RU2733636C1 - Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт - Google Patents
Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт Download PDFInfo
- Publication number
- RU2733636C1 RU2733636C1 RU2020112643A RU2020112643A RU2733636C1 RU 2733636 C1 RU2733636 C1 RU 2733636C1 RU 2020112643 A RU2020112643 A RU 2020112643A RU 2020112643 A RU2020112643 A RU 2020112643A RU 2733636 C1 RU2733636 C1 RU 2733636C1
- Authority
- RU
- Russia
- Prior art keywords
- oil
- well
- solvent
- viscosity
- reservoir
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 18
- 239000010426 asphalt Substances 0.000 title claims abstract description 12
- 238000011161 development Methods 0.000 title claims abstract description 12
- 125000004122 cyclic group Chemical group 0.000 title claims abstract description 9
- 230000000694 effects Effects 0.000 title abstract description 5
- 239000002904 solvent Substances 0.000 claims abstract description 49
- 238000002347 injection Methods 0.000 claims abstract description 31
- 239000007924 injection Substances 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000007789 gas Substances 0.000 claims abstract description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 15
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000005553 drilling Methods 0.000 claims abstract description 8
- 238000005086 pumping Methods 0.000 claims abstract description 7
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 4
- 238000004458 analytical method Methods 0.000 claims abstract description 4
- 125000003118 aryl group Chemical group 0.000 claims abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 239000001301 oxygen Substances 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 239000002826 coolant Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 26
- 230000008569 process Effects 0.000 abstract description 6
- 238000011084 recovery Methods 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 abstract 1
- 238000000605 extraction Methods 0.000 abstract 1
- 238000010792 warming Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 40
- 239000004215 Carbon black (E152) Substances 0.000 description 11
- 239000012530 fluid Substances 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 8
- 238000010793 Steam injection (oil industry) Methods 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000010779 crude oil Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000004434 industrial solvent Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010794 Cyclic Steam Stimulation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/592—Compositions used in combination with generated heat, e.g. by steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/046—Directional drilling horizontal drilling
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки залежи высоковязкой нефти и/или битума, повышение коэффициента извлечения нефти с одновременным снижением эксплуатационных затрат на производство и закачку пара. Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт включает бурение горизонтальной скважины, закачку теплоносителя для прогрева пласта и последующий отбор продукции из скважины. До бурения горизонтальной скважины бурят оценочные скважины для оконтуривания нефтенасыщенной залежи и оценки потенциала промышленной разработки залежи. Производят опробование залежи и при получении притока нефти проводят исследования проб нефти, проводят ее физико-химический анализ, определяют вязкость нефти в пластовых условиях. Перед закачкой теплоносителя закачивают растворитель, представляющий собой смесь углеводородов предельного алифатического и ароматического рядов, в объеме, который определяют по формуле где V - объем закачиваемого растворителя, м3; K=1,2-2,4, безразмерный коэффициент, выбираемый в зависимости от вязкости нефти в пластовых условиях; – математическая константа, равная 3,14; d - диаметр горизонтальной фильтровой части скважины, м; L - длина горизонтальной фильтровой части скважины, м. Продавливают растворитель и оставляют скважину на технологическую выдержку для реагирования всего объема растворителя на не менее 4 суток. После технологической выдержки осуществляют закачку теплоносителя в течение 70-180 суток. В качестве теплоносителя закачивают парогазовую смесь, содержащую, мас.%: пар 40-60; углекислый газ 5-15; азот 35-55; кислород 0,5 и менее. 2 ил., 1 табл., 3 пр.
Description
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой нефти и/или битума.
Известен способ разработки залежи высоковязкой нефти и/или битума методом пароциклического воздействия на пласт (патент RU 2560036, МПК Е21В43/24, опубл. 20.08.2015, бюл. № 23), включающий бурение горизонтальной скважины, последовательную закачку теплоносителя - пара для прогрева пласта, охлаждаю- щей жидкости и последующий отбор продукции из скважины, причем в качестве охлаждающей жидкости применяют 3-10 %-ный водный раствор карбамида, а теплоноситель закачивают до температуры в прискважинной зоне пласта не ниже температуры разложения карбамида, причем охлаждающую жидкость закачивают в массе от 1/12 до 1/6 массы теплоносителя с температурой, не более чем на 120°C меньшей температуры теплоносителя.
Недостатком этого способа являются низкая продолжительность эффекта вследствие необходимости закачки охлаждающей жидкости, что снижает эффективность начальной закачки пара и приводит к быстрому снижению призабойной температуры после начала отбора жидкости.
