RU2737616C1 - Система накопления и распределения энергии и способ ее эксплуатации - Google Patents

Система накопления и распределения энергии и способ ее эксплуатации Download PDF

Info

Publication number
RU2737616C1
RU2737616C1 RU2020115398A RU2020115398A RU2737616C1 RU 2737616 C1 RU2737616 C1 RU 2737616C1 RU 2020115398 A RU2020115398 A RU 2020115398A RU 2020115398 A RU2020115398 A RU 2020115398A RU 2737616 C1 RU2737616 C1 RU 2737616C1
Authority
RU
Russia
Prior art keywords
converter
control unit
load
power
converter control
Prior art date
Application number
RU2020115398A
Other languages
English (en)
Inventor
Михаил Юрьевич Грачев
Максим Леонидович Филинский
Павел Георгиевич Попов
Алексей Михайлович Савицкий
Денис Геннадьевич Метальников
Вячеслав Александрович Колесников
Original Assignee
Общество с ограниченной ответственностью «Системы накопления энергии»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью «Системы накопления энергии» filed Critical Общество с ограниченной ответственностью «Системы накопления энергии»
Priority to RU2020115398A priority Critical patent/RU2737616C1/ru
Priority to PCT/RU2020/000452 priority patent/WO2021225465A1/ru
Application granted granted Critical
Publication of RU2737616C1 publication Critical patent/RU2737616C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Изобретение относится к области электротехники, в частности к системам накопления и распределения энергии. Технический результат заключается в повышении стабильности работы системы. Достигается тем, что блок управления преобразователем имеет входы измерения мгновенных значений напряжения источника питания и нагрузки, тока нагрузки, тока звена переменного тока преобразователя, входы измерения тока и напряжения звена постоянного тока преобразователя, блок управления преобразователем выполнен с возможностью сохранять алгоритмы работы системы и объединен с двунаправленным преобразователем. К блоку управления преобразователем может быть функционально подключен электронный ключ и цепь измерения напряжения сети. Подсистема накопления может быть выполнена на суперконденсаторах или по комбинированной схеме. 2 н. и 3 з.п. ф-лы, 5 ил.

