RU2737851C1 - Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди - Google Patents

Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди Download PDF

Info

Publication number
RU2737851C1
RU2737851C1 RU2019142966A RU2019142966A RU2737851C1 RU 2737851 C1 RU2737851 C1 RU 2737851C1 RU 2019142966 A RU2019142966 A RU 2019142966A RU 2019142966 A RU2019142966 A RU 2019142966A RU 2737851 C1 RU2737851 C1 RU 2737851C1
Authority
RU
Russia
Prior art keywords
oxide
nanoparticles
copper
graphene oxide
silver
Prior art date
Application number
RU2019142966A
Other languages
English (en)
Inventor
Александр Анатольевич Гусев
Ольга Владимировна Захарова
Алексей Григорьевич Ткачев
Нариман Рустемович Меметов
Артем Сергеевич Протасов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина, ТГУ им. Г.Р. Державина")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина, ТГУ им. Г.Р. Державина") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" (ФГБОУ ВО "Тамбовский государственный университет имени Г.Р. Державина, ТГУ им. Г.Р. Державина")
Priority to RU2019142966A priority Critical patent/RU2737851C1/ru
Application granted granted Critical
Publication of RU2737851C1 publication Critical patent/RU2737851C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение может быть использовано в биотехнологии и медицине для изготовления препаратов, подавляющих жизнедеятельность патогенных микроорганизмов. Для получения наноматериала с антимикробными свойствами на основе оксида графена и наночастиц оксида серебра и оксида меди (II) в водную суспензию оксида графена поочередно вводят наночастицы оксида серебра и оксида меди (II) при следующем соотношении компонентов, мас.%: оксид графена 2-6, наночастицы оксида серебра 4-8, наночастицы оксида меди (II) 8-16, вода дистиллированная – остальное. Процесс осуществляют при температуре 40-45°С и воздействии ультразвуком в течение 6 ч. Изобретение позволяет упростить технологию, снизить затраты на изготовление наноматериала и повысить воспроизводимость его свойств. 2 з.п. ф-лы, 4 табл., 4 пр.

