RU2740218C2 - Радиолокационная система - Google Patents

Радиолокационная система Download PDF

Info

Publication number
RU2740218C2
RU2740218C2 RU2019107125A RU2019107125A RU2740218C2 RU 2740218 C2 RU2740218 C2 RU 2740218C2 RU 2019107125 A RU2019107125 A RU 2019107125A RU 2019107125 A RU2019107125 A RU 2019107125A RU 2740218 C2 RU2740218 C2 RU 2740218C2
Authority
RU
Russia
Prior art keywords
antenna
linear
radar system
arrays
transmitting antenna
Prior art date
Application number
RU2019107125A
Other languages
English (en)
Other versions
RU2019107125A (ru
RU2019107125A3 (ru
Inventor
Францеско МАДИА
Original Assignee
Финкантиери Спа
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Финкантиери Спа filed Critical Финкантиери Спа
Publication of RU2019107125A publication Critical patent/RU2019107125A/ru
Publication of RU2019107125A3 publication Critical patent/RU2019107125A3/ru
Application granted granted Critical
Publication of RU2740218C2 publication Critical patent/RU2740218C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/937Radar or analogous systems specially adapted for specific applications for anti-collision purposes of marine craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/242Circumferential scanning

Abstract

Изобретение относится к области радиолокационных систем. Техническим результатом является обеспечение радиолокационной системы однородными характеристиками в азимутальной плоскости при менее сложной конструкции. Предложена радиолокационная система (1), содержащая: передающую антенну из несколько линейных антенных решеток (t1-t4) из элементов передающей антенны (20), расположенных на образующей поверхности усеченного конуса или цилиндра; блок генератора сигналов (2), связанный с передающей антенной, выполненный с возможностью возбуждения передающей антенны; приемную антенну, содержащую несколько групп (g1-g4) линейных антенных решеток (r11-r1n, …, r41-r4n) из приемных антенных элементов (10), расположенных на образующей поверхности усеченного конуса или цилиндра, где каждая группа (g1-g4) линейных антенных решеток из приемных антенных элементов располагается по всей окружности между первой и второй линейными решетками из элементов передающей антенны; сигнальный процессор (drx, 4), связанный с приемной антенной. Блок генератора сигналов (DRX, 4) для возбуждения излучающей антенны, чтобы первая и вторая линейные антенные решетки из элементов передающей антенны испускали соответственно первичное и вторичное электромагнитное излучение на первой и второй частотах, отличающихся друг от друга. 3 н. и 10 з.п. ф-лы, 9 ил.

