RU2733872C1 - Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2 - Google Patents

Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2 Download PDF

Info

Publication number
RU2733872C1
RU2733872C1 RU2020106662A RU2020106662A RU2733872C1 RU 2733872 C1 RU2733872 C1 RU 2733872C1 RU 2020106662 A RU2020106662 A RU 2020106662A RU 2020106662 A RU2020106662 A RU 2020106662A RU 2733872 C1 RU2733872 C1 RU 2733872C1
Authority
RU
Russia
Prior art keywords
heat
conditions
water
over
resistant
Prior art date
Application number
RU2020106662A
Other languages
English (en)
Inventor
Марат Фаридович Ахметов
Нина Владимировна Парийчук
Дмитрий Владимирович Щербаков
Original Assignee
Акционерное общество "Зарубежнефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Зарубежнефть" filed Critical Акционерное общество "Зарубежнефть"
Priority to RU2020106662A priority Critical patent/RU2733872C1/ru
Application granted granted Critical
Publication of RU2733872C1 publication Critical patent/RU2733872C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Изобретение относится к технологии строительства скважин и может быть использовано для крепления нефтяных и газовых скважин, которые эксплуатируются в условиях циклически меняющихся температур в диапазоне от 25 до 300°С для улучшения прочностных свойств тампонажного материала при воздействии агрессивных сред - сероводорода (H2S) и углекислого газа (СО2). Тампонажный материал для крепления скважин содержит, % мас.: портландцемент тампонажный высокой сульфатостойкости - 85-87; кварцевую муку - 8-10; золу уноса термоактивированную - 5; воду до водосмесевого отношения - 0,4. Технический результат - повышение прочности тампонажного камня при изгибе после твердения и последующего воздействия нескольких циклов нагревания и охлаждения в диапазоне температур от 25 до 300°С при одновременном воздействии агрессивных сред H2S и СО2 в течение длительного времени. 1 з.п. ф-лы, 2 табл.

