RU2734456C1 - Автономная солнечная биогазовая установка - Google Patents

Автономная солнечная биогазовая установка Download PDF

Info

Publication number
RU2734456C1
RU2734456C1 RU2019136934A RU2019136934A RU2734456C1 RU 2734456 C1 RU2734456 C1 RU 2734456C1 RU 2019136934 A RU2019136934 A RU 2019136934A RU 2019136934 A RU2019136934 A RU 2019136934A RU 2734456 C1 RU2734456 C1 RU 2734456C1
Authority
RU
Russia
Prior art keywords
reservoir
reactor
solar collectors
substrate
solar
Prior art date
Application number
RU2019136934A
Other languages
English (en)
Inventor
Яхя Алиевич Дибиров
Алибек Басирович Алхасов
Камиль Яхяевич Дибиров
Эльдар Гаджимурадович Искендеров
Original Assignee
Яхя Алиевич Дибиров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Яхя Алиевич Дибиров filed Critical Яхя Алиевич Дибиров
Priority to RU2019136934A priority Critical patent/RU2734456C1/ru
Application granted granted Critical
Publication of RU2734456C1 publication Critical patent/RU2734456C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/107Apparatus for enzymology or microbiology with means for collecting fermentation gases, e.g. methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

Изобретение относится к биоэнергетике и может быть использовано для получения биогаза и готовых органических продуктов биохимической переработкой органических отходов. Автономная солнечная биогазовая установка содержит реактор, помещенный в резервуар с жидкостью, в котором вокруг реактора установлены контейнеры с фазопереходным тепловым аккумулятором, заряжаемым тепловой энергией солнечных коллекторов. Установка содержит резервуар для подготовки субстрата исходного сырья, фекальный насос, газгольдер, резервуар жидкого удобрения, солнечные коллекторы, циркуляционный насос, термоконтроллер с термодатчиками и сервоприводами. Установка выполнена с возможностью подогрева ежесуточно подаваемой в реактор дозы субстрата до температуры сбраживания путем переключения циркуляции нагретого солнечными коллекторами теплоносителя через теплообменник, установленный в резервуаре для подготовки субстрата исходного сырья. Технический результат состоит в поддержании оптимального температурного режима для сбраживания биомассы в реакторе, а также в подогреве ежесуточно подаваемой в реактор дозы субстрата. 1 ил.