Description

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
[001] Настоящее изобретение относится к области технического применения радиолокационных систем.
[002] Известно, что наземные транспортные средства или корабли, например, военные корабли, оборудованы радиолокационными системами, которые позволяют осуществлять текущий контроль окружающего пространства, чтобы идентифицировать возможные угрозы. Также радиолокационные системы используются для наземного наблюдения, например, в аэропортах, или наблюдения за важными целями.
[003] Упомянутые радиолокационные системы в течение длительного периода прошли длительный путь развития. Чтобы обеспечивать сканирование радиолокационного луча на 360° в азимутальной плоскости изначально были разработаны радиолокационные системы, содержащие объемную отражающую антенну, как правило, устанавливаемую на вращающейся платформе, расположенной на борту транспортного средства. Затем с течением времени упомянутые радиолокационные системы эволюционировали в более современные радиолокационные системы, у которых отсутствуют вращающиеся платформы и, которые, для того чтобы получить как можно более широкое поле обзора в азимутальной плоскости, используют преимущества нескольких антенн с плоской активной фазированной решеткой. Например, известны радиолокационные системы, которые состоят из четырех антенн с плоской активной фазированной решеткой, каждая такая антенна устанавливается на грани корабельной мачты, имея по существу форму усеченной пирамиды с четырехугольным основанием.
[004] Благодаря способности быстро изменять заданным образом направление луча, радиолокационные системы с активной фазированной решеткой позволяют транспортному средству, такому как военный корабль, использовать одну радиолокационную систему для обнаружения и контроля поверхности (например, для опознавания кораблей), текущего контроля воздушного пространства (для опознавания самолетов и ракет), наведения ракет, управления артиллерийскими установками.
[005] РЛС с плоской активной фазированной решеткой известного уровня техники, до настоящего времени устанавливаемые на борту транспортных средств, например, военных кораблей, как правило, являются моностатическими РЛС, потому что каждая антенная решетка состоит из большого количества как принимающих, так и передающих модулей (приемопередающие модули), каждый из которых последовательно с течением времени попеременно использует два рабочих способа, передачу и прием, соответственно. По этой причине упомянутые известные радиолокационные системы с активной фазированной решеткой являются чрезвычайно дорогостоящими. Также стоит отметить, что в конфигурации, состоящей из четырех антенн с плоской активной фазированной решеткой, когда каждая антенна установлена на грани корабельной мачты, имея по существу форму усеченной пирамиды с четырехугольным основанием, такие радиолокационные системы не демонстрируют однородные характеристики по всей азимутальной плоскости, потому что такие характеристики ухудшаются, в частности, в направлениях около углов усеченной пирамиды. Другими словами, упомянутые известные радиолокационные системы демонстрируют потери при сканировании в горизонтальной плоскости.
[006] Известная радиолокационная система, имеющая коническую геометрическую форму, описывается в патенте JP H06249945 A. В этом патенте раскрывается радиолокационная система с приемопередающими модулями, в которой в канале приема установлены аналоговые фазовращатели для отслеживания лучей приемной антенны. По этой причине такая радиолокационная система не выполняет полное цифровое формирование диаграммы направленности приемной антенны. Также антенна разделена на аксиально расположенные горизонтальные усеченные конические секции, где каждая работает на соответствующей частоте. Такая радиолокационная система обладает серьезным недостатком, не позволяющим сформировать несколько независимых лучей, и не позволяет контролировать амплитуду на поверхности усеченного конуса, таким образом генерируя лучи с боковыми лепестками большой амплитуды.
[007] В международной заявке на патент WO2015/104728A1 описывается бистатическая радиолокационная система, в которой передающая антенна имеет цилиндрическую или коническую геометрию и содержит решетку колонок из активных передающих модулей. Приемная антенна имеет коническую геометрию и содержит решетку колонок модулей приема. Передающая антенна расположена аксиально относительно приемной антенны.
[008] Хотя в радиолокационной системе, описанной в патенте WO2015/104728A1, эти недостатки упомянутого, известного уровня техники устранены, существует необходимость в создании радиолокационной системы, которая конструктивно будет являться менее сложной и дорогостоящей, чем радиолокационная система, описанная в патенте WO2015/104728A1.
[009] Общей задачей настоящего изобретения является создание радиолокационной системы, которая, по мере возможности, обладает наиболее однородными характеристиками в азимутальной плоскости и является менее сложной и дорогостоящей конструкцией, чем одна из радиолокационных систем, описанных в патенте WO2015/104728A1. Эта и другие цели достигаются посредством радиолокационной системы, как определено в основном пункте формулы изобретения в наиболее общем варианте осуществления изобретения, и в зависимых пунктах в некоторых конкретных вариантах осуществления изобретения.
[0010] Это изобретение будет лучше понято из следующего подробного описания вариантов осуществления изобретения, приводимых в качестве примера и поэтому неограничивающих каким-либо образом прилагаемые чертежи, в которых:
- на фиг. 1 показана функциональная блок-схема варианта осуществления радиолокационной системы, содержащей передающую и приемную антенны;
- на фиг. 2 показано трехмерное изображение возможного варианта осуществления части системы, приведенной на фиг.1;
- на фиг. 3 показана упрощенная диаграмма варианта осуществления линейной антенной решетки из приемных антенных элементов приемной антенны радиолокационной системы, приведенной на фиг. 1;
- на фиг. 4 показана упрощенная диаграмма варианта осуществления линейной антенной решетки из элементов передающей антенны радиолокационной системы, приведенной на фиг. 1;
- на фиг. 5 показана диаграмма направленности антенны, полученная посредством экспериментальных испытаний, которая представляет собой лучи передающей и лучи приемной антенны в азимутальной плоскости антенн радиолокационной системы, приведенной на фиг. 1 и 2;
- на фиг. 6 показана диаграмма направленности, полученная посредством экспериментальных испытаний, которая представляет собой лучи передающих и конкретные лучи принимающих антенн радиолокационной системы, приведенной на фиг. 1 и 2;
- на фиг. 7 показано плавающее средство, содержащее радиолокационную систему, приведенную на фиг. 1 и 2;
- на фиг. 8 показано наземное транспортное средство, содержащее радиолокационную систему, приведенную на фиг. 1 и 2;
- на фиг. 9 показана система наземного наблюдения, содержащая радиолокационную систему, приведенную на фиг. 1 и 2;
[0011] Одинаковые или подобные элементы в прилагаемых фигурах обозначены одинаковыми цифрами.
