RU2739299C1 - Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена - Google Patents

Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена Download PDF

Info

Publication number
RU2739299C1
RU2739299C1 RU2019131175A RU2019131175A RU2739299C1 RU 2739299 C1 RU2739299 C1 RU 2739299C1 RU 2019131175 A RU2019131175 A RU 2019131175A RU 2019131175 A RU2019131175 A RU 2019131175A RU 2739299 C1 RU2739299 C1 RU 2739299C1
Authority
RU
Russia
Prior art keywords
solid fuel
control
control unit
roll channel
rocket engine
Prior art date
Application number
RU2019131175A
Other languages
English (en)
Inventor
Александр Борисович Бобович
Сергей Евгеньевич Губин
Антон Олегович Цветков
Original Assignee
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации filed Critical Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority to RU2019131175A priority Critical patent/RU2739299C1/ru
Application granted granted Critical
Publication of RU2739299C1 publication Critical patent/RU2739299C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
    • F02K9/90Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control using deflectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Способ управления по каналу крена в ракетном двигателе твердого топлива заключается в подаче продуктов сгорания твердого топлива в управляющий блок вращательного типа, перекрытии по команде системы управления одного из сопел, а в случае неполной загрузки двигателя крена по созданию управляющей силы - уменьшении газоприхода от заряда твердого топлива путем увеличения площади проходных сечений сопел. Ракетный двигатель твердого топлива для управления по каналу крена содержит камеру сгорания с зарядом твердого топлива и управляющий блок вращательного типа «ротор». Управляющий блок в свою очередь выполнен таким образом, что регулирующие кромки его ротора в исходном положении сопряжены с кромками седел сопел, что обеспечивает увеличение проходных сечений в 2 раза по сравнению с положением ротора, соответствующим режиму создания предельной управляющей силы. Такое исполнение управляющего блока позволяет существенно уменьшить давление и расход в случае неполной загрузки двигателя крена по созданию управляющей силы, сократить непроизводительные затраты топлива и уменьшить массу двигателя. 2 н.п. ф-лы, 7 ил.