Description

Настоящее изобретение относится к биоэнергетике и может быть использовано для получения биогаза и готовых органических продуктов биохимической переработкой органических отходов.
Известна биоэнергетическая установка [1], которая содержит биореактор с водяной рубашкой, солнечный коллектор, мешалка, загрузочный и выгрузочный патрубки и газгольдер. Комплекс снабжен электроводонагревателем и двигателем Стирлинга, в котором тепловая энергия сжигаемого собственного биогаза преобразовывается в электрическую энергию и используется для обогрева сбраживаемой в биореакторе биомассы до необходимой температуры.
Недостатком данного технического решения является необходимость сжигания выработанного собственного биогаза для обогрева сбраживаемой в реакторе биомассы до необходимой температуры и обеспечения непрерывной работы системы в периоды отсутствия поступления солнечного излучения, в результате чего снижается эффективность биогазовой установки.
Известна гелиобиогазовая установка [2], содержащая, биореактор с резервуаром с жидкостью, являющейся одновременно и теплоемкостным тепловым аккумулятором, заряжаемым солнечными коллекторами, системы загрузки исходной биомассы и отвода готового органического продукта с люком выгрузки, перемешивающее устройство и солнечные коллекторы. Недостатками данного технического решения являются:
- невозможность поддержания в биореакторе желательного строго изотермического режима в периоды отсутствия солнечного излучения, т.к. жидкость вокруг реактора является теплоемкостным теплонакопителем;
- необходимость неоправданно огромного резервуара с теплоаккумулирующей жидкостью для проведения процесса сбраживания при термофильном режиме из-за жестких требований к допустимым предельным колебаниям температуры от оптимального значения при этом режиме.
Наиболее близким к заявляемой по технической сущности и достигаемому результату является солнечная биогазовая установка [3], которая содержит биореактор с резервуаром с жидкостью, внутри которого вокруг реактора установлены контейнеры теплового аккумулятора с фазопереходным теплоаккумулирующим составом, заряжаемые тепловой энергией солнечных коллекторов, с температурой плавления, равной оптимальной температуре выбранного режима сбраживания. Данная биогазовая установки содержит также системы загрузки исходной биомассы и отвода готового органического продукта, перемешивающее устройство и солнечные коллекторы. Для исключения перегрева сбраживаемой биомассы на трубопроводе выхода из солнечных коллекторов в установлен терморегулятор.
Недостатком этого технического решения является необходимость дополнительного источника энергии для подогрева субстрата в резервуаре подготовки исходного сырья. Как известно, именно на подогрев исходного сырья до температуры сбраживания расходуется более 70% всех энергозатрат технологической схемы анаэробного сбраживания [4].
Задачей, на решение которой направлено заявляемое изобретение, является подогрев ежесуточно добавляемой в биореактор дозы субстрата в резервуаре подготовки исходного сырья до температуры сбраживания с круглосуточным поддержанием в реакторе биогазовой установки оптимального термического режима сбраживания биомассы применением теплового аккумулятора, заряжаемого тепловой энергией от солнечных коллекторов.
Данная задача решается тем, что заявленная автономная солнечная биогазовая установка, содержащая реактор, помещенный в резервуар с жидкостью, в котором вокруг реактора установлены контейнеры с фазопереходным тепловым аккумулятором, заряжаемым тепловой энергией солнечных коллекторов, резервуар для подготовки субстрата исходного сырья, фекальный насос, газгольдер, резервуар жидкого удобрения, солнечные коллекторы, циркуляционный насос, термоконтроллер с термодатчиками и сервоприводами, систему трубопроводов с запорно-регулирующей арматурой и систему отбора биогаза, выполнена с возможностью подогрева ежесуточно подаваемой в реактор дозы субстрата до температуры сбраживания путем переключения циркуляции нагретого солнечными коллекторами теплоносителя через теплообменник, установленный в резервуаре для подготовки субстрата исходного сырья.
Техническим результатом, обеспечиваемым приведенной совокупностью признаков, являются подогрев ежесуточно подаваемой в реактор дозы субстрата в резервуаре для подготовки сырья до температуры сбраживания и поддержание в реакторе оптимального температурного режима для сбраживания биомассы только за счет тепла солнечной радиации для круглосуточного производства биогаза.
Подогрев сырья в резервуаре для подготовки исходного сырья производится циркуляцией нагретого теплоносителя по контуру: солнечные коллекторы → теплообменник в субстрате в резервуаре для подготовки исходного сырья → циркуляционный насос → солнечные коллекторы.
После достижения соответствующей температуры ежесуточно добавляемой дозы субстрата в резервуаре для подготовки исходного сырья термоконтроллер переключает циркуляцию теплоносителя по второму контуру: солнечные коллекторы → резервуар с жидкостью вокруг биореактора → циркуляционный насос → солнечные коллекторы, в результате чего поддерживается заданный температурный режим в жидкости вокруг биореактора.
Для исключения возможного перегрева биомассы при достижении предельной верхней температуры оптимального диапазона термического режима сбраживания в реакторе после загрузки ежесуточно подаваемой в реактор дозы субстрата термоконтроллер переключает циркуляцию теплоносителя в систему горячего водоснабжения.
Поддержание оптимального температурного режима сбраживания биомассы в биореакторе в периоды подогрева ежесуточно добавляемой для сбраживания дозы сырья и отсутствия прямого солнечного сияния обеспечивается разрядкой теплового аккумулятора в резервуаре с жидкостью вокруг биореактора.
Сущность изобретения поясняется чертежом на фиг. 1, где приведена принципиальная схема автономной биогазовой установки с тепловым аккумулятором, заряжаемым энергией солнечных коллекторов.