[0012] - на фиг. 1 показана функциональная блок-схема неограничивающего варианта осуществления радиолокационной системы, содержащей передающую и приемную антенны; В конкретном показанном примере, и без ограничений, радиолокационная система 1 является РЛС на плавающем средстве военного назначения, например, военном корабле. Однако необходимо отметить, что принципы настоящего описания можно применить без ограничений в конкретной сфере использования радиолокационной системы 1. В действительности, радиолокационная система 1, являющаяся задачей настоящего изобретения, может также использоваться, например, в сферах телекоммуникаций, гражданского судоходства, научных измерительных приборов.
[0013] Например, радиолокационная система 1 является системой диапазона частот X, и системой для передачи сигналов на несущей частоте в диапазоне от 9 до 11 ГГц, например - 10 ГГц. Диапазон рабочих частот радиолокационной системы 1 на групповой или промежуточной частоте, например, составляет от 30 до 60 МГц, и, например, равен 40 МГц.
[0014] Радиолокационная система 1 содержит передающую антенну, содержащую несколько линейных антенных решеток t1-t4 элементов передающей антенны 20, расположенных на образующей поверхности усеченного конуса или цилиндрической поверхности. В конкретном примере, представленном на фиг. 2 и 4, элементы передающей антенны 20, показанные на фиг. 4, расположены на образующей поверхности усеченного конуса. В соответствии с предпочтительным вариантом осуществления изобретения упомянутый усеченный конус имеет пространственный угол раскрытия в диапазоне от 5 до 20°, включительно. Например, такой пространственный угол раскрытия равен или приблизительно равен 8°.
[0015] Радиолокационная система 1 содержит приемную антенну, содержащую несколько групп g1-g4 линейных антенных решеток r11-r1n, …, r41-r4n из приемных антенных элементов 10, расположенных на образующей поверхности усеченного конуса или цилиндрической поверхности, где каждая группа g1-g4 линейных решеток r11-r1n,…,r41-r4n из приемных антенных элементов 10 располагается по всей окружности между первой и второй линейной решеткой из элементов передающей антенны 20. В конкретном примере, представленном на фиг. 2 и 3, приемные антенные элементы 10, показанные на фиг. 3, расположены на образующей поверхности усеченного конуса, где также расположены элементы передающей антенны 20.
[0016] Радиолокационная система 1 дополнительно содержит блок генератора сигналов 2, функционально связанный с передающей антенной, выполненной с возможностью возбуждения передающей антенны, в частности, каждой линейной решетки t1-t4 из элементов передающей антенны.
[0017] Блок генератора сигналов 2 выполнен с возможностью возбуждения передающей антенны, чтобы первая и вторая линейные решетки из элементов передающей антенны излучали, в предпочтительном варианте осуществления изобретения, одновременно, первичное и вторичное электромагнитное излучение, соответственно, на первой и второй частотах, отличающихся друг от друга. Упомянутые первичные и вторичные электромагнитные излучения обеспечивают луч с углом раскрытия, ограниченным азимутальной плоскостью, например, равным 90° или приблизительно равным 90°. Угол раскрытия означает угол, амплитуда луча которого по существу является равномерной. Упомянутые частоты в предпочтительном варианте осуществления изобретения расположены друг от друга на расстоянии от 5 до 15 МГц и, например, 10 МГц.
[0018] В предпочтительном варианте осуществления изобретения, как в примере, изображенном на фиг. 1, передающая антенна содержит четыре линейные антенные решетки t1-t4 из элементов передающей антенны 20, ориентированных попарно в противоположных направлениях и расположенных в диаметрально противоположных позициях по отношению друг к другу. Например, линейные антенные решетки t1-t4 из элементов передающей антенны 20, которые расположены в диаметрально противоположных позициях, испускают электромагнитное излучение на одной и той же частоте. Например, линейные антенные решетки t1, t3 передающей антенны испускают излучение на одной и той же частоте f1, в то время как линейные антенные решетки t2, t4 испускают электромагнитное излучение на одной и той же частоте f2, которая отличается от частоты f1. В другом варианте осуществления изобретения, в любом случае для линейных антенных решеток t1-t4 передающей антенны можно обеспечить электромагнитное излучение на разных частотах. Также в конкретном представленном примере, блок генератора сигналов 2 содержит несколько независимых передающих модулей tx1-tx4, каждый из которых функционально связан с соответствующей линейной антенной решеткой t1-t4 передающей антенны. В другом варианте осуществления изобретения, в любом случае для передающих модулей tx1-tx4 можно обеспечить функциональную связь с несколькими линейными антенными моделей передающей антенны.
[0019] В конкретном представленном примере приемная антенна содержит четыре группы линейных антенных решеток из приемных антенных элементов, включая g1, g2, g3, g4, соответственно. Линейные антенные решетки r11-r1n из приемных антенных элементов группы g1 расположены рядом друг с другом и вместе формируют группу g1 антенных решеток, расположенных между линейной антенной решеткой t1 из элементов передающей антенны и линейной антенной решеткой t2 из элементов передающей антенны. Линейные антенные решетки r21–r2n группы g2 расположены рядом друг с другом и вместе образуют группу g2 антенных решеток между линейной антенной решеткой t2 из элементов передающей антенны и линейной решеткой t3 из передающих антенных элементов и так далее, для остающихся двух групп g3, g4 антенных решеток в примере, изображенном на фигурах.
[0020] Согласно предпочтительному варианту осуществления изобретения, если есть четыре линейных антенных решетки t1-t4 из элементов передающей антенны, упомянутые решетки расположены попарно под углом 90°.
[0021] В соответствии с возможным неограничивающим вариантом осуществления изобретения количество линейных антенных решеток, образующих приемную антенну, намного больше, чем количество линейных антенных решеток t1-t4, образующих передающую антенну. Например, передающая антенна содержит четыре линейных антенных решетки t1-t4 из элементов передающей антенны. Например, каждая из упомянутых линейных антенных решеток t1-t4 содержит восемь или шестнадцать элементов передающей антенны. Очевидно, что увеличивая или уменьшая количество излучаемых антенных элементов в одной и той же линейной антенной решетке, амплитуда угла места излучаемых лучей уменьшается или увеличивается. В этом примере приемная антенна содержит двести шестнадцать линейных антенных решеток из приемных антенных элементов, также, например, каждая линейная антенная решетка в приемной антенне содержит восемь или шестнадцать приемных антенных элементов.
[0022] В соответствии с предпочтительным и неограничивающим вариантом осуществления изобретения линейные антенные решетки приемной антенны и/или передающей антенны содержат антенные элементы, которые являются волноводными излучающими элементами, как описано в целом, или в соответствии с частным случаем осуществления изобретения, в международной заявке на патент WO2016128886 A1, которая включена в полном объеме для ссылки.