Description

Изобретение относится к технологии строительства скважин и может быть использовано для крепления нефтяных и газовых скважин, которые эксплуатируются в условиях циклически меняющихся температур в диапазоне от 25 до 300°С для улучшения прочностных свойств тампонажного материала при воздействии агрессивных сред - сероводорода (H2S) и углекислого газа (СО2).
Обеспечение герметичности заколонного пространства скважины представляет собой сложную задачу, при решении которой следует учитывать, что в условиях циклически меняющихся температур обсадная колонна скважины подвергается температурному расширению. Дополнительная нагрузка может привести к разрушению тампонажного камня. Моделирование напряжений в системе обсадная труба - цементная труба - горная порода, проведенное нами с использованием специализированного программного обеспечения методом конечных элементов, показало, что в описанных условиях основным фактором, влияющим на целостность материала крепления скважины, является прочность цементного камня на изгиб. Анализ литературных источников показал, что зачастую при разработке и испытаниях тампонажного материала для скважин с циклически меняющимися температурами предел прочности при изгибе не определяется (патент РФ №2418028, МПК C09K 8/467, опубл. 10.05.2011).
Присутствие в пластовых флюидах высокоактивных газов - сероводорода (H2S) и углекислого газа (СО2), особенно в сочетании с термоциклическим воздействием на пласт, ведет к разрушению цементного камня, что свидетельствует о необходимости оценки влияния этих высокоактивных газов на прочностные характеристики тампонажного материала.
Известен тампонажный материал для крепления паронагнетательных скважин, обеспечивающий быстрое твердение при нормальных температурах (t=20-40°С) и высокие прочностные характеристики при температурах t=150-220°С (патент РФ №2530805, МПК C09K 8/467, опубл. 10.10.2014). Тампонажный материал содержит, мас. %: портландцемент (50-70), кремнеземсодержащий компонент, включающий трепел и кварцевый песок в соотношении 1:10 - (30-50), армирующая добавка (0,2-0,3) сверх 100%, пластификатор (0,1-1,0) сверх 100%, хлорид кальция (0,1-3,0) сверх 100%, расширяющая добавка (3,0-5,0) сверх 100%.
Также известен расширяющийся тампонажный материал для крепления нефтяных и газовых скважин в диапазоне температур от 22°С до 110°С (патент РФ №2418028, МПК C09K 8/467, опубл. 10.05.2011). Расширяющийся тампонажный материал содержит, мас. %: портландцемент тампонажный (55-70), сланцевую золу (20-30), магнезит (10-15).
Недостатком известных материалов является снижение прочностных характеристик при циклически меняющихся температурах от 20 до 220°С и отсутствие данных о прочности при изгибе при воздействии высоких температур t>220°С.
Наиболее близким к изобретению по совокупности существенных признаков является тампонажный состав для паронагнетательных скважин, характеризующийся обеспечением стойкости тампонажного камня при условии резкого перепада температур от 22°С до 180°С и одновременном сохранении прочности при сжатии при циклическом термовоздействии в течение длительного времени (патент РФ №2359988, МПК C09K 8/467, опубл. 27.06.2009). Тампонажный материал для паронагнетательных скважин содержит, мас. ч.: портландцемент - (50-80), кварцевый песок (10-45), аморфная двуокись кремния до 10, вода до в/ц (0,35-0,52), ускоритель сроков схватывания - хлорид кальция или хлорид натрия до 5 мас. ч. и/или оксиэтилцеллюлозу до 0,5 мас. ч. и/или пластификатор - лигносульфонаты или Melflux, или Цемпласт МФ марки б.
Недостатком известного материала являются недостаточные прочностные характеристики тампонажного материала при изгибе (1,3-2,0 МПа) при нормальных температурах, а также отсутствие данных о прочности при изгибе при циклически изменяющихся температурах. Кроме того, диапазон перепада температур, при котором проводили испытания тампонажного материала, не перекрывает температурные условия в паронагнетательных скважинах (более 180°С).
Задачей изобретения является обеспечение высокой прочности при изгибе тампонажного камня через 8 суток твердения при температурах t=25-60°С и последующего воздействия нескольких циклов нагревания и охлаждения при температурах t=25-300°С при одновременном воздействии агрессивных сред с H2S и СО2 в течение длительного периода времени.
Эта задача решается за счет того, что термостойкий тампонажный материал, применяемый для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур при воздействии H2S и СО2, включает: портландцемент тампонажный высокой сульфатостойкости 85-87% мас., кварцевая мука 8-10% мас., зола уноса термоактивированная - 5% мас., вода до в/с 0,4. Указанный тампонажный материал может содержать регуляторы технологических свойств: понизитель фильтрации на основе модифицированных производных полисахаридов различной вязкости 0,4% мас. сверх 100%, модифицированный кремнийорганический полимер 0,2% мас. сверх 100% в качестве пеногасителя, замедлитель или ускоритель сроков схватывания 0,2% мас. сверх 100%.
Предлагаемый тампонажный материал для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур, применяемый в условиях воздействия H2S и СО2, был приготовлен в лабораторных условиях с применением следующих компонентов:
- портландцемент тампонажный высокой сульфатостойкости без добавок ПЦТ I-G-CC-1 (ГОСТ 1581-96), класс G тип HSR (спецификация API Spec 10 А);
- кварцевая мука марки МКО фракции - 0,2 мм (ТУ 5717-001-16767071-99) или SilverBond 50 - производства ООО «Сибелко Рус»;
- зола уноса термоактивированная класса F ЗУ БУК-Б-2 ГОСТ 25818-2017 или MincpoSil 80 (ТУ 5743-001-12458632-2016), или зола уноса Новочеркасской ГРЭС (ТУ 5712-004-84800065-2010) после снижения доли недожога (потерь при прокаливании) до (2-3) % мас.;
