективной вязкости через каждые 5-6 мин до достижения 10 Па⋅с - обусловлен тем, что в диапазоне температур, соответствующим установленным параметрам регистрации данных, обеспечивается структурирование флотского мазута, что определяет уровень его низкотемпературной прокачиваемости;
- использование авторами для оценки низкотемпературной прокачиваемости флотского мазута максимума энергии активации вязкого течения E(υ)max обосновано тем, что данная физическая величина характеризует интенсивность термодинамического структуропреобразования флотского мазута, что позволяет повысить достоверность оценки стабильности температуры застывания (сходимость 0,25°С, вместо 2°С по ГОСТ 20287 метод Б и 3°С - метод А) за счет использования более чувствительного к определяемому критерию метода измерения - вибрационно-резонансной вискозиметрии (7 - патент РФ № RU 2583921. Заявл. 09.12.2014).
Значение Е(υ) определяется путем решения уравнения Френкеля-Андраде (8 - Евдокимов И.Н., Елисеев Н.Ю. Молекулярные механизмы вязкости жидкости и газа Ч. 1 - М. РГУ нефти и газа им. Губкина. 2005. С. 44).
Figure 00000007
где μ - эффективная вязкость, Па⋅с;
Е(υ) - энергия активации вязкого течения при постоянной скорости изменения температуры, Дж/моль;
R - универсальная газовая постоянная (8,314 Дж/моль⋅К);
Т - температура, К;
t0 - период колебания молекулы жидкости в стационарном состоянии, (10-13 с);
n - количества вещества в единице объема, моль/м3,
при этом
Figure 00000008
в условиях испытания (Т=323÷253 К n=2395÷4000 моль/м3) можно считать постоянной, значение которой составляет - минус 18,89±0,13 (Дж⋅с/м3), а значит Е(υ) по уравнению (1) может быть найдено путем его представления в виде у=ах+b, где
Figure 00000009
Figure 00000010
Figure 00000011
,
Figure 00000012
. Таким образом, задача выражения Е(υ) сводится к нахождению производных уравнения (1) в виде:
Figure 00000013
- использование
Figure 00000014
в качестве критерия стабильности низкотемпературной прокачиваемости флотского мазута (Kc) обосновано наличием корреляции данного критерия со стабильностью температуры застывания флотского мазута при его хранении после термообработки заявленным способом (фиг. 2), стабильностью температуры застывания промышленных образцов на опытном хранении (таблица 4), а также чувствительностью данного критерия к интенсивности структурирования флотского мазута при его хранении (фиг. 1).
-предел Kc ≤ 0,346 кДж/(моль⋅сут.) в интервале от 1 до 14 суток выдержки испытуемого образца установлен на основе сопоставления результатов испытаний 7 образцов флотского мазута настоящим способом и определения стабильности их температур застывания при опытном хранении (таблица 4). Норма установлена по максимальному значению
Figure 00000015
, характерному для образца флотского мазута Ф5 производства ООО «КНПЗ-КЭН» со стабильной температурой застывания по результатам его опытного хранения (образец №5 таблицы 4).
Таким образом, выбранный критерий оценки стабильности низкотемпературной прокачиваемости флотского мазута Kc соответствует требованиям, предъявляемым к заявленному способу, однако для установления возможности его применения необходима оценка адекватности данного критерия изменению температуры застывания флотского мазута при его хранении (таблица 4).
Способ реализуется следующим образом
Пример
Для обоснования совокупности признаков заявленного способа была выполнена оценка стабильности низкотемпературной прокачиваемости 7 образцов флотского мазута Ф5 различных производителей, разного компонентного состава и теплофизических свойств (таблица 2).
Figure 00000016
Figure 00000017
Пробу мазута флотского Ф5 (образец №6 таблицы 2) производства ЗАО «КНПЗ-КЭН», 2011 г. объемом 250 мл термостатировали в плотно закрытой колбе в воздушном термостате при 373 К в течение 2 ч с фиксированием времени окончания термостатирования. Указанную колбу охладили на воздухе до температуры 22°С и оставили для последующего использования. Через 1 сутки после зафиксированного времени окончания термостатирования из колбы с флотским мазутом отобрали аликвоту объемом 10 мл, нагрели ее до 326 К и измерили значения эффективной вязкости через каждые 5-6 минут при охлаждении до достижения ею вязкости 10,1 Па⋅с с помощью программируемого термостата КРИО-ВТ-6 и программы для регистрации данных вискозиметра SV-10A RSVisco. По полученным данным (таблица 3) определили энергию активации вязкого течения с использованием формулы (2) в каждом временном интервале.
Figure 00000018
Построили график зависимости данной рассчитанной E(υ) от температуры охлаждения аликвоты анализируемого образца (фиг. 3). Определили максимальное значение Е(υ)max как среднеарифметическое значений при температурах 273,16 К, 275,42 К, 278,05 К, 280,80 К (фиг. 3). Е(υ)max = 100 кДж/моль.
Через 7, 10, 14 суток выдерживания после окончания термостатирования образца флотского мазута отобрали от него новые аликвоты и провели над ними действия, аналогичные действиям над аликвотой, отобранной через сутки после окончания термостатирования. Получили следующие максимумы энергии активации вязкого течения, определенные для каждой отобранной аликвоты:
E(υ)max (1 сутки) = 100 кДж/моль; E(υ)max (7 суток) = 102 кДж/моль, E(υ)max (10 суток) = 108 кДж/моль, E(υ)max (14 суток) = 109 кДж/моль.
Построили зависимость максимальных значений E(υ)max от времени хранения пробы мазута путем аппроксимации полученных данных прямой (фиг. 1) и определения ее уравнения, как вариант «Методом наименьших квадратов»:
Figure 00000019
. Следовательно: Kc = 0,723 кДж/моль в сут., что более чем в 2 раза выше установленного порогового значения 0,346 кДж/моль в сут.
Вывод: стабильность низкотемпературной прокачиваемости проанализированного флотского мазута в 2,09 раз хуже установленного порогового значения.
Определенные критерии стабильности низкотемпературной прокачиваемости остальных образцов флотского мазута по таблице 2 приведены в таблице 4.
Figure 00000020
Применение изобретения позволяет за счет совокупности заявленных приемов:
- повысить достоверность оценки стабильности низкотемпературной прокачиваемости флотского мазута за счет применения более чувствительной к микроструктурированию флотского мазута физической величины и методики ее измерения (сходимость 0,25 К, вместо 2 К по ГОСТ 20287 метод Б), а также фиксированного времени термообработки (2 ч) и минимального объема образца топлива (250 мл), обеспечивающих полное разрушение дисперсной фазы испытуемого образца и максимальную интенсивность процессов структурообразования при последующей выдержке образца после термообработки в процессе испытания;
- сократить время испытания по оценки стабильности низкотемпературной прокачиваемости флотского мазута с 5 лет до 14 суток, что позволяет использовать заявленный способ для оценки стабильности топлива в рамках установленного времени квалификационных испытаний (не более 60 суток);
- снизить трудоемкость испытаний с «не менее 14 чел/часов» - 7 определений температуры застывания по ГОСТ 20287 в процессе хранения топлива, до 2 чел/часов - 4 определения максимумов интенсивности микроструктуризации топлива;
- обеспечить стабильность низкотемпературной прокачиваемости мазута флотского Ф5, установленную ГОСТ 10585 по показателю «температура застывания» для флотского мазута, предназначенного для применения в технике ВМФ.