Description

Техническое решение относится к области электротехники, а именно к автоматическим системам бесперебойного энергоснабжения.
Из уровня техники известно устройство интеллектуального управления энергоснабжением, включающее DC/DC преобразователи, AC/DC преобразователи, реверсивные DC/AC преобразователи, аккумуляторные батареи, подключаемые к шине постоянного тока через модуль управления зарядом батарей, датчики тока и напряжения, установленные на входе каждого AC/DC и DC/DC преобразователя, на шинах постоянного и переменного тока, на входе системы заряда аккумуляторных батарей, и подключенные к контроллеру системы управления. На входах от внешней сети и устройств генерации переменного тока и на выходах из устройства к потребителям также установлены датчики тока и напряжения, подключенные к контроллеру системы управления. Информационная связь между всеми модулями осуществляется посредством подключения всех перечисленных модулей через шину передачи данных к микропроцессорному блоку управления - программируемому логическому контроллеру или компьютеру, осуществляющему интеллектуальное управление и координацию работы всех перечисленных устройств на шинах постоянного и переменного тока, реализующему алгоритмы управления переключением источников и потребителей путем выдачи команд на включение силовых реле подключения каждого преобразователя, ввода внешней сети, ввода от резервного генератора и вывода к потребителям электроэнергии. Патент на изобретение № RU 2692083, МПК: H02J 3/38; H02J 7/34; H02J 7/35, опубликован 21.06.2019.
Главным недостатком данного технического решения является осуществление алгоритмов работы микропроцессорным блоком управления. В такой системе отсутствует возможность реагирования на быстрые возмущения сети.
Известно техническое решение, выбранное в качестве ближайшего аналога, представляющее собой комбинированный многофункциональный энергетический комплекс, содержащий разнородные источники и накопитель электроэнергии, присоединенные к входам сетевого и автономного преобразователей, входы которых подключены к нагрузке, выходы датчиков которой присоединены к входам агрегатных систем автоматического управления каждого преобразователя, а выходы указанных систем присоединены к цепям управления каждого преобразователя. При этом выходы агрегатных систем управления преобразователей подсоединяются к входу блока системы управления верхнего уровня, выходы которого соединены с цепями управления вентилей каждого преобразователя. Патент на полезную модель № RU 95434, МПК H02J 3/28; G05F 1/66, опубликован 27.06.2010.
Существенными отличительными признаками заявляемого решения являются: блок управления преобразователем имеет входы измерения мгновенных значений напряжения источника питания или нагрузки, тока нагрузки, тока и напряжения звена постоянного тока преобразователя; в блок управления преобразователем записаны алгоритмы работы системы накопления и распределения энергии; блок управления преобразователем функционально объединен с двунаправленным преобразователем.
В известном техническом решении алгоритмы реализуются блоком системы управления верхнего уровня, при этом все команды на преобразователь подаются только упомянутой системой. Такой комплекс не позволяет обеспечивать моментальные реакции на изменения в сети и/или в нагрузке. Кроме того, здесь отсутствует возможность измерения сигналов с накопителя.
Технический результат заявляемого технического решения проявляется в повышении стабильности работы системы в процессе её эксплуатации.
Учитывая назначение заявленной системы, основополагающими критериями, характеризующими ее стабильность, являются, в частности, обеспечение стабильного перебойного питания за счет сокращения времени реакции на возмущения и изменения параметров.
Технический результат достигается тем, что система накопления и распределения энергии, предназначенная для подключения к системе электроснабжения, включающей источник питания, и к нагрузке, включает подсистему управления системы накопления энергии (ПУ СНЭ), соединенную с подсистемой накопления, подсистему преобразования, соединенную с ПУ СНЭ, содержащую двунаправленный преобразователь и блок управления преобразователем, при этом, блок управления преобразователем имеет входы измерения мгновенных значений напряжения источника питания и нагрузки, тока нагрузки, тока звена переменного тока преобразователя, входы измерения тока и напряжения звена постоянного тока преобразователя, блок управления преобразователем выполнен с возможностью сохранять алгоритмы работы системы накопления и распределения энергии и объединен с двунаправленным преобразователем. К блоку управления преобразователем может быть функционально подключен быстродействующий электронный ключ и дополнительная цепь измерения напряжения сети. Подсистема накопления может быть выполнена на суперконденсаторах или по комбинированной схеме, включающей аккумуляторные батареи и суперконденсаторы.
Наличие входов измерения мгновенных значений тока нагрузки и тока преобразователя обеспечивает быстродействие блока управления преобразователем, что в целом уменьшает время реакции системы на возмущающие воздействия сети.
Наличие входа измерения тока и напряжения звена постоянного тока преобразователя в блоке управления преобразователем, то есть, связь подсистемы накопления с блоком управления преобразователем, позволяет на уровне преобразователя реализовывать функцию заряда DC/DV аккумуляторных батарей. Кроме того, такое выполнение обеспечивает оптимальную работу с накопителем, автоматически (без участия ПУ СНЭ) выполняя заряд накопителя в соответствии с рекомендациями производителей, контролируя его состояние. Данное преимущество способствует увеличению эффективности подсистемы накопления, повышению стабильности работы всей системы.
