RU2737774C1 - Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors - Google Patents

Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors Download PDF

Info

Publication number
RU2737774C1
RU2737774C1 RU2019143650A RU2019143650A RU2737774C1 RU 2737774 C1 RU2737774 C1 RU 2737774C1 RU 2019143650 A RU2019143650 A RU 2019143650A RU 2019143650 A RU2019143650 A RU 2019143650A RU 2737774 C1 RU2737774 C1 RU 2737774C1
Authority
RU
Russia
Prior art keywords
zone
synthesis
deposition
products
perovskite
Prior art date
Application number
RU2019143650A
Other languages
Russian (ru)
Inventor
Артур Рустэмович Иштеев
Лев Олегович Лучников
Дмитрий Сергеевич Муратов
Данила Сергеевич Саранин
Сергей Иванович Диденко
Денис Валерьевич Кузнецов
Ди Карло Альдо
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2019143650A priority Critical patent/RU2737774C1/en
Application granted granted Critical
Publication of RU2737774C1 publication Critical patent/RU2737774C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

FIELD: optics; technological processes.
SUBSTANCE: invention relates to the technology of producing perovskite structures for thin-film optoelectronic devices in technological processes for producing light-emitting diodes, solar cells and photodetectors with a spectral range from 400 to 780 nm, a forbidden zone from 3.1 to 1.57 eV. Method of chemical deposition of solid films with perovskite structure with structural formula ARbX3 for production of photovoltaic devices, light-emitting diodes and photodetectors, where A is a cation in form of CH3NH3 +, or (NH2)2CH+, or C(NH2)3 +, or Cs+, or a mixture thereof, X is an anion in form of Cl-, or Br-, or I- or mixture thereof, from a gas phase, consists in grinding the synthesis components of AX and PbX2 in a molar ratio in range of 1:4 to 1:1 in a ball mill in 12-cycle mode for 5 minutes at 400 rpm until formation of a stoichiometric compound, subsequent loading of the grinding products in the heating and evaporation zone of the synthesis components, placing the flat substrate in the heating zone and depositing the synthesis products, providing pressure of 10 Pa in reaction volume and flow of transportation gas in direction from heating zone of reaction components to reaction products deposition zone, increasing temperature in heating zone until evaporation of synthesis components, increasing temperature in reaction products deposition zone, formation of a photoactive perovskite photoluminescent layer by chemical deposition from a gas phase on a substrate in the zone of deposition of synthesis products at a temperature raised to 305 °C and maintained until completion of the process.
EFFECT: technical result consists in simplification of production process, namely single-step and low-waste technology without use of solvents, adapted to batch production and suitable for making wide-format films with a perovskite structure on a flat substrate with area of up to 1 m2, which enables to scale the size of devices from 0_1 cm2 to 1 m2.
1 cl, 4 dwg, 1 ex

Description

Область техникиTechnology area

Заявляемое изобретение относится к технологии получения перовскитных структур для тонкопленочных оптоэлектронных устройств, и может быть использовано в технологических процессах производства светодиодов, солнечных элементов и фотодетекторов.The claimed invention relates to a technology for producing perovskite structures for thin-film optoelectronic devices, and can be used in technological processes for the production of LEDs, solar cells and photodetectors.

Уровень техникиState of the art

Известна технология получения тонких пленок перовскита на основе висмута Bi2(MA)3I9 (US 2019/0074439 А1, опублик. 7.03.2019), где предлагается одновременное напыление отдельных порошков метиламин йода (CH3NH3I) и йодида висмута (BiI3) из разных температурных зон печи в атмосфере аргона без использования вакуума. Демонстрируется получение искомой фазы перовскита. Утверждается возможность применения технологии при нанесении на такие подложки как ITO, ориентированный полированный кремний.There is a known technology for producing thin films of perovskite based on bismuth Bi 2 (MA) 3 I 9 (US 2019/0074439 A1, published on March 7, 2019), where it is proposed to simultaneously spray separate powders of methylamine iodine (CH 3 NH 3 I) and bismuth iodide ( BiI 3 ) from different temperature zones of the furnace in an argon atmosphere without using a vacuum. Obtaining the desired perovskite phase is demonstrated. The possibility of applying the technology when deposited on such substrates as ITO, oriented polished silicon is approved.