[0023] В предпочтительном варианте осуществления изобретения, каждая линейная антенная решетка как передающей, так и приемной антенны представляет собой модульный блок, который физически независим от других блоков, который закреплен внутри опорной конструкции 27, содержащей две круглые пластины, или, как в представленном примере, два кольца 28, 29. Такие кольца 28, 29 расположены аксиально относительно друг друга и, например, прикреплены друг к другу посредством большого количества распорных элементов, например, посредством многочисленных вертикальных колонок. В соответствии с одним из вариантов осуществления изобретения, упомянутая опорная конструкция 27, по крайней мере, частично накрыта антенным обтекателем (не показан на фигурах), перекрывающим и, в предпочтительном варианте осуществления изобретения, находящимся в контакте с элементами приемной и передающей антенн, и который в целях удобства изготовлен из материала, выполненного с возможностью действовать в качестве полосового фильтра для части используемого частотного спектра. Например, антенный обтекатель изготовлен из кевлара или стекловолокна и имеет форму усеченной пирамиды. В предпочтительном варианте осуществления изобретения антенный обтекатель простирается в осевом направлении между двумя кольцами 28, 29.
[0024] На фиг. 3 показана общая блок-схема одной из линейных антенных решеток приемной антенны, на приведенном примере, линейная антенная решетка r11. Остальные линейные антенные решетки приемной антенны полностью идентичны или похожи. Такая линейная антенная решетка r11 содержит несколько приемных антенных элементов 10, размещенных в корпусной конструкции 12. Линейная антенная матрица r11 содержит волноводный ответвитель мощности 11, имеющий несколько входных портов, каждый подсоединенный к соответствующему приемному антенному элементу 10, и имеет выходной волноводный порт 13. Выходной порт 13 в предпочтительном варианте осуществления изобретения подключен к аналоговому модулю преобразования частоты с понижением 14, выполненному с возможностью преобразования отраженного радиолокационного РЧ-сигнала, принятого линейной антенной решеткой r11 например, в промежуточную частоту. Такая промежуточная частота, например, равна или приблизительно равна 1 ГГц. В этом примере модуль преобразования частоты с понижением 14 содержит, последовательно, аналоговый усилитель 15, например, МШУ 15, фильтр 16 и смеситель 17. Аналоговый модуль преобразования частоты с понижением 14 выполнен с возможностью преобразования аналогового выходного радиолокационного сигнала на промежуточной частоте. Для выполнения преобразования на промежуточной частоте, смеситель 17 принимает входной сигнал STALO (стабильный гетеродин) S_o. Например, такой сигнал S_o является идентичным для каждого из модулей преобразования 14, связанных с различными линейными антенными решетками приемной антенны и передается таким модулям с помощью блока генератора сигналов 2.
[0025] Модуль преобразования частоты с понижением 14 можно поместить в корпусную конструкцию 12 или расположить снаружи такой конструкции 12, в отдельном контейнере, расположенном как можно ближе к такой конструкции 12, например, непосредственно закрепить на конструкции.
[0026] На фиг. 4 показана общая блок-схема одной из линейных антенных решеток передающей антенны, на приведенном примере, линейная антенная решетка t1. Остальные линейные антенные решетки передающей антенны полностью идентичны или похожи. Такая линейная антенная решетка t1 содержит несколько приемных антенных элементов 20, размещенных в корпусной конструкции 22. Линейная антенная решетка t1 содержит волноводный ответвитель мощности 21, имеющий несколько выходных портов, каждый подсоединенный к соответствующему излучающему антенному элементу 20, и имеет входной волноводный порт 23. Входной порт 23 подключен к генератору сигналов 2, и, в частности, к модулю передачи tx1. Ссылаясь на фиг. 3 и 4, следует отметить, что в предпочтительном варианте осуществления изобретения с точки зрения конструкции волноводная часть линейных антенных решеток передающей антенны, то есть антенные элементы 20 и делитель 21 могут быть идентичными и полностью похожими на волноводную часть, то есть, антенные элементы 10 и ответвитель 21 линейных антенных решеток приемной антенны. То же самое можно сказать о корпусной конструкции 12, 22.
[0027] Радиолокационная система 1 дополнительно содержит процессор отраженного радиолокационного сигнала drx 4, функционально связанный с приемной антенной, в частности, подключенный к каждой линейной антенной решетке из приемных антенных элементов. Процессор отраженного радиолокационного сигнала drx 4, в предпочтительном варианте осуществления изобретения содержит несколько цифровых обрабатывающих модулей drx. Если такие цифровые обрабатывающие модули drx являются отдельными канальными модулями, для каждой линейной антенной решетки приемной антенны предоставляется специальный цифровой обрабатывающий модуль. Если такие цифровые обрабатывающие модули drx вместо этого являются многоканальными модулями, несколько линейных антенных решеток приемной антенны можно соединить, например, четыре или восемь, с одним многоканальным цифровым обрабатывающим модулем. В этом случае обработка отраженного радиолокационного сигнала успешно происходит параллельно в различных каналах.
[0028] В соответствии с предпочтительным вариантом осуществления изобретения цифровые обрабатывающие модули прикрепляются к опорной и крепежной конструкции 30, которая расположена аксиально относительно линейных антенных решеток передающей и приемной антенн. Такая конструкция 30 является, например, конструкцией в форме кольца или диска.
[0029] В соответствии с предпочтительным вариантом осуществления изобретения процессор отраженного радиолокационного сигнала drx, 4 содержит блок полного цифрового формирования диаграммы направленности 4, функционально связанный с приемной антенной, соответствующий требованиям и выполненный с возможностью синтеза в цифровом виде нескольких одновременных и независимых лучей приемной антенны. В примере такой блок полного цифрового формирования диаграммы направленности 4 подключен к цифровым обрабатывающим модулям drx. В предпочтительном варианте осуществления изобретения каждый луч приемной антенны синтезируется посредством обработки отраженных радиолокационных сигналов от большого количества линейных антенных решеток из принимающих антенных элементов, расположенных последовательно относительно друг друга. Например, если луч приемной антенны должен иметь в азимутальной плоскости амплитуду 2°, и, если теоретически использовать двести шестнадцать линейных антенных решеток, каждый луч приемной антенны синтезируется посредством обработки отраженных радиолокационных сигналов, поступающих от семидесяти двух линейных антенных решеток приемной антенны.