- понизитель фильтрации на основе модифицированных производных полисахаридов различной вязкости WellFix FL 1 (ТУ 2458-032-14023401-2012) или ATREN СЕМ 1 -производства ГК «Миррико»;
- пеногаситель - модифицированный кремнийорганический полимер Полицем Дефом (ТУ 2458-081-97457491-2012) или Atren-Antifoam марки А - производства ГК «Миррико»;
- замедлитель сроков схватывания - PetroRetarder производства «ПетроИнжиниринг».
При решении поставленной задачи создается технический результат, заключающийся в создании термостойкого тампонажного материала для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур, обеспечивающего прочность при изгибе тампонажного камня не менее 7,0 МПа после 8 суток твердения при температуре (25-60)°С и последующего воздействия нескольких циклов нагревания и охлаждения при температурах t=25-300°С при одновременном воздействии агрессивных сред с H2S и СО2 в течение длительного периода времени. При этом высокий предел прочности при изгибе тампонажного камня достигается независимо от наличия термоциклического воздействия и/или воздействия агрессивных сред с H2S и СО2. Технический результат термостойкого тампонажного материала достигается за счет следующего. Зола уноса, проявляет пуццоланические свойства, снижает пористость тампонажного материала и улучшает его прочностные характеристики. При взаимодействии оксида кремния из кварцевой муки и золы уноса с оксидом кальция из портландцемента образуются низкоосновные гидросиликаты кальция, нерастворимые в воде и стабильные при перепадах температур, что обеспечивает механическую прочность и термическую устойчивость полученного цементного камня при перепадах температур. Связывание оксида кальция как основного компонента, содержащегося в тампонажном материале в нерастворимые термически устойчивые соединения, предотвращает возможность его взаимодействия с углекислым газом и сероводородом и улучшает его прочностные характеристики.
Пример. Приготовление тампонажного раствора, для определения всех параметров, выполнялось по API RP 10 В (ISO 10426-2). В 360 г воды, перемешиваемой при скорости вращения лопастей смесителя 4000 об/мин ± 200 об/мин, вводилось 1,8 г (0,2% мас. сверх 100%) пеногасителя Полицем Дефом; вводилось 3,6 г (0,4% мас. сверх 100%) понизителя фильтрации WellFix FL-1, 1,8 г (0,2% мас. сверх 100%) замедлителя сроков схватывания PetroRetarder. После диспергирования примерно в течение 30 с вводили 900 г тампонажного материала с равномерной скоростью, не быстрее чем в течение 15 с. Тампонажный материал включал: 783 г (85% мас.) ПЦТ I-G-CC-1; 72 г (10% мас.) кварцевой муки марки МКО фракции - 0,2 мм; 45 г (5% мас.) золы уноса термоактивированной MmcpoSil 80. После введения тампонажного материала в течение 15 с контейнер закрывается крышкой и перемешивание продолжается со скоростью 12000 об/мин ± 500 об/мин в течение 35 с ± 1 с. Плотность получающегося тампонажного раствора - 1930 кг/м3. Растекаемость по ГОСТ 26798.1 - 260 мм.
В таблице 1 приведены примеры рецептур разработанного и известного образцов тампонажного материала.
Figure 00000001
Дальнейшие испытания образцов проводили как для известного тампонажного материала (патент РФ №2359988, МПК C09K 8/467, опубл. 27.06.2009), так и для предложенного впервые с целью установления возможности его применения в условиях меняющихся температур в скважине при воздействии углекислого газа и сероводорода, (таблица 1).
Водоотделение и приготовление образцов балочек, для испытания прочности при изгибе, выполнялось по ГОСТ 26798.1. Приготовление образцов кубиков выполнялось по ГОСТ 26798.2. Определение водоотдачи и времени загустевания выполнялось по API RP 10 В (ISO 10426-2). Циклический нагрев образцов выполнялся в ячейке старения. Цикл прогрева включал помещение образцов в среду с концентрацией H2S до 1 г/дм3, создание давления СО2 - 3 МПа и прогрев не менее чем 8 ч при температуре 300°С. Затем ячейка охлаждалась до комнатной температуры на воздухе. Предел прочности на сжатие и при изгибе определяли после 8 суток твердения тампонажного камня без нагрева и после пяти циклов нагрева в среде сероводорода и углекислого газа. Исследование прочности проводили с использованием гидравлического малогабаритного пресса ПГМ-100МГ4 Результаты определения исследованных характеристик тампонажных растворов (водоотделение, водоотдача, время загустевания) и тампонажного камня (предел прочности на сжатие и при изгибе, проницаемость) приведены в таблице 2.
Figure 00000002
Результаты, приведенные в таблице 2, показывают, что разработанный и известный тампонажный материал обладает удовлетворительным временем загустевания при всех условиях проведения эксперимента (t=25°С, р=7 МПа и t=60°С, р=18 МПа), что соответствует ISO 10426-2, более высоким пределом прочности на сжатие (до 20,0 МПа) и при изгибе (не менее 7,0 МПа) после 8 суток твердения при 25±2°С по сравнению с известным материалом, где эти параметры составили 8,5 МПа и 3,3 МПа соответственно. При воздействии углекислого газа и сероводорода в термоциклических условиях (t=25-300°С) значения пределов прочности на сжатие и при изгибе остаются стабильными по сравнению с прочностными характеристиками до циклического нагрева в среде H2S и СО2, и составляют до 21,8 МПа и 7,5 МПа соответственно.
Таким образом, преимуществом разработанного термостойкого тампонажного материала является стабильность прочностных характеристик как при циклически меняющихся температурах в условиях воздействия углекислого газа и сероводорода, так и при отсутствии этих условий, что создает широкие возможности для его применения при эксплуатации скважин в диапазоне температур от 25 до 300°С.