Description

Изобретение относится к ракетной технике, а именно к ракетным двигателям твердого топлива для управления ракетой и способам управления по каналу крена.
Для компенсации возмущений по каналу крена при полете ракеты зачастую используются двигатели крена на твердом топливе.
Известен способ создания силы с помощью блока крена, совмещенный в едином источнике питания с созданием рабочего тела для гидравлического привода управления ДУ как по каналу крена, так и по каналам тангажа и рысканья (см. Мухамедов B.C. Твердотопливные двигатели специального назначения, Санкт-Петербург, 2018 г., стр. 105).
Единый источник питания состоит из газогенератора с зарядом торцевого горения, бака для хранения жидкости, блока крена с двусторонним игольчатым запорным устройством, регулятора давления, рулевой машинки для управления блоком крена и вкладыша с критическим сечением в патрубке, соединяющем газогенератор с блоком крена. Такой газогенератор обеспечивает постоянный газоприход за счет применения заряда торцевого горения и постоянный расход через блок крена за счет вкладыша с критическим сечением. Создание силы осуществляется блоком крена. В нейтральном положении запорного устройства блока крена продукты сгорания истекают из сопел блока крена, создавая противоположно направленные равные силы, результирующая которых равна нулю. При переключении запорного устройства в одно из крайних положений одно сопло закрывается, а другое остается открытым, и при истечении продуктов сгорания через него создается тяга, обеспечивающая креновый момент.
Недостатком данного способа и устройства является необходимость применения низкотемпературного топлива для обеспечения надежной работы бака вытеснения жидкости в привод и игольчатого запорного устройства.
При использовании более энергетических топлив необходимо повысить работоспособность блока крена при высоких температурах до Т=2300 К, что позволяет использование регуляторов вращательного типа (см. Соломонов Ю.С. и др. Поворотные управляющие сопла РДТТ, Москва, ФизматлитR, 2019 г., стр. 21). Данные способ и устройство приняты за прототип.
Ракетный двигатель твердого топлива для управления по каналу крена содержит камеру сгорания с зарядом твердого топлива и управляющий блок вращательного типа. В исходном положении регулирующий элемент блока установлен таким образом, чтобы половина проходного сечения каждого из двух противоположно направленных сопел была перекрыта. При этом обеспечивается одинаковый расход через сопла и величина управляющего усилия равна нулю. При повороте регулирующего элемента проходная площадь одного сопла увеличивается, а площадь другого сопла уменьшается на такую же величину. Создается усилие и, соответственно, момент по каналу крена. Такой способ обеспечивает постоянство суммарной площади проходных сечений противоположно направленных сопел и расхода при изменении угла поворота регулирующего элемента.
Недостатком такого способа и устройства являются непроизводительные затраты продуктов сгорания топлива при нулевой или неполной загрузке двигателя крена по созданию тяги из-за постоянства расхода в течение всего времени работы.
Задачей предлагаемого изобретения является снижение непроизводительных затрат топлива при нулевой или неполной загрузке двигателя крена по созданию тяги.
Поставленная задача решается за счет того, что в известном способе управления по каналу крена с помощью ракетного двигателя твердого топлива, заключающемся в подаче продуктов сгорания твердого топлива в управляющий блок вращательного типа и перекрытии по команде системы управления одного из сопел, дополнительно при минимальных потребных значениях управляющей силы по каналу крена двигатель переводят на пониженный режим по давлению, понижая при этом скорость горения и газоприход от заряда твердого топлива путем максимального увеличения суммарной площади проходных сечений сопел управляющего блока.
Для этого в известном двигателе твердого топлива, содержащем камеру сгорания с зарядом твердого топлива и управляющий блок вращательного типа, включающий в себя регулирующий элемент ротор и седла сопел, дополнительно регулирующие кромки ротора управляющего блока при нулевом угле отклонения его вала от вертикальной оси блока сопряжены с кромками седел сопел.
Принципиальная схема ракетного двигателя твердого топлива для управления по каналу крена, реализующего способ согласно изобретению, а также поясняющие его работу диаграммы, представлены на фиг. 1…3:
фиг 1 - продольный разрез изделия
фиг 2 - поперечный разрез изделия
фиг. 3 - сравнительный анализ расходных характеристик для прототипа и предлагаемого устройства.
Устройство состоит из камеры сгорания 1, заряда твердого топлива 2 и управляющего блока вращательного типа 3. Управляющий блок вращательного типа включает в себя регулирующий элемент ротор 4 и седла сопел 5. Регулирующие кромки 6 ротора 4 сопряжены с кромками 7 седел сопел 5. При нулевом угле отклонения вала α ротора 4 от вертикальной оси блока (оси подводящего газохода) он не перекрывает проходных сечений седел сопел 5.
Для осуществления способа управления по каналу крена в ракетном двигателе твердого топлива с регулятором вращательного типа, из камеры сгорания 1 продукты сгорания твердого топлива заряда 2 подают в управляющий блок вращательного типа 3. Для снижения непроизводительных затрат топлива при неполной загрузке двигателя крена по созданию тяги давление в камере сгорания 1 и газоприход от заряда твердого топлива 2 уменьшают путем увеличения суммарной площади проходных сечений сопел по сравнению со случаем полной загрузки при создании максимальной управляющей силы. С этой целью ротор выполнен таким образом, что при нулевом угле отклонения вала α ротора 4 от вертикальной оси блока (оси подводящего газохода), он не перекрывает проходных сечений седел сопел 5. Это обеспечивается тем, что регулирующие кромки 6 ротора 4 сопряжены с кромками 7 седел сопел 5.
В процессе работы двигателя продукты сгорания топлива из подводящего газохода поступают в управляющий блок и при нулевом угле отклонения вала α ротора 4 от вертикальной оси блока 8 истекают через оба открытых сопла, проходные сечения которых и расходы продуктов сгорания через них равны, а управляющая сила равна нулю. При этом расход продуктов сгорания через два сопла будет существенно меньше, чем при одном перекрытом сопле.
В случае необходимости создания управляющей силы система управления подает команду на рулевую машинку, кинематически связанную с валом ротора 4, и одна из регулирующих кромок 6 перекрывает проходное сечение соответствующего седла 5, отклоняясь от его кромки 7. При этом давление в камере сгорания и расход продуктов сгорания топлива поднимаются в соответствии с соотношениями:
p1=p2×(σ2÷σ1)1÷(1-v); m1=m2×(σ2÷σ1)v÷(1-v);
(здесь p1, m1 - давление в камере сгорания и расход при перекрытии одного из сопел, р2, m2 - давление и расход при полностью открытых двух соплах, σ1, σ2 - площади одного и двух сопел соответственно, v - показатель степени в законе скорости горения топлива).
На фиг 3а, 3б представлены предельная потребная зависимость управляющей силы от времени и соответствующая ей зависимость поверхности горения от свода в предположении необходимости создания управляющей силы в течение всего времени работы.
Вместе с тем, известно, что в действительности необходимость создания предельной управляющей силы по каналу крена требуется в течение менее 15% времени работы (см. фиг 3в - зависимость угла поворота вала α ротора от времени на натурной работе). В этой связи в течение ~ 85% времени необходимость создания предельной потребной управляющей силы отсутствует, что позволяет в это время уменьшить производимый расход. Это обеспечивается увеличением в это время суммарной площади проходных сечений сопел и снижением давления в камере сгорания.
В конструкции по предлагаемому изобретению суммарная площадь проходных сечений сопел σΣ с ростом угла поворота вала α ротора линейно уменьшается от величины σ2 до величины σ1 (см. фиг 3г), а давление и суммарный расход с уменьшением суммарной площади проходных сечений сопел увеличиваются практически линейно от величин p2, m2 до величин р1, m1 соответственно (см. фиг 3д); управляющая сила при этом возрастает от нуля до предельной потребной величины.
Основываясь на циклограмме фактической загрузки двигателя крена по результатам натурных испытаний (см. фиг 3в), применение предлагаемых способа и устройства позволяет уменьшить запас топлива (свод заряда) на ~ 20%.