[0030] В соответствии с другим вариантом осуществления изобретения, для синтеза, по крайней мере, одного из лучей упомянутой приемной антенны, линейные антенные решетки, расположенные последовательно относительно друг друга на приемной антенне, принадлежат к двум отличающимся группам g1-g4 линейных антенных решеток приемной антенны. Например, см. фиг. 5, на которой показана диаграмма направленности антенны в азимутальной плоскости, отображающая четыре луча b_t1-b_t4, излучаемых четырьмя линейными антенными решетками t1-t4 передающей антенны, каждая имеющая амплитуду 90°, и сто восьмьюдесятью лучами приемной антенны, которые будут синтезированы, если лучи приемной антенны будут получены с амплитудой 2°. Три таких луча приемной антенны маркированы b_r12, b_r17, br1n. Луч приемной антенны b_r12 центрируется на линейной антенной решетке r12 приемной антенны. Для получения такого луча приемной антенны b_r12 может быть использовано, например, заданное число линейных антенных решеток приемной антенны, расположенных на противоположных сторонах относительно линейной антенной решетки r12, например, тридцать шесть линейных антенных решеток расположено на одной стороне и тридцать шесть решеток - на противоположной стороне. Таким образом очевидно, что отраженные радиолокационные сигналы используются для синтеза луча приемной антенны b_r12, который перехватывается линейными антенными решетками приемной антенны, принадлежащих как к группе g1, так и группе g2. В соответствии с возможным вариантом осуществления изобретения, для получения более однородных характеристик в азимутальной плоскости, циркулятор возможно сопряжен с линейными решетками t1-t4 передающей антенны, чтобы использовать несколько линейных антенных решеток t1-t4 передающей антенны, в данном случае четыре, а также дополнительные линейные антенные решетки приемной антенны. В любом случае следует учитывать то, насколько такое решение, с точки зрения аппаратного обеспечения, будет значительно менее сложным относительно известных решений, в которых представлены антенны с плоской фазированной решеткой с приемопередающими модулями, то есть антенны, в которых все элементы передающей антенны также являются приемными антенными элементами.
[0031] Фиг. 6 очень похожа на фиг. 5 и отличается от нее из-за формата диаграммы; здесь, граф является декартовым графом, а не графом в полярных координатах, и здесь показаны только две группы лучей приемной антенны b_r, синтезированных в цифровом виде.
[0032] В соответствии с другим вариантом осуществления изобретения линейные антенные решетки приемной антенны выполнены с возможностью принимать отраженные радиолокационные сигналы, полученные в результате отражения от цели как упомянутого первичного, так и вторичного электромагнитного излучения. Процессор отраженного радиолокационного сигнала выполнен с возможностью:
- дискретизировать упомянутые принятые отраженные радиолокационные сигналы, чтобы получить цифровые сигналы;
- выполнить цифровую фильтрацию, которая позволяет извлекать из упомянутых цифровых сигналов набор цифровых выборок, содержащий информацию относительно импульсов, передаваемых первой линейной антенной решеткой из элементов передающей антенны и набор цифровых выборок, содержащий информацию относительно импульсов, передаваемых второй линейной антенной решеткой из элементов передающей антенны.
[0033] Упомянутые цифровые выборки передаются в блок полного цифрового формирования диаграммы направленности 4 посредством синтеза лучей приемной антенны.
[0034] Например, упомянутые операции выборки и фильтрации выполняются цифровыми обрабатывающими модулями drx. Например, упомянутая цифровая фильтрация является фильтрацией с помощью фильтра с конечной импульсной характеристикой (КИХ-фильтр).
[0035] В предпочтительном варианте осуществления изобретения, если линейные антенные решетки приемной антенны содержат модуль преобразования частоты с понижением 14 с возможностью преобразования принимаемых отраженных радиолокационных сигналов в аналоговые сигналы в промежуточную частоту, как упомянуто выше, ранее указанный цифровой обрабатывающий модуль drx может выполнять выборку аналоговых сигналов на промежуточной частоте.
[0036] Радиолокационная система 1 в предпочтительном варианте осуществления изобретения содержит блок 3 для оперативного управления работой РЛС с возможностью управления блоком генератора сигналов 2 и процессором отраженного радиолокационного сигнала drx, 4.
[0037] Как объяснялось выше, блок полного цифрового формирования диаграммы направленности 4 выполнен с возможностью приема на входе и обработки в цифровой форме цифровых выборок, полученных из отраженных радиолокационных сигналов, принятых принимающей антенной. В частности, такой блок 4 содержит цифровой процессор, который, принимая входные весовые коэффициенты W, обладает возможностью расчета различных взвешенных линейных комбинаций упомянутых цифровых выборок.
[0038] В соответствии с другим вариантом осуществления изобретения, радиолокационная система 1 содержит цифровой процессор обработки радиолокационных сигналов 6, функционально связанный с распределителем 3 и блоком полного цифрового формирования диаграммы направленности 4, с возможностью обеспечения этого блока весовыми коэффициентами W и приема взвешенных принимаемых линейных комбинаций согласно расчета. Все линейные комбинации соответствуют лучу приемной антенны. Количество импульсов и время передачи планируются блоком планировщика 3 в соответствии с текущими действиями радиолокационных средств, которые автоматически обновляются в соответствии с операциями обработки с помощью цифрового процессора обработки радиолокационных сигналов 5.
[0039] В дополнение к цифровому процессору обработки радиолокационных сигналов 5, радиолокационная система 1 может также содержать процессор обработки данных 6, функционально связанный с сигнальным процессором 5, и пульт управления и контроля 7, функционально связанный с процессором обработки данных 6.
[0040] Применительно к примеру, представленному на фиг. 7, упомянутая радиолокационная система 1 может быть установлена на борту плавающего средства 70, например, корабля, в предпочтительном варианте осуществления изобретения система может быть установлена на механически стабилизированной платформе.
[0041] Что касается фиг. 8, следует заметить, что радиолокационная система 1 упомянутого типа может быть установлена на борту наземного транспортного средства 60, например, на вершине телескопической мачты 61. В этом представленном конкретном примере упомянутое наземное транспортное средство 60 является грузовым автомобилем, оборудованным приемлемым контейнером, в котором находится пульт управления и контроля и, по возможности, другое аппаратное и программное обеспечение, с возможностью обработки сигналов, имеющих отношение к работе радиолокационной системы 1.
[0042] Наконец, на фиг. 9 показано дополнительное возможное применение, в котором радиолокационная система 1 прикреплена к поверхности земли или зданию, например, на верхушке опорной мачты 70.
[0043] В соответствии с упомянутым выше необходимо понять как радиолокационная система упомянутого типа позволяет достичь упомянутых задач на основании известного уровня техники. Предлагаемая радиолокационная система в действительности является относительно менее сложной и дорогостоящей и может без труда выпускаться в модульном варианте, так как большая часть блоков является аналогичными друг другу. Более того, из фиг. 5 и 6 можно сделать заключение о том, что постоянство характеристик в азимутальной плоскости является неожиданным.
[0044] Принцип настоящего изобретения, варианты осуществления изобретения и особенности производства могут значительно отличаться от таковых, описанных и изображенных исключительно в виде неограничивающего примера, не выходя при этом за пределы объема изобретения, определяемого в прилагаемой формуле изобретения.