Недостатком данной технологии является низкие выходные характеристики устройств на основе полученного слоя со структурой Al/Bi2(МА)3I9/Al из-за применения без свинцовой композиции перовскита.The disadvantage of this technology is the low output characteristics of devices based on the obtained layer with the Al / Bi 2 (MA) 3 I 9 / Al structure due to the use of perovskite without a lead composition.

Известна технология получения перовскитных пленок на основе формамидиния методом CVD (US 2017/0268128 А1, опублик. 21.09.2017). Метод реализует технологии создания перовскитных пленок с вариативными галогенидами. Солнечные элементы, сконструированные с использованием перовскита, полученного данной технологией, демонстрируют свою эффективность 11,8%.Known technology for producing perovskite films based on formamidinium by CVD (US 2017/0268128 A1, published 09.21.2017). The method implements the technologies for creating perovskite films with variable halides. Solar cells constructed using perovskite produced by this technology demonstrate an efficiency of 11.8%.

Недостатком данной технологии является многостадийность процесса, состоящая из предварительного термо-резистивного напылении галогенидов свинца на подложки и последующего химического осаждения из газовой фазы для получения перовскитной структуры, что значительно усложняет технологический процесс.The disadvantage of this technology is the multistage process, which consists of preliminary thermo-resistive sputtering of lead halides on substrates and subsequent chemical vapor deposition to obtain a perovskite structure, which greatly complicates the technological process.

Известна технология получения пленок CsPbBr3 (Tian С.et al. Chemical Vapor Deposition Method Grown All-Inorganic Perovskite Microcrystals for Self-Powered Photodetectors // ACS applied materials & interfaces. - 2019. - Т. 11. - №. 17. - C. 15804-15812.), описывающая одностадийный синтез пленки CsPbBr3 в вакууме и атмосфере аргона на подложках GaN. В работе предлагается использовать технологи для конструирования фотодетекторов, реализуемым благодаря высокой стабильности неорганического перовскита и низкой плотности токов утечки порядка 10-5 мА/см2.Known technology for producing films CsPbBr 3 (Tian C. et al. Chemical Vapor Deposition Method Grown All-Inorganic Perovskite Microcrystals for Self-Powered Photodetectors // ACS applied materials & interfaces. - 2019. - T. 11. - No. 17. - Pp. 15804-15812.), Describing the one-step synthesis of a CsPbBr 3 film in a vacuum and argon atmosphere on GaN substrates. The paper proposes to use technology for the design of photodetectors, implemented due to the high stability of inorganic perovskite and low leakage current density of the order of 10-5 mA / cm 2 .

Недостатком технологии является использование в качестве подложки высоко кристаллического GaN, и как следствие трудности в использовании технологии в солнечных элементах и фотодиодах третьего поколения.The disadvantage of this technology is the use of highly crystalline GaN as a substrate, and as a consequence of the difficulty in using the technology in solar cells and photodiodes of the third generation.