Claims (2)

1. Способ управления по каналу крена в ракетном двигателе твердого топлива с регулятором вращательного типа, заключающийся в подаче продуктов сгорания твердого топлива в управляющий блок вращательного типа и перекрытии по команде системы управления одного из сопел, отличающийся тем, что при минимальных потребных значениях управляющей силы по каналу крена двигатель переводят на пониженный режим по давлению, понижая при этом скорость горения и газоприход от заряда твердого топлива путем максимального увеличения суммарной площади проходных сечений сопел управляющего блока.
2. Ракетный двигатель твердого топлива для управления по каналу крена, содержащий камеру сгорания с зарядом твердого топлива и управляющий блок вращательного типа, включающий в себя регулирующий элемент ротор и седла сопел, отличающийся тем, что регулирующие кромки ротора управляющего блока при нулевом угле отклонения его вала от вертикальной оси блока сопряжены с кромками седел сопел.
RU2019131175A 2019-10-01 2019-10-01 Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена RU2739299C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019131175A RU2739299C1 (ru) 2019-10-01 2019-10-01 Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019131175A RU2739299C1 (ru) 2019-10-01 2019-10-01 Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена

Publications (1)

Publication Number Publication Date
RU2739299C1 true RU2739299C1 (ru) 2020-12-22

Family

ID=74063167

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019131175A RU2739299C1 (ru) 2019-10-01 2019-10-01 Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена

Country Status (1)

Country Link
RU (1) RU2739299C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2082946C1 (ru) * 1995-07-03 1997-06-27 Машиностроительное конструкторское бюро "ФАКЕЛ" им.акад.П.Д.Грушина Исполнительная система старта и ориентации ракеты
RU2005140594A (ru) * 2005-12-26 2007-07-10 Юрий Александрович Левушкин (RU) Способ управления тягой ракетного двигателя на твердом топливе и заряд твердого топлива

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2082946C1 (ru) * 1995-07-03 1997-06-27 Машиностроительное конструкторское бюро "ФАКЕЛ" им.акад.П.Д.Грушина Исполнительная система старта и ориентации ракеты
RU2005140594A (ru) * 2005-12-26 2007-07-10 Юрий Александрович Левушкин (RU) Способ управления тягой ракетного двигателя на твердом топливе и заряд твердого топлива

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Соломонов Ю.С. Поворотные управляющие сопла РДТТ. Конструкция, расчет и методы отработки / Соломонов Ю.С., Евгеньев А.М., Петрусев В.И., Смирнов М.Г. - М.: ФИЗМАТЛИТ, 2018, стр. 55-56, рис. 2.1.9. Мухамедов B.C. Твердотопливные двигатели специального назначения, Санкт-Петербург, 2018, стр. 105. *

Similar Documents

Publication Publication Date Title
CN108953003A (zh) 一种采用富氧燃气推进实现补燃循环发动机系统及推力深度调节方法
US4220001A (en) Dual expander rocket engine
DE2132307A1 (de) Verwandlungstriebwerk
DE112015003887B4 (de) Steuervorrichtung, System und Steuerverfahren
MX2013012584A (es) Aparato y metodo para controlar un combustor de ganancia de presion.
US7886519B2 (en) Solid propellant burn rate, propellant gas flow rate, and propellant gas pressure pulse generation control system and method
US9097210B2 (en) Turbine generator assembly for thrust vector control
US20100269484A1 (en) Solid propellant gas control system and method
RU2739299C1 (ru) Способ управления по каналу крена в ракетном двигателе твёрдого топлива с регулятором вращательного типа и ракетный двигатель твёрдого топлива для управления по каналу крена
US2643513A (en) Internal-combustion engine fuel and speed control
DE102016208730A1 (de) Raketenantriebssystem und Verfahren zum Betreiben eines Raketenantriebssystems
Tianfang et al. Optimization design in single wagon-wheel fuel grain of hybrid rocket motor
US3613375A (en) Rocket engine propellant feeding and control system
US2979891A (en) Thrust control apparatus for liquid propellant rocket engines
US3309995A (en) Liquid pumping apparatus
DE2132334A1 (de) Regelvorrichtung fuer ein Verwandlungstriebwerk
US2974902A (en) Power plant for helicopter
US3402556A (en) Fuel control systems for gas turbine engines
US3102386A (en) Discharge pressure controlled gas generators
RU2065068C1 (ru) Экспериментальный жидкостный ракетный двигатель с дожиганием
US3074472A (en) Fuel feeding system for gas turbine engines
US2738648A (en) Liquid fuel control system for a rocket engine
Sunakawa et al. Development status of electrical valve control system for LE-9 engine
Chopinet et al. Progress of the development of an all-electric control system of a rocket engine
Kageyama et al. Effect of Aft Chamber Volume on Hybrid Rocket Combustion Efficiency