Claims (20)

1. Радиолокационная система (1), содержащая:
- передающую антенну, содержащую несколько линейных антенных решеток (t1-t4) из элементов передающей антенны (20), расположенных на образующей поверхности усеченного конуса или цилиндрической поверхности;
- блок генератора сигналов (2), функционально связанного с передающей антенной, выполненный с возможностью возбуждения передающей антенны;
- приемную антенну, содержащую несколько групп (g1-g4) линейных антенных решеток (r11-r1n, …, r41-r4n) из приемных антенных элементов (10), расположенных на образующей поверхности усеченного конуса или цилиндрической поверхности, в которой каждая группа (g1-g4) линейных антенных решеток из приемных антенных элементов располагается по всей окружности между первой и второй линейной решеткой из элементов передающей антенны;
- сигнальный процессор (drx, 4), функционально связанный с приемной антенной;
при этом блок генератора сигналов (2) выполнен с возможностью возбуждения передающей антенны, чтобы первая и вторая линейные антенные решетки из элементов передающей антенны испускали соответственно первичное и вторичное электромагнитное излучение на первой и второй частотах, отличающихся друг от друга.
2. Радиолокационная система (1) по п. 1, в которой передающая антенна содержит четыре линейных антенных решетки (t1-t4) из элементов передающей антенны (20), ориентированных попарно в противоположных направлениях и расположенных в диаметрально противоположных позициях по отношению друг к другу.
3. Радиолокационная система (1) по п. 2, в которой линейные антенные решетки (t1-t4) из элементов передающей антенны (20), которые расположены в диаметрально противоположных позициях, испускают электромагнитное излучение на одной и той же частоте.
4. Радиолокационная система (1) по п. 2 или 3, в которой линейные антенные решетки (t1-t4) из элементов передающей антенны расположены попарно под углом 90°.
5. Радиолокационная система (1) по п. 1, в которой сигнальный процессор содержит блок полного цифрового формирования диаграммы направленности (4), выполненный с возможностью синтеза в цифровом виде большого количества независимых и одновременно лучей приемной антенны.
6. Радиолокационная система (1) по п. 5, в которой каждый луч приемной антенны синтезируется обработанными сигналами от большого количества линейных антенных решеток из приемных антенных элементов, расположенных последовательно относительно друг друга.
7. Радиолокационная система по п. 6, в которой для, по крайней мере, одного из лучей приемной антенны, линейные антенные решетки, расположенные последовательно относительно друг друга, принадлежат к двум отличающимся группам (g1-g4) линейных антенных решеток приемной антенны.
8. Радиолокационная система (1) по п. 1, в которой линейные антенные решетки приемной антенны выполнены с возможностью приема отраженных радиолокационных сигналов, формируемых в результате отражения от цели как упомянутого первичного, так и вторичного электромагнитного излучения, и в которой процессор радиолокационного отраженного сигнала выполнен с возможностью:
- дискретизировать упомянутые принятые отраженные радиолокационные сигналы, чтобы получить цифровые сигналы;
- выполнить цифровую фильтрацию, которая позволяет извлекать из упомянутых цифровых сигналов набор цифровых выборок, содержащих информацию относительно импульсов, передаваемых первой линейной антенной решеткой из элементов передающей антенны, и набор цифровых выборок, содержащих информацию относительно импульсов, передаваемых второй линейной антенной решеткой из элементов передающей антенны.
9. Радиолокационная система (1) по п. 8, в которой линейные антенные решетки приемной антенны содержат модуль преобразования частоты с понижением (14) с возможностью преобразования упомянутых принятых отраженных радиолокационных сигналов в аналоговые сигналы промежуточной частоты, в которой упомянутый цифровой обрабатывающий модуль дискретизирует упомянутые аналоговые сигналы промежуточной частоты.
10. Радиолокационная система (1) по п. 1, в которой количество линейных антенных решеток приемной антенны на много больше, чем количество линейных антенных решеток передающей антенны.
11. Радиолокационная система (1) по п. 1, в которой первичное и вторичное электромагнитное излучение, излучается одновременно.
12. Надводное судно (50), содержащее, по крайней мере, одну радиолокационную систему (1) по любому из предшествующих пунктов формулы изобретения.
13. Наземное транспортное средство (60), содержащее, по крайней мере, одну радиолокационную систему (1) по любому из пп. 1-11.
RU2019107125A 2016-10-17 2017-09-27 Радиолокационная система RU2740218C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT201600103880 2016-10-17
IT102016000103880 2016-10-17
PCT/IB2017/055883 WO2018073676A1 (en) 2016-10-17 2017-09-27 Radar system