Запись алгоритмов работы системы накопления и распределения энергии в блок управления преобразователем позволяет, в дальнейшем, реализовывать им текущие алгоритмы автоматически, без участия ПУ СНЭ, как только наступают условия для работы этих алгоритмов. Такое выполнение системы позволяет существенно сократить время реакции на изменения параметров сети и нагрузки, что обеспечивает более эффективную и стабильную работу системы накопления и распределения энергии.
Блок управления преобразователем функционально объединен с двунаправленным преобразователем, что позволяет осуществлять подачу сигналов, соответствующих текущему алгоритму и измеренным параметрам, непосредственно на цепи управления силовыми элементами преобразователя самим блоком управления, что также обеспечивает всю систему свойством быстрого реагирования.
Входы измерения мгновенных значений напряжения источника питания или нагрузки в блоке управления преобразователем позволяют осуществлять алгоритмы работы системы и необходимы для ее реализации.
ПУ СНЭ устанавливает текущий алгоритм работы системы, задает уставки алгоритмов в блок управления преобразователя. Данная подсистема осуществляет управление подсистемой накопления, задавая аварийные уставки, разрешая на отключение при срабатывании уставок, управление подсистемой преобразователя, подавая команды на включение преобразователя, выбор алгоритма работы преобразователя.
Подсистема накопления осуществляет накопление электроэнергии из сети и выдачу ее в нагрузку при необходимости.
Подсистема преобразования, соединенная с ПУ СНЭ, содержащая двунаправленный преобразователь и блок управления преобразователем, осуществляет преобразование постоянного тока из подсистемы накопления в переменный ток сети (нагрузки) и обратно в соответствии с действующим(и) алгоритмом(ами) системы.
К блоку управления преобразователем может быть функционально подключен быстродействующий электронный ключ и дополнительная цепь измерения напряжения сети, что позволяет использовать систему в качестве источника резервного питания при отключении основного источника напряжения, при этом переключение нагрузки с питания от сети на питание от системы и обратно будет происходить без токовой паузы.
Каждый элемент системы накопления и распределения энергии необходим для ее реализации по назначению.
Заявляемое техническое решение далее поясняется с помощью фигур, на которых условно представлены возможные варианты исполнения системы накопления и распределения энергии.
На фиг. 1 представлена схема системы накопления и распределения энергии.
На фиг. 2 представлена схема системы накопления и распределения энергии по варианту 2 (с использованием электронного ключа).
На фиг. 3 представлен график заряда аккумуляторной батареи.
На фиг. 4 представлена работа алгоритма ограничения мощности.
На фиг. 5 представлен график токов сети, нагрузки и системы накопления и распределения энергии при работе алгоритма dP/dt.
Структурная схема системы (1), представленная на фиг. 1, 2, включает следующие функциональные элементы системы накопления и распределения энергии - подсистему (2) управления системы накопления энергии (ПУ СНЭ), подсистему (3) накопления, включающую блок (13) управления накопителем и накопитель (14), подсистему (4) преобразования, содержащую двунаправленный преобразователь (5) и блок (6) управления преобразователем, при этом блок (6) управления преобразователем имеет вход (7) измерения мгновенных значений напряжения источника питания или нагрузки, вход (8) тока звена переменного тока преобразователя, вход (9) измерения тока нагрузки, входы (10) измерения тока и напряжения звена постоянного тока преобразователя. По варианту 2 (фиг. 2) система (1) дополнительно включает быстродействующий электронный ключ (11) и дополнительную цепь измерения напряжения сети, при этом блок управления преобразователем содержит вход (12).
Далее со ссылками на фигуры описана конструкция системы (1) накопления и распределения энергии.
Система (1) накопления и распределения энергии подключается к системе электроснабжения, включающей источник питания, такой как генератор, и к нагрузке.
Система (1) включает соединенные между собой ПУ СНЭ (2), подсистему (3) накопления и подсистему (4) преобразования, содержащую двунаправленный преобразователь (5) и блок (6) управления преобразователем.
Подсистема (3) накопления может быть выполнена на суперконденсаторах и/или по комбинированной схеме, включающей аккумуляторные батареи и суперконденсаторы.
Суперконденсатор – это электрохимические конденсаторы, отличающиеся от обычных (например, электролитических) конденсаторов увеличенной долговечностью, низкими потерями и большими значениями удельной мощности и емкости.
Главное отличие суперконденсатора от привычного конденсатора — в наличии у первого двойного электрического слоя. В результате между электродами образуется очень маленькое расстояние, и, следовательно, его электрическая емкость получается намного выше.
От аккумуляторной батареи суперконденсатор отличается намного более высокой скоростью накапливания и отдачи электрического заряда.
То есть в устройстве сочетаются лучшие электрические характеристики – существенная емкость аккумулятора и удельная мощность (скорость приема - отдачи электрического заряда) электроконденсатора.
Вид характеристики зависимости напряжения от накопленного заряда у суперконденсатора такой же, как и обычного конденсатора.
Блок (6) управления преобразователем имеет вход (7) измерения мгновенных значений напряжения источника питания (нагрузки), вход (8) тока звена переменного тока преобразователя, вход (4) измерения тока нагрузки, входы (10) измерения тока и напряжения звена постоянного тока преобразователя.
К блоку (6) управления преобразователем может быть функционально подключен быстродействующий электронный ключ (11) и дополнительная цепь измерения напряжения сети (вариант 2), при этом блок (6) управления преобразователем содержит вход (12).