Наиболее близким к предложенному способу является технология получения пленок перовскита на основе Bi (Sanders S. et al. Chemical vapor deposition of organic-inorganic bismuth-based Perovskite films for solar cell application //Scientific reports. - 2019. - T. 9. - №. 1. - C. 1-8.), в которой связь морфологии фазового состава от соотношения исходных компонентов MAI и BiI3, основанная на восьмикратном избытке органического прекурсора MAI, приводит к оптимальной морфологии. Конструкция CVD системы масштабируема для массового производства. Солнечные элементы, изготовленные по данной технологии, имеют эффективность преобразования солнечной энергии 0,02%.The closest to the proposed method is the technology of obtaining perovskite films based on Bi (Sanders S. et al. Chemical vapor deposition of organic-inorganic bismuth-based Perovskite films for solar cell application // Scientific reports. - 2019. - T. 9. - No. 1. - C. 1-8.), In which the relationship between the morphology of the phase composition and the ratio of the starting components MAI and BiI 3 , based on an eight-fold excess of the organic precursor MAI, leads to an optimal morphology. The CVD system design is scalable for mass production. Solar cells manufactured using this technology have a solar energy conversion efficiency of 0.02%.

Недостатком технологии является низкая толщина пленок перовскита, не позволяющая создавать солнечные элементы с оптимальной степенью поглощения света. Причиной низкой эффективности солнечных устройств с применением данной технологии могут являться проблемы оптимизации, ошибочный выбор структуры солнечного элемента.The disadvantage of this technology is the low thickness of perovskite films, which does not allow the creation of solar cells with an optimal degree of light absorption. The reason for the low efficiency of solar devices using this technology can be optimization problems, the wrong choice of the structure of the solar cell.

Сущность изобретенияThe essence of the invention

Технический результат заявленного технологического решения заключается в обеспечении возможности формирования фотоактивного перовскитного слоя толщиной от 8 нм до 8000 нм, пиком фотолюминисценции в видимом диапазоне спектра от 400 до 780 нм с квантовым выходом от 2 до 40% путем осуществления упрощенного, одностадийного, масштабируемого и малоотходного технологического процесса.The technical result of the claimed technological solution is to provide the possibility of forming a photoactive perovskite layer with a thickness of 8 nm to 8000 nm, a photoluminescence peak in the visible spectral range from 400 to 780 nm with a quantum yield of 2 to 40% by implementing a simplified, one-stage, scalable and low-waste technological process.

Технический результат достигается следующим образом.The technical result is achieved as follows.

В способе химического осаждения сплошных пленок со структурой перовскита со структурной формулой APbX3 для производства фотовольтаических устройств, светодиодов и фотодетекторов, где А является катионом в виде CH3NH3 + или (NH2)2CH+ или С(NH2)3 + или Cs+ или их смеси, X является анионом в виде Cl- или Br- или I- или их смеси, из газовой фазы, проводят размол компонентов синтеза АХ и PbX2 в молярном соотношении в диапазоне от 1:4 до 1:1 в шаровой мельнице в режиме 12 циклов по 5 минут при 400 об/мин до образования стехиометрического соединения, загружают продукты размола в зоне нагрева и испарения компонентов синтеза и размещают плоскую подложку в зоне нагрева и осаждения продуктов синтеза. Далее обеспечивают давление 10 Па в реакционном объеме и поток транспортировочного газа в направлении от зоны нагрева компонентов реакции к зоне осаждения продуктов реакции при увеличении температуры в зоне нагрева до испарения компонентов синтеза, увеличивают температуру в зоне осаждения продуктов реакциии и формируют фотоактивный перовскитный фотолюминесцентный слой путем химического осаждения из газовой фазы на подложке в зоне осаждения продуктов синтеза при температуре повышенной до 305°С и поддерживаемой до завершения процесса.In the method of chemical deposition of continuous films with a perovskite structure with the structural formula APbX 3 for the production of photovoltaic devices, LEDs and photodetectors, where A is a cation in the form of CH 3 NH 3 + or (NH 2 ) 2 CH + or C (NH 2 ) 3 + or Cs + or their mixtures, X is an anion in the form of Cl - or Br - or I - or their mixture, from the gas phase, the components of the synthesis AX and PbX 2 are milled in a molar ratio in the range from 1: 4 to 1: 1 in ball mill in the mode of 12 cycles of 5 minutes at 400 rpm until a stoichiometric compound is formed, the grinding products are loaded in the zone of heating and evaporation of the synthesis components, and a flat substrate is placed in the zone of heating and precipitation of synthesis products. Then, a pressure of 10 Pa is provided in the reaction volume and a flow of the transport gas in the direction from the heating zone of the reaction components to the zone of precipitation of reaction products with an increase in temperature in the heating zone until the evaporation of the synthesis components, the temperature in the zone of precipitation of reaction products is increased and a photoactive perovskite photoluminescent layer is formed by chemical deposition from the gas phase on a substrate in the zone of deposition of synthesis products at a temperature increased to 305 ° C and maintained until the end of the process.