Publications (3)

Publication Number Publication Date
RU2019107125A RU2019107125A (ru) 2020-09-21
RU2019107125A3 RU2019107125A3 (ru) 2020-11-06
RU2740218C2 true RU2740218C2 (ru) 2021-01-12

Family

ID=58737708

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019107125A RU2740218C2 (ru) 2016-10-17 2017-09-27 Радиолокационная система

Country Status (13)

Country Link
US (1) US11520039B2 (ru)
EP (1) EP3526621B1 (ru)
KR (1) KR102444999B1 (ru)
AU (1) AU2017344436B2 (ru)
BR (1) BR112019005263A2 (ru)
CA (1) CA3037487A1 (ru)
DK (1) DK3526621T3 (ru)
ES (1) ES2812325T3 (ru)
IL (1) IL265991B (ru)
PL (1) PL3526621T3 (ru)
RU (1) RU2740218C2 (ru)
SG (1) SG11201906607RA (ru)
WO (1) WO2018073676A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834729B (zh) * 2020-07-29 2022-06-21 中国船舶工业集团公司第七0八研究所 一种科考船气象雷达和卫通c天线连锁控制装置
US20220091255A1 (en) * 2020-09-18 2022-03-24 Nuro, Inc. Methods and Apparatus for Providing a 360-Degree Field-of-View Radar System
JP6960129B1 (ja) * 2020-12-21 2021-11-05 WaveArrays株式会社 レーダ装置
KR20230088331A (ko) * 2021-12-07 2023-06-19 용 탕 레이더 교정 방법 및 장치
KR102451013B1 (ko) * 2022-03-18 2022-10-06 (주)파이온시스템즈 원통형 어레이 레이더