Description

Изобретение относится к способу получения наноматериала с антимикробными свойствами на основе оксида графена и наночастиц оксида серебра и оксида меди (II) и может найти применение главным образом в области биотехнологии и медицины для изготовления препаратов, подавляющих жизнедеятельность патогенных микроорганизмов.
Повышение резистентности различных патогенных микроорганизмов к антибиотикам является серьезной проблемой, чреватой неприятными последствиями. Проблема резистентности микроорганизмов не нова, она существовала еще до открытия первого антибиотика. В связи с широким и часто ненаправленным применением антибиотиков в последнее время особенно заметно возросло число штаммов, резистентных к одному или нескольким антибиотикам. Штаммы некоторых бактерий обладают первичной резистентностью к определенным антибиотикам (например, Pseudomonas к ампициллину), другие же, в принципе чувствительные, могут стать резистентными [1-2]. (1. Антибиотики: современная точка зрения. URL: http://www.lvrach.ru/1998/01/4526487/. 2. Проблема резистентности (устойчивости) к антибиотикам. URL: http://biofile.ru/bio/4271.html).
В последние десятилетия в связи с широким использованием антибиотиков и химических консервантов ускоряется процесс появления резистентных штаммов микрофагов. Серебро и медь, в отличие от органических (химических) консервантов и дезинфектантов - естественные элементы, не загрязняющие природу. Это - экологически чистые, «зеленые» продукты. Являясь сильными биоцидами для микробов и вирусов, серебро и медь, в отличие от других металлов, в то же время гораздо менее токсичны для многоклеточных организмов. Серебро не создает резистентных штаммов, убивая возбудителей на 100% и не давая им мутировать и размножаться. Однако у серебра существенным недостатком является не только высокая стоимость, но его дефицитность при массовом внедрении в экологическую практику. Поэтому представляется актуальным использовать совместно с оксидом графена наночастицы оксида серебра и оксида меди (II). Такая композиция позволяет получить более эффективный материал за счет синергетического взаимодействия компонентов.
Одним из перспективных направлений в решении данной проблемы является применение нанобиотехнологий, направленных на совершенствование специфических свойств наночастиц металлов, определяемых их структурной модификацией, что позволяет достигать различных биологических эффектов, в т.ч. и антибактериальных (Шульгина Т.А., Норкин И.А., Пучиньян Д.М. Антибактериальное действие водных дисперсий наночастиц серебра на грамотрицательные микроорганизмы (на примере Escherichia coli) // Фундаментальные исследования. 2012. №7 (ч. 2). С. 424-426). Благодаря широкому нахождению в природе, выполнению разнообразных функций внутри большинства живых организмов, относительно низкой себестоимости и экологической безопасности наночастицы меди (Cu) обладают высоким потенциалом для применения в качестве антимикробного агента, заменяя серебро и композиты других благородных металлов при разработке антибактериальных средств (Veerapandian М., Sadhasivam S., Choi J., Yun K. Glucosamine functionalized copper nanoparticles: Preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation // Chemical Engineering Journal. 2012. V. 209. P.558-567).
В работе Maqusood Ahamed et al. (Maqusood Ahamed, Hisham A. Alhad-laq, M.A. Majeed Khan, Ponmurugan Karuppiah and Naif A. Al-Dhabi. Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles // Volume 2014 (2014). Article ID 637858. 4 p.) были исследованы антимикробные свойства наночастиц оксида меди, синтезированных методом простого осаждения. Наночастицы CuO показали отличную антимикробную активность в отношении различных штаммов бактерий (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus faecalis, Shigella flexneri, Salmonella typhimurium, Proteus vulgaris, Staphylococcus aureus) причем, Escherichia coli и Enterococcus faecalis показали наибольшую чувствительность к воздействию наночастиц меди, в то время как Klebsiella pneumonia была наименее чувствительна.