Для измерения напряжения сети может быть подключен измерительный трансформатор напряжения (ТН), который гальванически развязывает от сети измерительные цепи блока (6) управления преобразователем, и снижает уровень сигнала. Вход (первичная обмотка) ТН подключается к сети, выход (вторичная обмотка) ТН подключается к измерительным цепям блока (6) управления преобразователем. В предпочтительном варианте, в измерительной цепи блока (6) управления преобразователем имеется согласующий усилитель (куда подключается выход ТН) и подключенный к нему аналого-цифровой преобразователь (АЦП), данные из которого уже в цифровом коде поступают в процессор блока (6) управления для расчетов.
Для каждого измеряемого параметра в блоке (6) управления преобразователем имеется отдельный измерительный вход.
Сигналы напряжения сети и токов нагрузки и преобразователя могут быть сняты с измерительных трансформаторов напряжения и тока соответственно. Трансформаторы тока и напряжения устанавливаются, непосредственно, на линии, в тех точках, в которых необходимо измерить ток или напряжение.
Система (1) накопления и распределения энергии, как правило, используется в автономных сетях электроснабжения, имеющих источники ограниченной мощности (дизель-генераторные и газо-поршневые установки, солнечные электростанции, ветрогенераторные установки).
Далее представлено описание осуществления заявленного способа эксплуатации системы (1) накопления и распределения энергией.
Способ эксплуатации системы (1) накопления и распределения энергии, характеризующийся тем, что производят запись уставок и алгоритмов реализации режимов работы в блок (6) управления преобразователем посредством подсистемы (2) управления СНЭ. Устанавливают с помощью подсистемы (2) управления СНЭ режим работы и подают сигнал активации соответствующего алгоритма к блоку (6) управления преобразователем. Выполняют алгоритм в блоке (6) управления преобразователем, после чего система (1) переходит в нормальный режим работы, при этом в блок (6) управления преобразователем подают сигналы с измеренными мгновенными значениями параметров сети от соответствующих цепей измерения, то есть, посредством входов измерения, включая напряжение, токи нагрузки и преобразователя, и сигналы от подсистемы (3) накопления, сравнивают измеренные параметры и полученные сигналы с уставками, и подают сигналы, соответствующие текущему алгоритму и измеренным параметрам, от блока (6) управления преобразователем на цепи управления силовыми элементами преобразователя (5), в соответствии с достижением или переходом значений уставок.
Нормальный режим работы энергосистемы - режим энергосистемы, при котором значения технических параметров режима энергосистемы и оборудования находятся в пределах длительно допустимых значений, имеются нормативные оперативные резервы мощности и топлива на электростанциях.
Стратегия работы системы (1) по заявленному способу определяется алгоритмами, представленными ниже.
Алгоритм заряда аккумуляторной батареи (АКБ).
Этот алгоритм является одним из основных алгоритмов работы с подсистемой (3) накопления и предназначен для поддержания необходимой степени заряженности АКБ. Заряд производится по характеристике рекомендованной производителем АКБ. Вид этой характеристики приведен на фиг. 3.
Перед началом заряда ПУ СНЭ записывает в блок управления преобразователем преобразователя уставки Iз (ток заряда), Uз (напряжение заряда) и Iз_вых (ток прекращения заряда).
Процесс заряда реализуется блоком (6) управлением преобразователем автоматически, после получения команды на заряд батареи от ПУ СНЭ (2).
От старта заряда (точка (15)) заряд производится стабилизированным зарядным током Iз (где 3а – кривая изменения тока, 3б – кривая изменения напряжения) до достижения напряжения на АКБ величины Uз (точка (16)). Затем заряд выполняется стабилизированным напряжением Uз со снижением тока до величины Iз_вых (точка (17)). При достижении этой точки алгоритм заряда АКБ завершается.
Алгоритм ограничения максимальной и минимальной потребляемой от сети мощности.
Алгоритм ограничения мощности применяется для компенсации пиков потребления (как максимума, так и минимума), с целью поддержания величины мощности, потребляемой от сети, в заданном диапазоне. ПУ СНЭ (2) обеспечивает возможность гибкой настройки изменения уставок допустимой мощности в задаваемые промежутки времени.
Оператором или системой управления верхнего уровня задается следующий набор уставок ограничения максимальной и минимальной мощности сети (с учетом времени суток и пр.):
- Рmax_нач «Порог начала добавления активной мощности», задает границу мощности потребления нагрузкой, при превышении которой система (1) начнет компенсировать разницу между реальной мощностью потребления и заданной уставкой;
- Рmax_кон «Порог окончания добавления активной мощности» (порог гистерезиса), задает границу мощности потребления нагрузкой, при снижении ниже которой, система (1) перестанет компенсировать разницу между реальной мощностью потребления и заданной уставкой (порог гистерезиса). Эта уставка должна быть ниже <Рmax_нач>;
- Рмин_нач «Порог начала приема активной мощности», задает границу мощности потребления нагрузкой, при снижении ниже которой система (1) начнет компенсировать разницу между реальной мощностью потребления и заданной уставкой;
- Рмин_кон «Порог окончания приема активной мощности» (порог гистерезиса), задает границу мощности потребления нагрузкой, при превышении которой система (1) перестанет компенсировать разницу между реальной мощностью потребления и заданной уставкой (порог гистерезиса). Эта уставка должна быть выше <Рмин_нач>, но ниже <Рmax_кон>.
ПУ СНЭ (2) записывает текущие значения уставок ограничения мощности в блок (6) управления преобразователем.
Наглядное действие данного алгоритма представлено на фиг. 4, где отображены кривая изменения мощности нагрузки – 4а, кривая изменения мощности сети – 4б, кривая изменения мощности преобразователя – 4в. Блок (6) управления преобразователем следит за мгновенной мощностью нагрузки. При изменении мощности до момента времени t1, мощность сети и нагрузки совпадают. Когда мощность нагрузки переходит порог уставки <Рmax_нач>, преобразователь (5) начинает компенсировать разницу за счет энергии АКБ, и мощность сети ограничивается на уровне <Рmax_нач>.