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA012794B1 (ru) * 2006-07-05 2009-12-30 Сайнмет Ла, Инкорпорейтед Антенна (варианты) и способ управления работой антенны
US20100066590A1 (en) * 2008-07-28 2010-03-18 Physical Domains, LLC Omnidirectional Retrodirective Antennas
US20100271278A1 (en) * 2007-12-04 2010-10-28 Thomas Binzer Bistatic array antenna and method
WO2013144146A1 (fr) * 2012-03-30 2013-10-03 Thales Dispositif de détection électromagnétique actif et passif à faible probabilité d'interception
WO2015104728A1 (en) * 2014-01-09 2015-07-16 Fincantieri S.P.A. Bistatic radar
RU2573224C2 (ru) * 2013-10-04 2016-01-20 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Компактная вертикальная антенная решётка из вертикальных вибраторов, пространственно совмещённых с опорой

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249945A (ja) 1993-02-25 1994-09-09 Mitsubishi Electric Corp レーダ装置
ES2585590T3 (es) * 2006-01-17 2016-10-06 Teledyne Australia Pty Ltd. Aparato de vigilancia y método
US8289203B2 (en) * 2009-06-26 2012-10-16 Src, Inc. Radar architecture
US9395437B2 (en) * 2013-06-06 2016-07-19 The United States Of America, As Represented By The Secretary Of The Army Moving multi-polarization multi-transmitter/receiver ground penetrating radar system and signal processing for buried target detection
WO2016054440A1 (en) * 2014-10-01 2016-04-07 Analog Devices, Inc. Wireless network power distribution and data aggregation system and associated applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA012794B1 (ru) * 2006-07-05 2009-12-30 Сайнмет Ла, Инкорпорейтед Антенна (варианты) и способ управления работой антенны
US20100271278A1 (en) * 2007-12-04 2010-10-28 Thomas Binzer Bistatic array antenna and method
US20100066590A1 (en) * 2008-07-28 2010-03-18 Physical Domains, LLC Omnidirectional Retrodirective Antennas
WO2013144146A1 (fr) * 2012-03-30 2013-10-03 Thales Dispositif de détection électromagnétique actif et passif à faible probabilité d'interception
RU2573224C2 (ru) * 2013-10-04 2016-01-20 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Компактная вертикальная антенная решётка из вертикальных вибраторов, пространственно совмещённых с опорой
WO2015104728A1 (en) * 2014-01-09 2015-07-16 Fincantieri S.P.A. Bistatic radar

Also Published As

Publication number Publication date
RU2019107125A (ru) 2020-09-21
BR112019005263A2 (pt) 2019-06-04
AU2017344436B2 (en) 2021-07-29
US11520039B2 (en) 2022-12-06
EP3526621A1 (en) 2019-08-21
KR20190064527A (ko) 2019-06-10
ES2812325T3 (es) 2021-03-16
CA3037487A1 (en) 2018-04-26
EP3526621B1 (en) 2020-05-20
IL265991A (en) 2019-06-30
PL3526621T3 (pl) 2020-11-16
WO2018073676A1 (en) 2018-04-26
DK3526621T3 (da) 2020-08-17
US20190293788A1 (en) 2019-09-26
IL265991B (en) 2022-01-01
SG11201906607RA (en) 2019-08-27
KR102444999B1 (ko) 2022-09-20
AU2017344436A1 (en) 2019-03-21
RU2019107125A3 (ru) 2020-11-06

Similar Documents

Publication Publication Date Title
RU2740218C2 (ru) Радиолокационная система
CA2932430C (en) Bistatic radar
US8432307B2 (en) Agile-beam radar notably for the obstacle ‘sense and avoid’ function
US7737879B2 (en) Split aperture array for increased short range target coverage
KR20150126997A (ko) 다른 응용을 가진 원통형 어레이 안테나에 기초한 해상 레이더
Carta et al. Implementation of the ubiquitous radar concept with a conformal array
Fenner et al. Test results of a space-time adaptive processing system for airborne early warning radar
US20220390592A1 (en) Radar imaging method, and radar implementing such a method
Huizing et al. Compact scalable multifunction RF payload for UAVs with FMCW radar and ESM functionality
Lim et al. Shifting MIMO SAR system for high-resolution wide-swath imaging
JP7098732B2 (ja) レーダシステム
CN110879017A (zh) 一种基于dbf的弹载探测装置
Galati et al. Time for a change in phased array radar architectures-Part I: Planar vs. conformal arrays
US20220229172A1 (en) Active antenna radar with extended angular coverage
Galati et al. The d-Radar: a bistatic system based on conformal arrays
Sankowski et al. Multifunction C-band radar development in Poland: Electronically scanned array technology
Pell A review of system performance requirements for phased array antennas
WO2019138037A1 (en) Radar systems
Klembowski et al. Trends in radar technology and PIT achievements
Lacomme Impact of STAP processing on antenna design