Claims (9)

  1. Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута, включающий нагрев пробы мазута до 373 К, охлаждение до 295±2 К и выдерживание при данной температуре с отбором аликвот через отрезки времени (τi) 1 сутки и 7 суток, отличающийся тем, что нагретую до 373 К пробу флотского мазута объемом 250 мл термостатируют в герметичных условиях в течение 2 ч с фиксацией времени окончания термостатирования, а из охлажденной до 295±2 К пробы дополнительно к отобранным аликвотам через 1 сутки и 7 суток отбирают аликвоты через 10 и 14 суток, каждую из которых нагревают до 323±3 К и охлаждают со скоростью (υ) 0,53±0,05 К/мин до достижения эффективной вязкости 10,0±0,1 Па⋅с с фиксацией значений эффективной вязкости (μ) и температуры (T) через каждые 5-6 мин охлаждения, по которым определяют значение энергии активации вязкого течения Ei(υ) каждой аликвоты по формуле:
  2. Figure 00000021
  3. где Ei(υ) - энергия активации вязкого течения, кДж/моль;
  4. i - номер аликвоты;
  5. R - универсальная газовая постоянная (8,314 Дж/моль⋅К);
  6. ln - натуральный логарифм;
  7. μ - эффективная вязкость, Па⋅с;
  8. Т - температура, К,
  9. строят графики зависимости Ei(υ) от значений температуры (Ti), полученных при регистрации эффективной вязкости, по которым определяют максимальное значение Ei(υ)max, строят графическую зависимость Ei(υ)max от каждого отрезка времени отбора (τi) данной аликвоты, по которой определяют скорость изменения максимума энергии активации
    Figure 00000022
    , которую принимают в качестве критерия стабильности низкотемпературной прокачиваемости флотского мазута, и при значении Кс≤0,346 кДж/(моль⋅сут.) делают вывод о стабильности низкотемпературной прокачиваемости анализируемого флотского мазута.
RU2020111929A 2020-03-24 2020-03-24 Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута RU2741392C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020111929A RU2741392C1 (ru) 2020-03-24 2020-03-24 Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020111929A RU2741392C1 (ru) 2020-03-24 2020-03-24 Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута

Publications (1)

Publication Number Publication Date
RU2741392C1 true RU2741392C1 (ru) 2021-01-25

Family

ID=74213424

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020111929A RU2741392C1 (ru) 2020-03-24 2020-03-24 Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута

Country Status (1)

Country Link
RU (1) RU2741392C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792540C1 (ru) * 2022-09-19 2023-03-22 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения масс флотского мазута, воды и остатка, выделяемых при отстаивании некондиционного мазута с деэмульгатором