В работе греческих ученых Giannousi K. et al. (Giannousi K., Lafazanis K., Arvanitidis J., Pantazaki A., Dendrinou-Samara C. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA // Journal of Inorganic Biochemistry. 2014. V. 133. P. 24-32) исследована антибактериальная активность наночастиц меди синтезированных гидротермальным путем в отношении грамположительных (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus) и грамотрицательных (Xanthomonas campestris, Escherichia coli) бактерий в зависимости от состава (CuO, Cu2O, CuO/Cu2O) и размера частиц. Результаты исследования показывают, что при воздействии различных по составу и размеру частиц проявляются видоспецифичные биологические эффекты. Наибольшую бактерицидную активность, вызывающую деградацию ДНК, проявили наночастицы оксида меди (Cu2O) в отношении грамположительных бактерий. В связи с этим дополнительно было проведен анализ производства активных форм кислорода (АФК) и перекисного окисления липидов, который показал, что количество ионов меди в дистиллированной воде и в питательной среде, ниже критического значения, подавляющего рост бактерий, что может говорить о преобладающем наноразмерном эффекте.
В работе И.В. Бабушкиной и др. (Изучение антибактериального действия наночастиц меди на клинические штаммы Staphylococcus aureus. Саратовский научно-медицинский журнал, 2010, том 6, №1, с. 11-14) установлено, что характер влияния наночастиц на рост клинических штаммов и выраженность антибактериального эффекта зависят от вида наночастиц, их концентрации, времени воздействия. Антибактериальная активность наночастиц меди выражена в широком диапазоне концентраций от 0,001 до 1 мг/мл, даже при кратковременном воздействии (30 мин) наблюдается уменьшение количества микробных клеток, выросших на твердой питательной среде, на 97-100% по сравнению с контролем. Таким образом, наночастицы меди обладают выраженным антибактериальным действием при использовании низких концентраций.
В статье Ding-Bang Xiong et al. (Ding-Bang Xiong, Mu Cao, Qiang Guo, Zhanqiu Tan, Genlian Fan, Zhiqiang Li & Di Zhang High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability. Scientific Reports volume 6, Article number: 33801 (2016) DOI: 10.1038/srep33801) рассмотрен вопрос об уменьшении расхода оксида графена при изготовлении композитного материала на основе оксида графена и оксида меди за счет синергетического эффекта, возникающего при совместном использовании этих компонентов. Авторы считают, что изготовление смеси оксида графена с нанопорошком оксида меди возможно с высоким содержанием оксида графена (~ 45 объемных %) при изготовлении композита в виде сэндвича при одновременном снижении содержания оксида меди. Этот процесс реализован с обеспечением равномерной дисперсии и упорядочением содержания графена в металлической матрице. Установлено, что механические свойства резко возрастают, слоистый композит показал величину упругой деформации, по меньшей мере, на порядок большую, чем из чистой меди, а также наблюдалось увеличение специфической прочности из-за высокого содержания оксида графена.
В статье, принятой в качестве прототипа (Бактерицидное действие оксида графена / Cu / Ag нанодеривативы против Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, золотистый стафилококк и метициллин-устойчивый золотистый стафилококк/Автор: В. Янкаускайте и др. /ИИЛ: S0378-5173(16)30611-1, ДОИ: http://dx.doi.org/doi: 10.1016/j. ijpharm. 2016.06.121, Ссылка: Место 15878, Международный фармацевтический журнал. Дата получения: 24-3-2016), описан способ получения наноматериала с антибактериальными свойствами. Высококонцентрированная дисперсия оксида графена (GO) в воде (концентрация-5 г/л; состав-углерод (79%), кислород(20%); размер хлопьев-0,5-5 мкм; толщина-1 атомный слой - ≥60%) была приобретена у Graphene Laboratories Inc. и использовалась по мере поступления. Методы синтеза наночастиц металлов были выбраны на основе их простоты и экономичности. Коллоидные растворы Cu (~0,25 мг/л) были приготовлены путем растворения соответствующего количества дигидрата хлорида меди (II) растворяли