Изобретение поясняется чертежом, где на фигуре 1 показана схема установки химического осаждения перовскитов из газовой фазы, на фигуре 2 показана дифрактограмма пленки, полученной методом химического осаждения CsBr и PbBr2 из газовой фазы, включающая фазы соответствующие структуре перовскита CsPbBr3 и CsPb2Br5; на фигуре 3 показан спектр фотолюминисценции пленки, полученной методом химического осаждения CsBr и PbBr2 из газовой фазы, с пиком 524 нм; на фигуре 4 показана схема оптоэлектронных устройств с фотоактивным слоем, полученным химическим осаждением перовскитов из газовой фазы для производства фотовольтаических устройств, светодиодов и фотодетекторов.The invention is illustrated by a drawing, where figure 1 shows a diagram of an installation for chemical vapor deposition of perovskites; figure 2 shows a diffractogram of a film obtained by chemical vapor deposition of CsBr and PbBr 2 , including phases corresponding to the structure of perovskite CsPbBr 3 and CsPb 2 Br 5 ; Figure 3 shows the photoluminescence spectrum of a film obtained by chemical vapor deposition of CsBr and PbBr 2 with a peak at 524 nm; Figure 4 shows a diagram of optoelectronic devices with a photoactive layer obtained by chemical vapor deposition of perovskites for the production of photovoltaic devices, LEDs and photodetectors.

Способ осуществляется на установке химического осаждения перовскитов из газовой фазы (фиг. 1), которая состоит из корундовой открытой емкости 1 для загрузки компонентов синтеза, компонентов 2 синтеза, зоны 3 нагрева и испарения компонентов синтеза, зоны 4 нагрева подложек для осаждения продуктов синтеза, подложки 5 с продуктом синтеза.The method is carried out on an installation for the chemical deposition of perovskites from the gas phase (Fig. 1), which consists of an open corundum container 1 for loading synthesis components, synthesis components 2, zone 3 for heating and evaporation of synthesis components, zone 4 for heating substrates for deposition of synthesis products, a substrate 5 with a synthesis product.

Структура оптоэлектронных устройств с фотоактивным слоем, полученным химическим осаждением перовскитов из газовой фазы (фиг. 4), содержит слой 6 прозрачного, проводящего оксида индия и олова, -дырочно-транспортный слой 7, фотоактивный слой 8, полученный химическим осаждением из газовой фазы, электрон-транспортный слой 9, электрод 10.The structure of optoelectronic devices with a photoactive layer obtained by chemical vapor deposition of perovskites (Fig. 4), contains a layer 6 of a transparent, conducting oxide of indium and tin, a hole-transport layer 7, a photoactive layer 8 obtained by chemical vapor deposition, an electron -transport layer 9, electrode 10.

Пример модельной реализацииAn example of a model implementation

В качестве прекурсоров синтеза использованы порошки бромида свинца PbBr2 (734 мг) и бромида цезия CsBr (424 мг). Порошки смешиваются мольным соотношением 1:1 и перемалываются в шаровой мельнице в режиме 12 циклов по 5 минут при 400 об/мин в достижения однородного состава желтого цвета со структурой перовскита CsPbBr3 и Cs2PbBr6.Powders of lead bromide PbBr 2 (734 mg) and cesium bromide CsBr (424 mg) were used as precursors for the synthesis. The powders are mixed with a molar ratio of 1: 1 and ground in a ball mill in 12 cycles of 5 minutes at 400 rpm to achieve a uniform yellow composition with a perovskite structure CsPbBr 3 and Cs 2 PbBr 6 .