До тех пор, пока мощность нагрузки выше порога <Рmax_нач> (интервал от t1 до t2), преобразователь (5) отдает энергию АКБ (зона I на графике). Когда мощность нагрузки ниже порога <Рmax_нач>, но выше <Рmax_кон> (интервал от t2 до t3), преобразователь (5) принимает энергию сети, заряжая АКБ (зона II на графике), при этом мощность сети стабилизирована на уровне <Рmax_нач>. При переходе мощности нагрузки ниже порога <Рmax_кон>, преобразователь (5) отключается, и мощность сети становится равной мощности нагрузки.
Аналогично алгоритм работает на нижнем пороге ограничения: пока мощность нагрузки ниже порога <Рмин_нач> (интервал от t4 до t5), преобразователь (5) принимает энергию сети, заряжая АКБ (зона III на графике), при этом мощность сети стабилизирована на уровне <Рмин_нач>. При переходе мощности нагрузки выше <Рмин_нач> (интервал от t5 до t6), преобразователь (5) начинает компенсировать разницу за счет энергии АКБ, и мощность сети ограничивается на уровне <Рmax_нач> (зона IV на графике).
Алгоритм работы в автономном режиме.
Автономный режим используется для обеспечения энергоснабжения потребителей, если возможны кратковременные перерывы в работе питающей сети. Также автономный режим может использоваться при совместной работе системы (1) с фотоэлектрической системой (ФЭС), когда система (1) выступает в качестве источника напряжения (задает параметры сети – напряжение и частоту), а ФЭС выступает в качестве источника мощности (выдает необходимую мощность в нагрузку).
Для задания параметров работы алгоритма используются следующие уставки:
- Uном «Напряжение сети в автономном режиме» и Fном «Частота автономного режима» - задают соответствующие параметры сети, которые обеспечивает система (1), когда работает в автономном режиме;
- Uмакс_авт_вх «Максимально допустимое напряжение сети», Uмин_авт_вх «Минимально допустимое напряжение сети» - при выходе напряжения за границы значений этих уставок, система (1) переходит в автономный режим. При возвращении напряжения внутрь границ значений, заданных уставками Uмакс_авт_вых и Uмин_авт_вых (границы для возврата, задают порог гистерезиса), система (1) отключает работу автономного режима;
- Fмакс_авт_вх «Максимально допустимая частота сети», Fмин_авт_вх «Минимально допустимая частота сети» - при выходе частоты сети за границы значений, система (1) переходит в автономный режим. При возвращении частоты сети внутрь границ значений уставок Fмакс_авт_вых и Fмин_авт_вых (границы для возврата, задают порог гистерезиса) система (1) отключает работу автономного режима;
- Тав «Задержка возврата из автономного режима» задает время, в течение которого параметры сети должны быть в границах уставок «Возврат», чтобы система (1) перешла из автономного в нормальный режим работы.
ПУ СНЭ (2) записывает значения уставок перехода в автономный режим в блок (6) управления преобразователем. Блок (6) управления преобразователем следит за состоянием сети и самостоятельно (без дополнительной команды от ПУ СНЭ (2)) переводит работу преобразователя (5) в автономный режим, в случае выхода параметров сети за пределы, заданные уставками.
В случае использования по варианту 2, при переходе в автономный режим, блок (6) управления преобразователем отключает быстродействующий ключ (11), и продолжает следить за параметрами сети с «левой» стороны от ключа (11) за счет дополнительной цепи измерения напряжения сети, вход (12). При возврате параметров сети в границы уставок «возврата», блок (6) управления преобразователем синхронизирует собственную генерацию с сетью, и при наступлении синхронизации замыкает ключ (11), после чего отключает преобразователь (5).
В случае использования схемы системы (1) без использования быстродействующего ключа (11) переход в автономный режим выполняется также, как и в схеме по варианту 2. Возврат из автономного режима должен выполняться по команде от внешней системы управления. При этом, внешняя система должна следить за синхронизацией сети с генерацией системы (1). Эта схема применяется, когда в качестве внешнего источника сетевого напряжения используются, например, дизель-генераторные установки, которые могут подстраиваться под «ведущего», роль которого в этом случае играет система (1).
Алгоритм ограничения скорости изменения мощности (dP / dt).
При резком возрастании (набросе) нагрузки (включении мощного агрегата) или резком ступенчатом спаде (сбросе) нагрузки (отключение мощного агрегата) возникает переходный процесс, характеризующийся изменением напряжения, частоты и создающий эффекты, нежелательные для некоторых источников напряжения сети (например, газо-поршневых установок). Чтобы сгладить этот переходный процесс система (1) реализует функцию «компенсация сбросов и набросов нагрузки», заключающуюся в том, что для источника напряжения системы (1) задает плавно изменяющийся график нагрузки, а разницу энергии компенсирует за счет разряда батарей (при набросе) или заряда батарей (при сбросе мощности нагрузки).
Наглядное действие алгоритма ограничения скорости изменения мощности представлено на фиг. 5. Где токи нагрузки обозначены 5а, токи сети (ГПУ) обозначены 5б, токи системы обозначены 5с.
Для задания параметров работы алгоритма используются следующие уставки:
- Pнач_dp «Порог начала компенсации скорости изменения мощности» задает величину изменения активной мощности нагрузки за период между измерениями, при превышении которой блок (6) управления преобразователем запускает режим компенсации сброса (наброса);
- Qнач_dp «Порог начала компенсации скорости изменения реактивной мощности» задает величину изменения реактивной мощности нагрузки за период между измерениями, при превышении которой блок (6) управления преобразователем запускает режим компенсации сброса (наброса);