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2546123A1 (en) * 2003-11-25 2005-06-16 Exxonmobil Research And Engineering Company Application of test for residual wax contamination in basestocks to correlate with the low temperature viscometric properties of fully formulated oils
RU2305836C1 (ru) * 2006-04-03 2007-09-10 Федеральное государственное унитарное предприятие "25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей-ГосНИИ по химмотологии)" Способ определения стабильности топливных композиций, содержащих остаточные продукты переработки нефти
RU2006126108A (ru) * 2006-07-03 2008-01-27 Общество с ограниченной ответственностью "Сатурн"ООО "Сатурн" (RU) Установка для определения текучести и температуры текучести вязких технологических жидкостей
RU2583921C1 (ru) * 2014-12-09 2016-05-10 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Способ определения оптимального содержания депрессорной присадки в смазочных композициях

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2546123A1 (en) * 2003-11-25 2005-06-16 Exxonmobil Research And Engineering Company Application of test for residual wax contamination in basestocks to correlate with the low temperature viscometric properties of fully formulated oils
RU2305836C1 (ru) * 2006-04-03 2007-09-10 Федеральное государственное унитарное предприятие "25 Государственный научно-исследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей-ГосНИИ по химмотологии)" Способ определения стабильности топливных композиций, содержащих остаточные продукты переработки нефти
RU2006126108A (ru) * 2006-07-03 2008-01-27 Общество с ограниченной ответственностью "Сатурн"ООО "Сатурн" (RU) Установка для определения текучести и температуры текучести вязких технологических жидкостей
RU2583921C1 (ru) * 2014-12-09 2016-05-10 Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук Способ определения оптимального содержания депрессорной присадки в смазочных композициях

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Development and implementation of diesel, furnace, marine and boiler fuels with depressants. Mitusova T.N., dis. Doctor of Technical Sciences, M: VNII NP, 1992 343 p., p. 74-75. *
Methods for quality control of naval fuel oil F5 for the needs of the Ministry of Defense of the Russian Federation, Fakhrutdinov M.I., Nedyubov D.V., TRUDY 25 GOSNII MO RF, N58, 2018, p. 347-362. *
Разработка и внедрение дизельных, печных, судовых и котельных топлив с депрессорными присадками. Митусова Т.Н., дис. д.т.н., М: ВНИИ НП, 1992 г. 343 с., с. 74-75. Методы контроля качества мазута флотского Ф5 для нужд Министерства Обороны Российской Федерациии, Фахрутдинов М. И., Недюбов Д. В., ТРУДЫ 25 ГОСНИИ МО РФ, N58, 2018, с. 347-362. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792540C1 (ru) * 2022-09-19 2023-03-22 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Способ определения масс флотского мазута, воды и остатка, выделяемых при отстаивании некондиционного мазута с деэмульгатором

Similar Documents

Publication Publication Date Title
Schmidt et al. New experimental data and reference models for the viscosity and density of squalane
Jyoti et al. Rheological characterization of ethanolamine gel propellants
Soedarmo et al. Microscopic Study of Wax Precipitation Static Conditions
West et al. Investigation of water interactions with petroleum-derived and synthetic aviation turbine fuels
Soares et al. Measuring the yielding of waxy crude oils considering its time-dependency and apparent-yield-stress nature
RU2741392C1 (ru) Способ оценки стабильности низкотемпературной прокачиваемости флотского мазута
US9772269B2 (en) Process for determining the incompatibility of crudes mixtures containing asphaltene
US3968677A (en) Continuous evaluation of thermal stability of quenching oils
Clark et al. Assessment of the properties of internal combustion engine lubricants using an onboard sensor
Korneev et al. Influence of base oils on changes in the performance characteristics of motor oils when exposed to high temperatures and diluted with fuel
RU2705942C1 (ru) Способ определения предельно допустимых показателей работоспособности смазочных материалов
Polachini et al. Rheology and fluid dynamic of egg white: Effect of thixotropy on engineering design
RU2640318C1 (ru) Способ определения температуры вспышки смазочных масел
IJeomah et al. Measurement of wax appearance temperature under simulated pipeline (dynamic) conditions
RU2789633C1 (ru) Способ определения температуры начала кристаллизации жидких углеводородов и топлив для реактивных двигателей
RU2685582C1 (ru) Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов
RU2780261C1 (ru) Способ определения низкотемпературной вязкости нефтепродуктов, охлаждающих и технических жидкостей
RU2583921C1 (ru) Способ определения оптимального содержания депрессорной присадки в смазочных композициях
Trelles et al. A methodology for assessing short fatigue crack growth in DCI materials affected by intergranular embrittlement at temperatures nearby 400° C
RU2186386C1 (ru) Способ определения смазывающей способности масел
Coelho et al. Rheological Characterization and Formation Protocol of Tetrahydrofuran Hydrate Slurries
Oh et al. Yield stress of wax gel using vane method
RU2662502C1 (ru) Турбулентный реометр
Nolan et al. The evaluation of oxidation resistance of lubricating greases using the rapid small scale oxidation test (RSSOT)
RU2685081C1 (ru) Способ определения температуры помутнения дизельных топлив