Нанесение тонкой пленки реализовано в трубчатой двухзонной печи в кварцевом реакторе с внутренним диаметром 25 мм. В реактор в центре горячей зоны печи помещен корундовый тигель со смесью порошков CsBr и PbBr2, на расстоянии 25 см от тигля горизонтально помещается прозрачная плоская подложка, с последовательно сформированными слоями 6 оксида олова-индия- и также дырочно-транспортным слоем 7 на основе оксида никеля согласно схеме, изображенной на фиг. 1, 4. Обеспечивается вакуум 10 Па затем в реактор нагнетается поток аргона с расходом от 3,2 л/ч. Печь нагревается со скоростью 15°С/мин до 580°С, выдерживается на этой температуре в течение 40 минут. Зона реактора, содержащая подложки, по достижению в печи температуры 300°С, прогревается до 305°С, температура поддерживается до завершения процесса. По истечению 40 минут выдержки при 580°С нагрев прекращается, по достижению температуры печи 250°С (в результате естественного охлаждения) прекращается поддержание динамического вакуума, в реактор нагнетается аргон до атмосферного давления, затем следует разгерметизация реактора. Подложки, покрытые слоем перовскита, извлекается из реактора. Структура полученного материала соответствует структуре перовскита и подтверждается дифрактограммой, изображенной на фигуре 2, а также спектром фотолюминесценции, изображенным на фигуре 3. На полученный материал нанесены слои 8 электрон-транспортного материала и металлический электрод, для реализации светоизлучающего диода с фотоактивным перовскитным слоем, полученным методом осаждения из газовой фазы. Полученное устройство было подключено к источнику постоянного тока и продемонстрировало видимую электролюминесценцию с 2,8 В при последовательном увеличении напряжения от 0 до 5 В.A thin film was deposited in a tubular two-zone furnace in a quartz reactor with an inner diameter of 25 mm. A corundum crucible with a mixture of CsBr and PbBr 2 powders is placed in the reactor in the center of the hot zone of the furnace; a transparent flat substrate is placed horizontally at a distance of 25 cm from the crucible, with successively formed layers 6 of tin-indium oxide and also a hole-transport layer 7 based on oxide nickel according to the diagram shown in FIG. 1, 4. A vacuum of 10 Pa is provided, then an argon flow is injected into the reactor with a flow rate of 3.2 l / h. The furnace is heated at a rate of 15 ° C / min up to 580 ° C, maintained at this temperature for 40 minutes. The zone of the reactor containing the substrates, upon reaching a temperature of 300 ° C in the furnace, is heated to 305 ° C, the temperature is maintained until the end of the process. After 40 minutes of exposure at 580 ° C, heating stops, upon reaching the furnace temperature of 250 ° C (as a result of natural cooling), the maintenance of the dynamic vacuum ceases, argon is pumped into the reactor to atmospheric pressure, then the reactor is depressurized. The perovskite-coated substrates are removed from the reactor. The structure of the obtained material corresponds to the structure of perovskite and is confirmed by the diffraction pattern shown in figure 2, as well as by the photoluminescence spectrum shown in figure 3. Layers 8 of an electron transport material and a metal electrode are deposited on the resulting material, for the implementation of a light-emitting diode with a photoactive perovskite layer obtained by the method deposition from the gas phase. The resulting device was connected to a DC power supply and showed visible electroluminescence at 2.8 V while increasing the voltage sequentially from 0 to 5 V.