Автономная солнечная биогазовая установка содержит реактор 1, который помещен в резервуар с жидкостью 2, внутри которого вокруг биореактора установлены контейнеры с фазопереходным теплоаккумулирующим материалом. Резервуар с жидкостью 2 соединен с солнечными коллекторами 3. Подогрев исходного сырья в резервуаре подготовки субстрата 4 производится циркуляцией нагретого теплоносителя по контуру: солнечные коллекторы 3 → теплообменник 5 в субстрате в резервуаре для подготовки субстрата исходного сырья 4 → циркуляционный насос 6 → солнечные коллекторы 3. Подготовленное и нагретое до температуры сбраживания в резервуаре для подготовки субстрата исходного сырья 4 увлажненное сырье фекальным насосом 7 подается в биореактор 1, где в анаэробных условиях осуществляется процесс сбраживания. Образующийся биогаз из верхней части биореактора через трубопровод выхода биогаза поступает в газгольдер 8, откуда по трубопроводу 9 подается потребителям. Остаток сброженной биомассы из нижней части биореактора по трубопроводу люка выгрузки поступает в резервуар для жидкого удобрения 10 и оттуда вывозят на поля. Термоконтроллер 11 управляет циркуляционным насосом 6 и переключением циркуляции теплоносителя по разным контурам по сигналам от термодатчиков, установленных в субстрате в резервуаре для подготовки субстрата исходного сырья (T1) и субстрате в биореакторе (Т2), соответствующими термическими сервоприводами циркуляционного насоса 6, трехходовых кранов с одним входом 121, 122 и одним выходом 13, а также вентилей на трубопроводах подачи теплоносителя к резервуару с жидкостью вокруг биореактора 141 и отвода охлажденного теплоносителя от низа того же резервуара 142. В систему горячего водоснабжения теплоноситель подается через трехходовые краны 121 и 122 по трубопроводу 15. Для поддержания стабильного давления в системе циркуляции жидкого теплоносителя в верхних точках трубопроводов циркуляции каждого контура устанавливаются соответственно расширительные бачки 161 и 162.
РАБОТАЕТ АВТОНОМНАЯ СОЛНЕЧНАЯ БИОГАЗОВАЯ УСТАНОВКА СЛЕДУЮЩИМ ОБРАЗОМ
Контур солнечных коллекторов 3, теплоизолированный снаружи резервуар 2 с жидкостью, в которой помещен биореактор 1, и соединительные трубопроводы всех контуров циркуляции теплоносителя заполняются жидким теплоносителем.
После предварительной подготовки увлажненное сырье (навоз домашних животных, растительная биомасса и другие органические отходы) подогревается циркуляцией нагретого солнечными коллекторами теплоносителя по первому контуру через теплообменник 5, установленный внутри субстрата в резервуаре подготовки исходного сырья. Далее, теплоноситель циркуляционным насосом 6 подается во вход в контур солнечных коллекторов 3, где он, проходя через тепловоспринимающую поверхность солнечных коллекторов 3, нагревается и вновь поступает через трубопроводы в теплообменник 5. При циркуляции теплоносителя по этому контуру термоконтроллер соответствующими сервоприводами закрывает в трехходовых кранах с одним входом 121 и 122 соответственно выходы к трубопроводам к системе горячего водоснабжения и к резервуару с жидкостью, а в трехходовом кране с одним выходом 13 - вход на трубопроводе от низа резервуара с жидкостью.
После достижения соответствующей температуры субстрата в резервуаре 5 по значению входного сигнала от термодатчика T1 термоконтроллер переключает циркуляцию теплоносителя по второму контуру: солнечные коллекторы 3 → резервуар с жидкостью вокруг биореактора → циркуляционный насос 6 → солнечные коллекторы 3, в результате чего поддерживается заданный температурный режим в жидкости вокруг биореактора. При этом в трехходовом кране 122 закрывается выход к трубопроводу к трехходовому крану 121, а в трехходовом кране 13 закрывается вход на трубопроводе от теплообменника 5, а вентили на трубопроводах входа 141 и выхода 142 циркулирующего теплоносителя через резервуар с жидкостью вокруг биореактора устанавливаются в открытом положении.
Нагретое до температуры сбраживания в резервуаре для подготовки субстрата 4 увлажненное сырье фекальным насосом 7 подается в биореактор 1, где в анаэробных условиях осуществляется процесс сбраживания.
Образующийся биогаз из верхней части реактора через трубопровод выхода биогаза поступает в газгольдер 8, откуда по трубопроводу 9 подается потребителям. Остаток сброженной биомассы из нижней части биореактора по трубопроводу люка выгрузки поступает в резервуар для жидкого удобрения 10 и оттуда вывозят на поля.
Для исключения возможного перегрева сбраживаемой биомассы после подачи подогретой ежесуточно подаваемой дозы субстрата в биореактор 1 термоконтроллер 11 по значению входного сигнала от термодатчика Т2 переключает циркуляцию теплоносителя в систему горячего водоснабжения через трехходовые краны 122 и 121. При этом в трехходовом кране 122 закрывается выход к трубопроводу к резервуару с жидкостью, а в трехходовом кране 121 - выход к трубопроводу к субстрату в резервуаре 5. Обратный трубопровод с запорно-регулирующей арматурой от системы горячего водоснабжения на чертеже фиг. 1 условно не показан.
За все периоды отсутствия прямого солнечного излучения (ночное время, пасмурная погода) во избежание неизбежного охлаждения жидкости вокруг биореактора при циркуляции через нее ненагретого теплоносителя, термоконтроллер 11 отключает циркуляционный насос 6 и закрывает вентили на трубопроводах входа 141 и выхода 142 циркулирующего теплоносителя.
Полная зарядка всей массы теплоаккумулирующего материала и поддержание температуры в оптимальном диапазоне для выбранного режима сбраживания в биореакторе 1 производятся в дневное время циркуляцией теплоносителя через резервуар с жидкостью 2 за счет тепловой энергии, выработанной солнечными коллекторами 3. А в периоды подогрева ежесуточно подаваемой в биореактор 1 дозы субстрата в резервуаре для подготовки исходного сырья 4 дневного времени и отсутствия прямого солнечного излучения (пасмурная погода или темное время суток) заданный температурный режим в биореакторе 1 поддерживается за счет тепловой энергии, выделяемой при разрядке фазопереходного теплового аккумулятора, установленного в резервуаре с жидкостью вокруг биореактора.
Таким образом, в предложенной автономной биогазовой установке единственным источником тепла для всех энергозатрат технологической схемы анаэробного сбраживания является тепловая энергия, выработанная солнечными коллекторами.
Площадь солнечных коллекторов установки рассчитывается из условия достаточности минимальной однодневной тепловой энергии, вырабатываемой коллекторами, и для подогрева ежесуточно подаваемой в биореактор дозы субстрата до температуры сбраживания, и для полной зарядки всей массы теплоаккумулирующего материала теплового аккумулятора с учетом возможных теплопотерь в дневное время.
Количество теплоаккумулирующего материала рассчитывается из условия превышения тепловой энергии разовой разрядки теплового аккумулятора над теплопотерями через всю наружную поверхность резервуара с жидкостью и биореактора, которая непосредственно соприкасаются с окружающим атмосферным воздухом, за возможные периоды отсутствия солнечного излучения.
1. Авторское свидетельство RU №2284967, 10.10.2006 г.
2. Авторское свидетельство RU №166736, 10.12.2016 г.
3. Авторское свидетельство RU №2664457, 17.08.2018 г.
4. Ковалев А.А. Повышение энергетической эффективности биогазовых установок: дис. … канд. техн. наук. - М., 2014. 119 с.