Claims (3)

1. Термостойкий тампонажный материал для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур от 25 до 300°С, отличающийся составом и соотношением компонентов, обеспечивающих высокую прочность в условиях воздействия агрессивных сред - сероводорода (H2S) и углекислого газа (СО2), и включающий портландцемент тампонажный высокой сульфатостойкости, кварцевую муку, золу уноса термоактивированную и воду при следующем соотношении компонентов, % мас.:
Портландцемент тампонажный высокой сульфатостойкости 85-87 Кварцевая мука 8-10 Зола уноса термоактивированная 5 Вода до водосмесевого отношения 0,4
2. Термостойкий тампонажный материал для крепления скважин по п. 1 с дополнительными добавками регуляторов технологических свойств: понизителя фильтрации на основе модифицированных производных полисахаридов различной вязкости до 0,4% мас. сверх 100%, пеногасителя - модифицированного кремнийорганического полимера до 0,2% мас. сверх 100%, замедлителя или ускорителя сроков схватывания до 0,2% мас. сверх 100%.
RU2020106662A 2020-02-11 2020-02-11 Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2 RU2733872C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020106662A RU2733872C1 (ru) 2020-02-11 2020-02-11 Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020106662A RU2733872C1 (ru) 2020-02-11 2020-02-11 Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2

Publications (1)

Publication Number Publication Date
RU2733872C1 true RU2733872C1 (ru) 2020-10-07

Family

ID=72926812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020106662A RU2733872C1 (ru) 2020-02-11 2020-02-11 Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2

Country Status (1)

Country Link
RU (1) RU2733872C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763586C1 (ru) * 2021-04-07 2021-12-30 Общество с ограниченной ответственностью «Ойл Энерджи» Синтетический понизитель фильтрации
RU2808959C1 (ru) * 2023-09-15 2023-12-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет императрицы Екатерины II" Тампонажный состав