в деионизированной воде. L-аскорбиновую кислоту по каплям добавляли к водному раствору соли меди при интенсивном перемешивании при температуре 80°С в масляной ванне. Коллоидные растворы Ag (~0,25 мг/л) были приготовлены путем растворения соответствующего количества нитрата серебра в деионизированной воде. Затем раствор смешивали с поливинилпирролидоном (ПВП), растворяют в этаноле и разогревают в микроволновой печи в течение 5 мин. Коллоидные растворы Cu и Ag получали путем смешивания коллоидных растворов Cu и Ag в соотношении 1:1, а растворы GO-Cu-Ag получали путем смешивания высококонцентрированной дисперсии GO в воде с коллоидными растворами Cu и Ag в соотношении 1:1:1 соответственно.
Описанный выше способ характеризуется следующими недостатками: способ технологически сложен и недостаточно эффективен (используются коллоидные растворы серебра и меди, которые менее активны, чем те же материалы в ионной форме, что резко увеличивает нормы расхода. Выбранное соотношение компонентов 1:1:1 экономически неоправданно из-за разницы в стоимости материалов (оксид графена на порядок дороже наночастиц серебра, которые дороже примерно в 10 раз наночастиц меди, кроме того наночастицы меди легко агрегируют в растворе, поэтому их требуется примерно в 2 раза больше). Кроме того, «высококонцентрированная дисперсия оксида графена (GO) в воде (концентрация - 5 г / л), произведенная ф. Graphene Laboratories Inc, уступает оксиду графена с содержанием дисперсии в воде 1%, т.е. 10 г/л.
Технический результат заключается в упрощении технологии, снижении затрат на изготовление наноматериала и повышении воспроизводимости свойств получаемого противомикробного наноматериала.
Технический результат достигается способом получения наноматериала с антимикробными свойствами на основе оксида графена и наночастиц оксида серебра и оксида меди (II), отличающегося тем, что в водную суспензию оксида графена поочередно вводят наночастицы оксида серебра и оксида меди (II) при следующем соотношении компонентов, мас.%:
Оксид графена 2-6
Наночастицы оксида серебра 4-8
Наеночастицы оксида меди (II) 8-16
Вода дистиллированная остальное,
и процесс осуществляют при температуре 40-45°С и воздействии ультразвуком в течение 6 ч.
Способ также достигается использованием в качестве водной суспензии оксида графена суспензии с содержанием оксида графена 1%.
Способ также достигается тем, что для применения полученный наноматериал разбавляют водой.
Получение наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксида серебра и оксида меди (II), при котором в водную суспензию оксида графена поочередно вводят наночастицы оксида серебра и оксида меди (II) при следующем соотношении компонентов, мас.%:
Оксид графена 2-6
Наночастицы оксида серебра 4-8
Наеночастицы оксида меди (II) 8-16
Вода дистиллированная остальное,
и процесс осуществляют при температуре 40-45°С и воздействии ультразвуком в течение 30 мин после каждого введения наночастиц, что обеспечивает:
- упрощение технологии синтеза композиционного материала за счет сокращения номенклатуры применяемых материалов, проведения технологического процесса в одном аппарате, сокращения продолжительности синтеза композита и уменьшение расхода воды на промывку;
- минимизацию количества применяемого оборудования и соответственно снижение капитальных затрат;
- повышении качества за счет изготовления компонентов на специализированных предприятиях.
Использование наночастиц оксида серебра и оксида меди (II) и суспензии оксида графена обеспечивают повышение качества за счет применения серийно выпускаемых продуктов.
Использование в качестве водной суспензии оксида графена суспензии оксида графена с содержанием оксида графена 1% обеспечивает снижение затрат за счет уменьшения стоимости исходных компонентов и удобства пользования за счет уменьшения объема материала.
Разбавление для применения полученного наноматериала водой позволяет снизить расходы на транспортирование и хранение и повысить удобство применения.
Далее приводятся данные, доказывающие возможность осуществления заявляемого способа и его эффективность.