- Pкон_dp «Порог окончания компенсации скорости изменения мощности» задает величину активной мощности преобразователя (5) в режиме dP/dt, при снижении ниже которой прекращается режим компенсации сброса (наброса);
- Qкон_dp «Порог окончания компенсации скорости изменения реактивной мощности» задает величину реактивной мощности преобразователя (5) в режиме dP/dt, при снижении ниже которой прекращается режим компенсации сброса (наброса);
- dp/dt «Ограничение скорости изменения мощности» задает максимально допустимую скорость изменения мощности в сети (в кВт/сек). Эта уставка определяет «наклон» кривой изменения мощности в сети при работающем алгоритме ограничения скорости изменения мощности. Величина этой уставки обусловлена особенностями генерирующих установок.
ПУ СНЭ (2) записывает в блок (6) управления преобразователем необходимые уставки и подает в преобразователь (5) команду активации этого режима. Блок (6) управления преобразователем автоматически включает преобразователь (5) и контролирует его мощность при переходе параметров изменения нагрузки за пределы уставок.
При реализации данного алгоритма преобразователь (5) ограничивает скорость изменения мощности не выше величины dp/dt.
Алгоритм генерирования в сеть (приема из сети) заданной активной и реактивной мощности.
Алгоритм генерации / приема постоянной мощности используется в том случае, когда систему (1) необходимо использовать как дополнительный источник мощности, при этом источником напряжения (задающим параметры сети – напряжение и частоту) служит, например, дизель-генераторная установка (ДГУ). При этом, одновременно может быть активен либо алгоритм генерации мощности в сеть, либо алгоритм приема мощности из сети.
Для задания параметров работы алгоритма используются следующие уставки:
- Pген «Величина генерируемой активной мощности» - значение активной мощности, которая генерируется в сеть при активации алгоритма. Энергия генерируется за счет разряда АКБ;
- Qген «Величина генерируемой реактивной мощности» - значение реактивной мощности, (индуктивная составляющая) которая «генерируется» в сеть при активации алгоритма;
- Pприн «Величина принимаемой активной мощности» - значение активной мощности, которую система (1) принимает из сети при активации алгоритма, при этом, принимаемая энергия расходуется на заряд АКБ;
- Qприн «Величина принимаемой реактивной мощности» значение реактивной мощности, (емкостная составляющая) которая «забирается» из сети при активации алгоритма.
ПУ СНЭ (2) записывает в блок (6) управления преобразователем необходимые уставки и подает в преобразователь (5) команду активации этого режима. Преобразователь (5) начинает генерацию (прием) мощности.
При активации данного алгоритма, работа прочих алгоритмов запрещена.
Алгоритм компенсации реактивной мощности.
Алгоритм компенсации реактивной мощности используется, когда необходимо снизить реактивную составляющую в сети (реактивная составляющая мощности в нагрузке превышает допустимые значения реактивной мощности для источника, требуется снизить потери от реактивной составляющей и т.п.).
Для задания параметров работы алгоритма используются следующие уставки:
- Qвкл «Порог начала компенсации реактивной мощности» - при превышении реактивной мощности в нагрузке этой величины преобразователь (5) включается в работу;
- Qвыкл «Порог окончания компенсации реактивной мощности» - при снижении реактивной мощности в нагрузке ниже этой величины преобразователь (5) прекращает компенсацию реактивной мощности.
ПУ СНЭ (2) записывает в блок (6) управления преобразователем необходимые уставки и подает в преобразователь (5) команду активации этого режима. Преобразователь (5) начинает автоматически начинает / прекращает компенсацию реактивной мощности при переходе соответствующей уставки.
Алгоритм компенсации несимметрии тока фаз.
Алгоритм компенсации несимметрии используется, при наличии несимметричной нагрузки (если явление несимметрии носит нерегулярный характер), например, при включении / отключении каких-либо потребителей, нагружающих отдельные фазы сети.
Для задания параметров работы алгоритма используются следующие уставки:
- Iнес_вкл «Порог начала компенсации несимметрии тока фаз» - при превышении тока нулевого провода в нагрузке этой величины преобразователь (5) включается в работу;
- Iнес_вкл «Порог окончания компенсации несимметрии тока фаз» - при снижении тока нулевого провода в нагрузке ниже этой величины преобразователь (5) прекращает компенсацию нулевого тока.
ПУ СНЭ записывает в блок (6) управления преобразователем необходимые уставки и подает в преобразователь (5) команду активации этого режима. Преобразователь (5) автоматически начинает / прекращает компенсацию несимметрии тока фаз при переходе соответствующей уставки.
Представленные фигуры, описание системы и способа ее работы не исчерпывают возможные варианты исполнения и не ограничивают каким-либо образом объем заявляемого технического решения. Возможны иные варианты исполнения и использования в объеме заявляемой формулы. Следует отметить, что для реализации заявленной системы накопления и распределения энергии могут быть использованы множество аппаратных и программных средств и различных структурных компонентов. Приведенный пример реализации системы и ее работы не ограничивает объем заявленного решения представленными частными формами исполнения отдельных компонентов или этапов.
Система накопления и распределения энергией и способ ее эксплуатации характеризуются их качественность. Предлагаемое решение позволяет создать быстродействующую систему бесперебойного питания, сгладить нежелательные изменения нагрузки (резкие скачки нагрузки, пики потребления, перекосы фаз нагрузки, повышенную реактивную мощность нагрузки и пр.), обеспечивая максимальную эффективность работы источников энергии, экономию топлива (для ГДГУ, ГПУ), увеличение ресурса источников электроэнергии сети.