Технологическим преимуществом процесса является одностадийный масштабируемый синтез без использования жидкостных процессов при формировании фотоактивного перовскитного слоя толщиной от 8 нм до 8000 нм, пиком фотолюминисценции в видимом диапазоне спектра от 400 до 780 нм с квантовым выходом от 2 до 40%. Данная технология адаптирована для внедрения в технологическую линию производства солнечных элементов, дисплеев, фотодетекторов.The technological advantage of the process is a one-stage scalable synthesis without the use of liquid processes during the formation of a photoactive perovskite layer with a thickness of 8 nm to 8000 nm, a photoluminescence peak in the visible spectral range from 400 to 780 nm with a quantum yield of 2 to 40%. This technology is adapted for implementation in the production line of solar cells, displays, photodetectors.

Claims (1)

Способ химического осаждения сплошных пленок со структурой перовскита со структурной формулой АРbХ3 для производства фотовольтаических устройств, светодиодов и фотодетекторов, где А является катионом в виде СН33 +, или (NH2)2CH+, или С(NН2)3 +, или Cs+, или их смеси, X является анионом в виде Сl-, или Вr-, или I-, или их смеси, из газовой фазы, заключающийся в размоле компонентов синтеза АХ и РbХ2 в молярном соотношении в диапазоне от 1:4 до 1:1 в шаровой мельнице в режиме 12 циклов по 5 мин при 400 об/мин до образования стехиометрического соединения, последующей загрузке продуктов размола в зоне нагрева и испарения компонентов синтеза, размещении плоской подложки в зоне нагрева и осаждении продуктов синтеза, обеспечении давления 10 Па в реакционном объеме и потока транспортировочного газа в направлении от зоны нагрева компонентов реакции к зоне осаждения продуктов реакции, увеличении температуры в зоне нагрева до испарения компонентов синтеза, увеличении температуры в зоне осаждения продуктов реакции, формировании фотоактивного перовскитного фотолюминесцентного слоя путем химического осаждения из газовой фазы на подложке в зоне осаждения продуктов синтеза при температуре, повышенной до 305°С и поддерживаемой до завершения процесса.A method of chemical deposition of continuous films with a perovskite structure with the structural formula APbX 3 for the production of photovoltaic devices, LEDs and photodetectors, where A is a cation in the form of CH 3 NH 3 + , or (NH 2 ) 2 CH + , or C (NH 2 ) 3 + , or Cs + , or mixtures thereof, X is an anion in the form of Cl - , or Br - , or I - , or a mixture thereof, from the gas phase, which consists in grinding the synthesis components AX and PbX 2 in a molar ratio ranging from 1 : 4 to 1: 1 in a ball mill in the mode of 12 cycles of 5 min at 400 rpm until the formation of a stoichiometric compound, the subsequent charging of the grinding products in the heating zone and evaporation of the synthesis components, placing a flat substrate in the heating zone and precipitation of synthesis products, ensuring pressure of 10 Pa in the reaction volume and the flow of the transport gas in the direction from the heating zone of the reaction components to the zone of precipitation of the reaction products, an increase in the temperature in the heating zone until the evaporation of the synthesis components, an increase in the temperature in the zone of deposition of reaction products, formation of a photoactive perovskite photoluminescent layer by chemical vapor deposition on a substrate in the zone of deposition of synthesis products at a temperature increased to 305 ° C and maintained until the end of the process.
RU2019143650A 2019-12-25 2019-12-25 Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors RU2737774C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019143650A RU2737774C1 (en) 2019-12-25 2019-12-25 Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019143650A RU2737774C1 (en) 2019-12-25 2019-12-25 Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors

Publications (1)

Publication Number Publication Date
RU2737774C1 true RU2737774C1 (en) 2020-12-02

Family

ID=73792733

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019143650A RU2737774C1 (en) 2019-12-25 2019-12-25 Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors

Country Status (1)