Для осуществления изобретения применялись следующие исходные вещества.
Оксид графена дисперсия 1% представляет собой окисленные двумерные графеновые пластины толщиной до 15 нм в виде водной суспензии. Основой оксида графена является химически диспергированный графит, содержащий незначительное количество неуглеродных примесей в виде серы. Оксид графена предназначен для использования в химической и нефтеперерабатывающей промышленности в качестве сырьевого компонента для придания конечному продукту (смазочные материалы, противоизносные составы и т.д.) триботехнических и противоизносных свойств. По физико-химическим показателям оксид графена должен соответствовать нормам, указанным в табл. 1.
Figure 00000001
Наночастицы оксида серебра
Описание
Химическая формула: Ag2O
Физико-химические данные представлены в табл. 2:
Figure 00000002
Внешний вид: порошок коричнево-черного цвета.
По физико-химическим показателям наночастицы оксида серебра должны соответствовать нормам, указанным в табл. 3.
Figure 00000003
Гарантийный срок хранения 1 год.
Наночастицы оксида меди (II).
Наночастицы оксида меди (CuO, высокой чистоты, 99.95%, 25-55 нм)
Чистота наночастиц CuO: 99.95% мин
Цвет наночастиц: коричневый, черный
Средний размер наночастиц CuO: 25-55 нм
Коэффициент увеличения объема: 13,98 см3
Морфология наночастиц CuO: почти сферическая
Насыпная плотность: 0,79 г/см3
Истинная плотность: 6,4 г/м3
По составу примесей наночастицы CuO должны соответствовать нормам, указанным в табл. 4.
Figure 00000004
Наночастицы оксида меди (CuO), область применения: Практически нерастворимы в воде. Медленно растворяются в спирте или растворе аммиака. Растворимы в разбавленных кислотах, NH4Cl, (NH4) 2СО3, растворе цианида калия. При высокой температуре оксид меди реагирует с водородом или монооксидом углерода, может восстановиться до металлической меди. Наночастицы оксида меди (II) являются широко используемым материалом. Применяются при получении катализаторов, сверхпроводящих материалов, термоэлектрических материалов, чувствительных материалов, стекла, керамики и в других областях. Кроме того могут использоваться в качестве катализатора сгорания ракетного топлива. Среди прочих сфер применения - керамические резисторы, газовые датчики, магнитные носители, культиваторы ближнего инфракрасного диапазона, фотопроводящие и фототермальные приложения, полупроводники, преобразование солнечной энергии, катализаторы, высокотехнологичные сверхпроводники.
Пример 1.
В 2-литровый стакан залили 600 мл водной суспензии оксида графена, что соответствует введению 6 г сухого оксида графена и поместили в водяную баню с температурой 45°С и после выдержки в течение 30 мин в водную суспензию ввели поочередно 4 г наночастиц оксида серебра и 8 г наночастиц оксида меди (II) и прилили 394 мл дистиллированной воды. Получили 1000 мл раствора с массой сухого остатка 18 г. Смесь обработали ультразвуком в течение 6 часов при перемешивании механической мешалкой (400 об/мин). Получили черную, прозрачную в тонком слое, дисперсию наноматериалов без осадка. Выход полученного наноматериала составил 98% с содержанием в нем оксида серебра 0.4% и оксида меди (II) 0,8%. Размер наночастиц 1.7-8.0 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 5.0 нм.
Для проверки устойчивости порцию полученной дисперсии (80 мл) пропустили через центрифугу (30 мин при 5000 об/мин). Осадок был незначителен, оптическая плотность пробы отцентрифугированной дисперсии составляла 0,941 (98% от исходной). Дисперсия была устойчивой при хранении в течение, по крайней мере, недели.
Пример 2.
В 2-литровый стакан залили 200 мл водной суспензии оксида графена, что соответствует введению 2 г сухого оксида графена и поместили в водяную баню с температурой 45°С и после выдержки в течение 30 мин в водную суспензию ввели поочередно 4 г наночастиц оксида серебра и 16 г наночастиц оксида меди (II) и прилили 390 мл дистиллированной воды. Получили 1000 мл раствора с массой сухого остатка 22 г. Смесь обработали ультразвуком в течение 6 часов при перемешивании механической мешалкой (400 об/мин). Получили черную, прозрачную в тонком слое, дисперсию наноматериалов без осадка. Выход полученного наноматериала составил 99% с содержанием в нем оксида серебра 0.4% и оксида меди 1,6%. Размер наночастиц 2-7,5 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 5,2 нм.