Claims (1)

  1. Автономная солнечная биогазовая установка, содержащая реактор, помещенный в резервуар с жидкостью, в котором вокруг реактора установлены контейнеры с фазопереходным тепловым аккумулятором, заряжаемым тепловой энергией солнечных коллекторов, резервуар для подготовки субстрата исходного сырья, фекальный насос, газгольдер, резервуар жидкого удобрения, солнечные коллекторы, циркуляционный насос, термоконтроллер с термодатчиками и сервоприводами, систему трубопроводов с запорно-регулирующей арматурой и систему отбора биогаза, отличающаяся тем, что установка выполнена с возможностью подогрева ежесуточно подаваемой в реактор дозы субстрата до температуры сбраживания путем переключения циркуляции нагретого солнечными коллекторами теплоносителя через теплообменник, установленный в резервуаре для подготовки субстрата исходного сырья.
RU2019136934A 2019-11-18 2019-11-18 Автономная солнечная биогазовая установка RU2734456C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019136934A RU2734456C1 (ru) 2019-11-18 2019-11-18 Автономная солнечная биогазовая установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019136934A RU2734456C1 (ru) 2019-11-18 2019-11-18 Автономная солнечная биогазовая установка

Publications (1)

Publication Number Publication Date
RU2734456C1 true RU2734456C1 (ru) 2020-10-16

Family

ID=72940268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019136934A RU2734456C1 (ru) 2019-11-18 2019-11-18 Автономная солнечная биогазовая установка

Country Status (1)