Claims (5)

1. Система накопления и распределения энергии, предназначенная для подключения к системе электроснабжения, включающей источник питания, и к нагрузке, включающая подсистему управления системы накопления энергии (ПУ СНЭ), соединенную с подсистемой накопления, подсистему преобразования, соединенную с ПУ СНЭ, содержащую двунаправленный преобразователь и блок управления преобразователем, отличающаяся тем, что блок управления преобразователем имеет входы измерения мгновенных значений напряжения источника питания и нагрузки, тока нагрузки, тока звена переменного тока преобразователя, входы измерения тока и напряжения звена постоянного тока преобразователя, блок управления преобразователем выполнен с возможностью сохранять алгоритмы работы системы накопления и распределения энергии и объединен с двунаправленным преобразователем.
2. Система накопления и распределения энергии по п. 1, отличающаяся тем, что к блоку управления преобразователем функционально подключен быстродействующий электронный ключ и дополнительная цепь измерения напряжения сети.
3. Система накопления и распределения энергии по п. 1, отличающаяся тем, что подсистема накопления выполнена на суперконденсаторах.
4. Система накопления и распределения энергии по п. 1, отличающаяся тем, что подсистема накопления выполнена по комбинированной схеме, включающей аккумуляторные батареи и суперконденсаторы.
5. Способ эксплуатации системы накопления и распределения энергии, характеризующийся тем, что производят запись уставок и алгоритмов реализации режимов работы в блок управления преобразователем посредством подсистемы управления СНЭ, устанавливают с помощью подсистемы управления СНЭ режим работы и подают сигнал активации соответствующего алгоритма к блоку управления преобразователем, выполняют алгоритм в блоке управления преобразователем, после чего система переходит в нормальный режим работы, при этом в блок управления преобразователем подают сигналы с измеренными мгновенными значениями параметров сети от соответствующих цепей измерения, включая напряжение, токи нагрузки и преобразователя, и сигналы от подсистемы накопления, сравнивают измеренные параметры и полученные сигналы с уставками и подают сигналы, соответствующие текущему алгоритму и измеренным параметрам, от блока управления преобразователем на цепи управления силовыми элементами преобразователя в соответствии с достижением или переходом значений уставок.
RU2020115398A 2020-05-06 2020-05-06 Система накопления и распределения энергии и способ ее эксплуатации RU2737616C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020115398A RU2737616C1 (ru) 2020-05-06 2020-05-06 Система накопления и распределения энергии и способ ее эксплуатации
PCT/RU2020/000452 WO2021225465A1 (ru) 2020-05-06 2020-08-25 Система накопления и распределения энергии и способ ее эксплуатации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020115398A RU2737616C1 (ru) 2020-05-06 2020-05-06 Система накопления и распределения энергии и способ ее эксплуатации