Для проверки устойчивости порцию полученной дисперсии (80 мл) пропустили через центрифугу (30 мин при 5000 об/мин). Осадок был незначителен, оптическая плотность пробы отцентрифугированной дисперсии составляла 0,940 (97% от исходной). Дисперсия была устойчивой при хранении в течение, по крайней мере, недели.
Пример 3.
В 2-литровый стакан залили 300 мл водной суспензии оксида графена, что соответствует введению 3 г сухого оксида графена и поместили в водяную баню с температурой 45°С и после выдержки в течение 30 мин в водную суспензию ввели поочередно 8 г наночастиц оксида серебра и 12 г наночастиц оксида меди и прилили 390 мл дистиллированной воды. Получили 1000 мл раствора с массой сухого остатка 23 г. Смесь обработали ультразвуком в течение 6 часов при перемешивании механической мешалкой (400 об/мин). Получили черную, прозрачную в тонком слое, дисперсию наноматериалов без осадка. Выход полученного наноматериала составил 99% с содержанием в нем оксида серебра 0.8% и оксида меди 1,2%. Размер наночастиц 1.7-8.5 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 6.0 нм.
Для проверки устойчивости порцию полученной дисперсии (80 мл) пропустили через центрифугу (30 мин при 5000 об/мин). Осадок был незначителен, оптическая плотность пробы отцентрифугированной дисперсии составляла 0,941 (98% от исходной). Дисперсия была устойчивой при хранении в течение, по крайней мере, недели.
Пример 4.
В 2-литровый стакан залили 800 мл водной суспензии оксида графена, что соответствует введению 8 г сухого оксида графена и поместили в водяную баню с температурой 45°С и после выдержки в течение 30 мин в водную суспензию ввели поочередно 8 г наночастиц оксида серебра и 20 г наночастиц оксида меди (II) и прилили 186 мл дистиллированной воды. Получили 1000 мл раствора с массой сухого остатка 36 г. Смесь обработали ультразвуком в течение 6 часов при перемешивании механической мешалкой (400 об/мин). Получили черную, прозрачную в тонком слое, дисперсию наноматериалов без осадка. Выход полученного наноматериала составил 95% с содержанием в нем оксида серебра 0.8% и оксида меди 2%. Размер наночастиц 4-10 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 7.0 нм.
Для проверки устойчивости порцию полученной дисперсии (80 мл) пропустили через центрифугу (30 мин при 5000 об/мин). Осадок был значителен. Дисперсия непригодна для хранения.
Изучение антимикробного действия полученного наноматериала проводили методом двукратных серийных разведений на референтных штаммах микроорганизмов (Candida albicans АТСС №24433, Staphylococcus aureus АТСС №25923, Escherichia coli АТСС №25922, Enterococcus faecalis АТСС №22212, Pseudomonas aeruginosa ATCC №27853).
Чувствительность опытных штаммов микроорганизмов к полученным наноматериалам определяли invitro на виноградно-сахарном бульоне (ВСБ) и среде Сабуро (по стандартам МУК 4.21890-04) на основании динамики роста культуры. Антимикробную активность оценивали в диапазоне концентраций от 2% до 0,02% (от 20 мг/мл до 0,1875 мг/мл). Препарат предварительно разводили в ВСБ. Тестируемые штаммы микроорганизмов добавляли по 0,1 мл (0, 6 единиц по стандарту мутности МакФарланда) в 5 мл каждого разведения исследуемого вещества.
В результате проведенных экспериментов установлено, что наноматериал, полученный с использованием в качестве стабилизирующей матрицы оксид графена, сорбирующего наночастицы оксида серебра и оксида меди (II) обладает антимикробной активностью в отношении исследуемых штаммов микроорганизмов. В контрольных пробах, т.е. в отсутствие наночастиц оксида серебра и оксида меди (II), наблюдается рост тест-культур.
Предлагаемые способ обеспечивает получение наноматериалов на основе оксида графена и наночастиц оксида серебра и оксида меди (II) и характеризуется простотой способа и стабильностью работы.