Country Link
RU (1) RU2734456C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785600C2 (ru) * 2021-04-05 2022-12-09 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Гелиобиогазовый комплекс

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2284967C1 (ru) * 2005-06-03 2006-10-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Биоэнергетическая установка
RU133829U1 (ru) * 2012-06-20 2013-10-27 Общество с ограниченной ответственностью "Биогазовые технологии" Установка для анаэробной переработки органических отходов
RU166736U1 (ru) * 2015-12-29 2016-12-10 Федеральное государственное бюджетное учреждение науки Институт проблем геотермии Дагестанского научного центра Российской Академии наук (ИПГ ДНЦ РАН) г. Махачкала Гелиобиогазовая установка
CN107840552A (zh) * 2017-12-20 2018-03-27 皖西学院 一种利用太阳能和风能的农村生活污水处理系统
RU2664457C1 (ru) * 2017-04-04 2018-08-17 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "РЕСУРС-М" Солнечная биогазовая установка
RU2680639C2 (ru) * 2016-10-31 2019-02-25 Российская Федерация ФАНО России Федеральное государственное бюджетное учреждение науки Институт проблем геотермии Дагестанского научного центра Российской Академии наук (ИПГ ДНЦ РАН) г. Махачкала Солнечный воздухонагреватель

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2284967C1 (ru) * 2005-06-03 2006-10-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Биоэнергетическая установка
RU133829U1 (ru) * 2012-06-20 2013-10-27 Общество с ограниченной ответственностью "Биогазовые технологии" Установка для анаэробной переработки органических отходов
RU166736U1 (ru) * 2015-12-29 2016-12-10 Федеральное государственное бюджетное учреждение науки Институт проблем геотермии Дагестанского научного центра Российской Академии наук (ИПГ ДНЦ РАН) г. Махачкала Гелиобиогазовая установка
RU2680639C2 (ru) * 2016-10-31 2019-02-25 Российская Федерация ФАНО России Федеральное государственное бюджетное учреждение науки Институт проблем геотермии Дагестанского научного центра Российской Академии наук (ИПГ ДНЦ РАН) г. Махачкала Солнечный воздухонагреватель
RU2664457C1 (ru) * 2017-04-04 2018-08-17 Общество с ограниченной ответственностью НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "РЕСУРС-М" Солнечная биогазовая установка
CN107840552A (zh) * 2017-12-20 2018-03-27 皖西学院 一种利用太阳能和风能的农村生活污水处理系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785600C2 (ru) * 2021-04-05 2022-12-09 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Гелиобиогазовый комплекс

Similar Documents

Publication Publication Date Title
CN102241464B (zh) 城市污泥处理方法及其设备
EP3194535B1 (en) System and method for processing biomass
CN103304123A (zh) 一种利用余热生产沼气的热能再利用装置及其运行方式
CN101624564B (zh) 适合于寒冷地区的生物质产能装置
RU2734456C1 (ru) Автономная солнечная биогазовая установка
Ouhammou et al. Design and analysis of integrating the solar thermal energy in anaerobic digester using TRNSYS: application kenitra-Morocco
RU166736U1 (ru) Гелиобиогазовая установка
RU2664457C1 (ru) Солнечная биогазовая установка
RU2785600C2 (ru) Гелиобиогазовый комплекс
CN103408210A (zh) 一种厌氧发酵分段控温系统及方法
CN102641883A (zh) 垃圾处理装置
Komilov et al. Autonomous biogas plant with solar heating system
RU2539100C1 (ru) Биогазовая установка
CN101845391A (zh) 自持式沼气发酵池温控系统
CN206929826U (zh) 一种高效太阳能厌氧反应器供热装置
CN202539174U (zh) 垃圾处理装置
CN208964941U (zh) 一种地埋式中温发酵沼气池
RU96859U1 (ru) Биоэнергетический комплекс
Li et al. Design of the solar energy-heated biogas digester
CN103571737B (zh) 发酵罐增温保温系统
CN207391430U (zh) 一种太阳能热电一体化沼气反应器加热装置
RU97182U1 (ru) Универсальная коаксиальная гелиоэлектроводонагревательная установка
RU2440308C2 (ru) Биоэнергетический комплекс
CN205133617U (zh) 一种温度补偿型沼气池
RU2577166C2 (ru) Линия утилизации навоза с получением биогаза и удобрений