Publications (1)

Publication Number Publication Date
RU2737616C1 true RU2737616C1 (ru) 2020-12-01

Family

ID=73792521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020115398A RU2737616C1 (ru) 2020-05-06 2020-05-06 Система накопления и распределения энергии и способ ее эксплуатации

Country Status (2)

Country Link
RU (1) RU2737616C1 (ru)
WO (1) WO2021225465A1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU95434U1 (ru) * 2009-11-03 2010-06-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Многофункциональный энергетический комплекс (мэк)
RU2476978C2 (ru) * 2007-06-15 2013-02-27 Фишер Контролз Интернешнел Ллс Двунаправленный преобразователь постоянного тока в постоянный для управления накопителем энергии при отводе энергии
US8853892B2 (en) * 2008-10-03 2014-10-07 Access Business Group International Llc Power system
RU2662791C1 (ru) * 2017-02-21 2018-07-31 Ооо "Инверторные Комплексы" Инверторный зарядно-разрядный преобразовательный комплекс локальной сети с разнородными источниками энергии

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2721710T3 (pl) * 2011-06-20 2018-04-30 The Aes Corporation Hybrydowa elektrownia wykorzystująca połączenie urządzeń generujących w czasie rzeczywistym i system magazynowania energii
US10756543B2 (en) * 2012-09-13 2020-08-25 Stem, Inc. Method and apparatus for stabalizing power on an electrical grid using networked distributed energy storage systems
KR101854218B1 (ko) * 2013-10-22 2018-05-03 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 충전 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2476978C2 (ru) * 2007-06-15 2013-02-27 Фишер Контролз Интернешнел Ллс Двунаправленный преобразователь постоянного тока в постоянный для управления накопителем энергии при отводе энергии
US8853892B2 (en) * 2008-10-03 2014-10-07 Access Business Group International Llc Power system
RU95434U1 (ru) * 2009-11-03 2010-06-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Многофункциональный энергетический комплекс (мэк)
RU2662791C1 (ru) * 2017-02-21 2018-07-31 Ооо "Инверторные Комплексы" Инверторный зарядно-разрядный преобразовательный комплекс локальной сети с разнородными источниками энергии

Also Published As

Publication number Publication date
WO2021225465A1 (ru) 2021-11-11

Similar Documents

Publication Publication Date Title
US10135251B2 (en) Apparatus and method for controlling a microgrid
JP4170565B2 (ja) 電力変動平滑化装置及びそれを備えた分散電源システムの制御方法
US11394221B2 (en) Method and system for controlling DC bus voltage
TWI774142B (zh) 交流負荷供電系統和方法
CN102983589A (zh) 一种基于混合储能的电网友好型分布式电源的控制方法
CN106786490A (zh) 分布式直流微电网能量控制方法
WO2016201392A1 (en) Method and apparatus for control of intelligent loads in microgrids
WO2011122681A1 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
EP3059653B1 (en) Power conversion device and method for controlling same
JP4566658B2 (ja) 電源装置
CN109546686A (zh) 基于光蓄发电单元的动态电压恢复器的电压补偿和不间断供电方法
CN110518608B (zh) 基于混合储能与电动汽车充电站的孤岛微网能量控制方法
JP2016039685A (ja) 制御装置、それを備えた蓄電システム、及びその制御方法並びに制御プログラム
KR101766433B1 (ko) 태양광 발전전력과 배터리 충방전 전력의 전력계통 연계운전을 위한 전력변환장치가 포함된 에너지저장 시스템
CN109245137B (zh) 一种储能变流器的控制方法
CN104810845A (zh) 分布式光储能参与母线调节自适应控制装置及方法
CN108879783B (zh) 一种电力弹簧能源消纳系统
RU2737616C1 (ru) Система накопления и распределения энергии и способ ее эксплуатации
RU2662791C1 (ru) Инверторный зарядно-разрядный преобразовательный комплекс локальной сети с разнородными источниками энергии
JP4337687B2 (ja) 電源装置
CN113410904B (zh) 一种多模块并联型应急电源及控制方法
JP4569223B2 (ja) 電源装置
RU2726735C1 (ru) Система автономного электроснабжения с комбинированным накопителем энергии
CN111969627A (zh) 电能质量优化系统和孤岛微电网
CN110224389B (zh) 一种基于自律式浮动电压运行策略的直流微电网系统