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876005A (en) * 1972-01-24 1975-04-08 Halliburton Co High temperature, low density cementing method
SU1654540A1 (ru) * 1988-04-20 1991-06-07 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Тампонажный материал
RU2013525C1 (ru) * 1991-07-22 1994-05-30 Украинский научно-исследовательский институт природных газов Тампонажный состав
RU2359988C1 (ru) * 2007-09-27 2009-06-27 Общество С Ограниченной Ответственностью "Пермский Научно-Исследовательский И Проектный Институт Нефти" Тампонажный состав для паронагнетательных скважин
RU2513220C2 (ru) * 2012-07-25 2014-04-20 Закрытое акционерное общество "ХИМЕКО-ГАНГ" Высокопроникающий тампонажный раствор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876005A (en) * 1972-01-24 1975-04-08 Halliburton Co High temperature, low density cementing method
SU1654540A1 (ru) * 1988-04-20 1991-06-07 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Тампонажный материал
RU2013525C1 (ru) * 1991-07-22 1994-05-30 Украинский научно-исследовательский институт природных газов Тампонажный состав
RU2359988C1 (ru) * 2007-09-27 2009-06-27 Общество С Ограниченной Ответственностью "Пермский Научно-Исследовательский И Проектный Институт Нефти" Тампонажный состав для паронагнетательных скважин
RU2513220C2 (ru) * 2012-07-25 2014-04-20 Закрытое акционерное общество "ХИМЕКО-ГАНГ" Высокопроникающий тампонажный раствор

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2763586C1 (ru) * 2021-04-07 2021-12-30 Общество с ограниченной ответственностью «Ойл Энерджи» Синтетический понизитель фильтрации
RU2808959C1 (ru) * 2023-09-15 2023-12-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет императрицы Екатерины II" Тампонажный состав

Similar Documents

Publication Publication Date Title
CA2835556C (en) Settable compositions containing metakaolin having reduced portland cement content
EP0816302B1 (en) Well cement compositions
EP0816301B1 (en) Well cement compositions
US7282093B2 (en) Cement compositions with improved mechanical properties and methods of cementing in subterranean formations
WO2005035935A1 (en) Methods of cementing subterranean zones with cement compositions having enhanced compressive strengths
RU2578698C2 (ru) Способы цементирования в подземном пласте с использованием цементной композиции, содержащей затравочные кристаллы гидратированного силиката кальция
CA2772374A1 (en) Cement compositions and associated methods comprising sub-micron calcium carbonate and latex
WO2006100506A2 (en) Methods of cementing using cement compositions comprising basalt fibers
US7357834B2 (en) Cement composition for use with a formate-based drilling fluid comprising an alkaline buffering agent
NO20160012A1 (en) Methods of Cementing and Spent Cracking Catalyst-Containing Cement Compositions
RU2733872C1 (ru) Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия H2S и CO2
AU2022369879A1 (en) Enhanced carbon sequestration via foam cementing
EP0816300B1 (en) Well cement compositions
Hadi et al. Improving the Iraqi Oil Well Cement Properties Using Barolift: an Experimental Investigation
RU2763195C1 (ru) Основа утяжеленного термостойкого тампонажного раствора
WO2007051971A1 (en) Fluid loss control additives for foamed cement compositions and associated methods
WO2021247054A1 (en) A fly ash-cement for oil and gas cementing applications
US11945994B1 (en) Method to design for permeability of portland based systems
US20230111521A1 (en) Design For Fluid Loss Requirement Of A Cement Slurry Using Bulk Blend Materials
Sakuma et al. Development of High-temperature Well Cement for Supercritical Geothermal Drilling with Consideration of Set Cement Strength
Olvera Early-age shrinkage of alkali-activated Class F fly ash and portland cement for long-term oil well zonal isolation control
Lima et al. Effects of Noncrosslinked Polyvinyl Alcohol Fluid Loss Additive on the Compressive Strength and Viscosity of Class G Cement Slurries
MUHAMMAD GARIB CEMENTING DESIGN FOR DEEP CARBON DIOXIDE (C02) INJECTION WELLS
Rocha et al. Influence of sodium and potassium chlorides on the hydration kinetics and its impact on the strength of oil well cement pastes