Country Link
RU (1) RU2737774C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798007C2 (en) * 2021-04-06 2023-06-13 Федеральное Государственное Бюджетное Учреждение Науки Федеральный Исследовательский Центр Проблем Химической Физики И Медицинской Химии Российской Академии Наук (Фиц Пхф И Мх Ран) Organic halides and complex metal halides, methods for their production, a photovoltaic device with a photoactive layer based on complex metal halides and a method for manufacturing this device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190198A (en) * 2019-04-03 2019-08-30 华中科技大学 A kind of perovskite Quantum Well electroluminescent device and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190198A (en) * 2019-04-03 2019-08-30 华中科技大学 A kind of perovskite Quantum Well electroluminescent device and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANCISCO PALAZON et al. Mechanochemical Synthesis of Inorganic Halide Perovskites: Evolution of Phase-purity, Morphology, and Photoluminescence, "Journal of Materials Chemistry C", 15.08.2019, 7, 11406-11410. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798007C2 (en) * 2021-04-06 2023-06-13 Федеральное Государственное Бюджетное Учреждение Науки Федеральный Исследовательский Центр Проблем Химической Физики И Медицинской Химии Российской Академии Наук (Фиц Пхф И Мх Ран) Organic halides and complex metal halides, methods for their production, a photovoltaic device with a photoactive layer based on complex metal halides and a method for manufacturing this device
RU2802302C1 (en) * 2022-12-20 2023-08-24 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) METHOD FOR MANUFACTURING HIGHLY CRYSTALLINE INORGANIC PEROVSKITE THIN FILMS CsPbBr3
RU2814791C1 (en) * 2023-10-16 2024-03-04 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" Method of making medium for recording colour photoluminescent micro-image

Similar Documents

Publication Publication Date Title
Sun et al. 0D perovskites: unique properties, synthesis, and their applications
CN111477746B (en) Low-temperature doped high photoluminescence quantum yield perovskite thin film and preparation method thereof
EP3304611B1 (en) Gas-induced perovskite formation
KR101869212B1 (en) System and method based on low-pressure chemical vapor deposition for fabricating perovskite film
Wang et al. Growth of metal halide perovskite materials
Varma Low-dimensional perovskites
US20210242357A1 (en) Metal-halide semiconductor optical and electronic devices and methods of making the same
CN110938428B (en) High-efficiency synthetic Cs2AgCl3Method for preparing all-inorganic non-lead perovskite
US20190248670A1 (en) Zinc nitride compound and method for producing same
RU2737774C1 (en) Method for chemical deposition of perovskites from gas phase for production of photovoltaic devices, light-emitting diodes and photodetectors
CN111403616B (en) Bromine inorganic salt perovskite film and preparation method and application thereof
CN109518161A (en) The preparation method of caesium tin halogen perovskite thin film material
CN114703539B (en) Preparation method of large-size cesium chloride copper bromide crystal
Soto-Montero et al. Single-source pulsed laser deposition of MAPbI 3
Manthina et al. Synthesis of hybrid organic-inorganic perovskite platelets by vacuum impregnation
CN111816770B (en) Perovskite thin film preparation method, perovskite thin film and solar cell device
CN114220922A (en) Method for thermally evaporating perovskite material through in-situ passivation
Yoon et al. Vapor deposition of organic-inorganic hybrid perovskite thin-films for photovoltaic applications
Li et al. Fabrication of ZnO thin film and nanostructures for optoelectronic device applications
Abzieher et al. Continuous flash sublimation of inorganic halide perovskites: overcoming rate and continuity limitations of vapor deposition
CN111081880A (en) Intermediate phase for perovskite vapor phase growth and preparation method and application thereof
Pirposhte et al. ZnO Thin Films: Fabrication Routes, and Applications
CN106968015A (en) A kind of UV transparent conductive film and its manufacture method
Reyes et al. Stability improvement of CH3NH3PbI3 hybrid perovskite through tin and chlorine doping
JP2013524538A (en) Rare earth sulfide thin film