Claims (5)

1. Способ получения наноматериала с антимикробными свойствами на основе оксида графена и наночастиц оксида серебра и оксида меди (II), отличающийся тем, что в водную суспензию оксида графена поочередно вводят наночастицы оксида серебра и оксида меди (II) при следующем соотношении компонентов, мас.%:
оксид графена 2-6 наночастицы оксида серебра 4-8 наночастицы оксида меди (II) 8-16 вода дистиллированная остальное,
и процесс осуществляют при температуре 40-45°С и воздействии ультразвуком в течение 6 ч.
2. Способ по п. 1, отличающийся тем, что в качестве водной суспензии оксида графена используют суспензию с содержанием оксида графена 1%.
3. Способ по п. 1, отличающийся тем, что для применения полученный наноматериал разбавляют водой.
RU2019142966A 2019-12-23 2019-12-23 Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди RU2737851C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019142966A RU2737851C1 (ru) 2019-12-23 2019-12-23 Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019142966A RU2737851C1 (ru) 2019-12-23 2019-12-23 Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди

Publications (1)

Publication Number Publication Date
RU2737851C1 true RU2737851C1 (ru) 2020-12-03

Family

ID=73792644

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019142966A RU2737851C1 (ru) 2019-12-23 2019-12-23 Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди

Country Status (1)

Country Link
RU (1) RU2737851C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2815771C1 (ru) * 2023-05-03 2024-03-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна" Суспензия неорганических наноструктур и способ получения материала, содержащего наночастицы благородных металлов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107951902A (zh) * 2017-10-18 2018-04-24 厦门源创力科技服务有限公司 一种石墨烯抗菌组合物及其制备方法与应用
RU2698713C1 (ru) * 2018-11-28 2019-08-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди
CN110506753A (zh) * 2019-07-30 2019-11-29 黄山永瑞生物科技有限公司 一种改性纳米银抗菌复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107951902A (zh) * 2017-10-18 2018-04-24 厦门源创力科技服务有限公司 一种石墨烯抗菌组合物及其制备方法与应用
RU2698713C1 (ru) * 2018-11-28 2019-08-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди
CN110506753A (zh) * 2019-07-30 2019-11-29 黄山永瑞生物科技有限公司 一种改性纳米银抗菌复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANKAUSKAITE V. et al., Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus, International Journal of Pharmaceutics, 2016, vol. 511, pp. 90-97. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2815771C1 (ru) * 2023-05-03 2024-03-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна" Суспензия неорганических наноструктур и способ получения материала, содержащего наночастицы благородных металлов

Similar Documents

Publication Publication Date Title
Rajesh et al. Synthesis of copper nanoparticles and role of pH on particle size control
Roomi et al. SnO2: Au/carbon quantum dots nanocomposites: synthesis, characterization, and antibacterial activity
Hosseinkhani et al. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1)
Vijayakumar et al. Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica
Alzahrani et al. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles
Bindhu et al. Synthesis and characterization of zinc oxide nanostructures and its assessment on enhanced bacterial inhibition and photocatalytic degradation
CN113016823B (zh) 一种光热抗菌近红外双金属纳米粒子的制备方法
Castro Alarcon et al. Antibacterial activity of nanoparticles of titanium dioxide, intrinsic and doped with indium and iron
Zamana et al. Antibacterial potential of silver nanoparticles synthesized using tri-sodium citrate via controlled exploitation of temperature
RU2698713C1 (ru) Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди
Alhadrami et al. Antibacterial applications of anatase TiO2 nanoparticle
CN1919000A (zh) 载银铵改性纳米沸石抗菌剂及其制备方法
RU2737851C1 (ru) Способ получения наноматериала биотехнологического назначения на основе оксида графена и наночастиц оксидов серебра и меди
Hona et al. Antimicrobial effect of copper nanoparticles synthesized by chemical method
Femi et al. Anti bacterial effect of ZnO-Au nanocomposites
Murthy et al. Gallium oxide nanoparticle induced inhibition of bacterial adhesion and biofilm formation
Moustafa et al. Hydrothermal preparation of TiO 2-Ag nanoparticles and its antimicrobial performance against human pathogenic microbial cells in water
Rashidova et al. Biologically Active Cu/Ag Core–Shell Nanoparticles: Synthesis and Physicochemical Properties
Haque et al. Facile fabrication of copper oxide nanoparticles for antimicrobial activity
Wang et al. Synthesis and characterization of natural polymer/inorganic antibacterial nanocomposites
Yang et al. Preparation and antibacterial mechanism of copper-based silica nanocomposite materials
Myrzabayevich KHAN NATALYA VLADIMIROVNA
Chakra et al. Structural, antimicrobial and electrochemical properties of Cu/TiO2 nanocomposites
Lepcha et al. MoS 2 and MoSe 2 2D nanosheets-based supramolecular nanostructure scaffold-capped Ag-NPs: exploring their morphological, anti-bacterial, and anticancer properties
Ghazi et al. Antibacterial studying of silver nanoparticles synthesized by chemical reduction method using different stabilized concentrations

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210518

Effective date: 20210518