Наиболее близким является способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин (патент RU № 2663530, МПК E21B 43/24, E21B 43/22, опубл. 07.08.2018, бюл. № 22), включающий строительство в продуктивном пласте горизонтальной нагнетательной скважины и добывающей скважины, расположенной ниже и параллельно нагнетательной скважине, закачку углеводородного растворителя и пара для прогрева продуктивного пласта и создания паровой камеры, перевод в режим закачки пара в нагнетательную скважину и отбор продукции в добывающей скважине, причем предварительно лабораторными исследованиями на образце керна продуктивного пласта определяют скорость диффузии углеводородного растворителя в данном образце в вертикальном направлении под действием сил гравитации при пластовых условиях, на основании данной скорости диффузии рассчитывается время прохождения углеводородного
растворителя расстояния по вертикали от нагнетательной до добывающей скважины по формуле:
где t - время прохождения углеводородного растворителя расстояния по вертикали от нагнетательной до добывающей скважины, ч;
h - расстояние по вертикали от нагнетательной до добывающей скважины, м; υ - скорость диффузии углеводородного растворителя в вертикальном
направлении под действием сил гравитации при пластовых условиях, м/ч,
до начала прогрева пласта закачкой пара, в нагнетательную скважину закачивается углеводородный растворитель в объеме, рассчитанном по формуле:
где V - объем закачки углеводородного растворителя, м3;
K=1÷3 безразмерный коэффициент, выбираемый в зависимости от геолого- физических свойств пласта;
d - диаметр фильтра, м;
L - длина горизонтальной фильтровой части скважины, м, при этом закачка пара для освоения пары скважин начинается по истечении расчетного времени до- стижения растворителем добывающей скважины.
Недостатками способа являются узкая область применения, ограниченная только парными горизонтальными скважинами, эксплуатирующими залежь высоковязкой нефти и/или битума по технологии парогравитационного дренирования и не учитывающая одиночные горизонтальные скважины, а также отсутствие подбора наиболее оптимального растворителя в лабораторных условиях для геолого- физических условий конкретной залежи.
Техническими задачами предлагаемого способа являются повышение эффективности разработки залежи высоковязкой нефти и/или битума за счет обработки залежи растворителем, обладающим наиболее растворяющими и разбавляющими способностями и не вызывающим выпадение нерастворимого осадка, повышение коэффициента извлечения нефти, получение дополнительной добычи нефти за счет увеличения пластовой энергии, снижения вязкости сырой нефти в пластовых условия, снижение эксплуатационных затрат на производство и закачку пара.
Технические задачи решаются способом разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт, включающим бурение горизонтальной скважины, закачку теплоносителя для прогрева пласта и последующий отбор продукции из скважины.
Новым является то, что до бурения горизонтальной скважины бурят оценочные скважины для оконтуривания нефтенасыщенной залежи и оценки потенциала промышленной разработки залежи, производят опробование залежи и при получении притока нефти проводят исследования проб нефти, проводят ее физико-химический анализ, определяют вязкость нефти в пластовых условиях, перед закачкой теплоносителя закачивают растворитель, представляющий собой смесь углеводородов предельного алифатического и ароматического рядов, в объеме, который определяют по формуле:
где V - объем закачиваемого растворителя, м3;
K=1,2÷2,4, безразмерный коэффициент, выбираемый в зависимости от вязкости нефти в пластовых условиях следующим образом: при динамической вязкости нефти менее 12000 мПа*с, К равен 1,2; при динамической вязкости нефти 12001- 19000 мПа*с, К равен 1,5; при динамической вязкости нефти 19001-26000 мПа*с, К равен 1,8; при динамической вязкости нефти 26001-35000 мПа*с, К равен 2,1; при динамической вязкости нефти более 35001 мПа*с, К равен 2,4;
π – математическая константа, равная 3,14;
d - диаметр горизонтальной фильтровой части скважины, м; L - длина горизонтальной фильтровой части скважины, м,
продавливают растворитель и оставляют скважину на технологическую выдержку для реагирования всего объема растворителя на не менее 4 суток, после технологической выдержки осуществляют закачку теплоносителя в течение 70-180 суток, а в качестве теплоносителя закачивают парогазовую смесь, в качестве парогазовой смеси используют состав, содержащий, мас. %: пар 40-60; углекислый газ СО2 5- 15; азот N2 35-55; кислород О2 0,5 и менее.
На фиг. 1 показана схема расположения одиночной горизонтальной скважины для организации закачки теплоносителя с наличием колонн насосно- компрессорных труб НКТ.
На фиг. 2 показана схема расположения одиночной горизонтальной скважины для с погружным насосом для организации отбора продукции.
Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт осуществляют следующим образом.
До бурения в продуктивном пласте 1 (фиг. 1, 2) горизонтальной скважины 2 бурят оценочные скважины (на фиг. 1, 2 не показаны) для оконтуривания нефтенасыщенной залежи и оценки потенциала промышленной разработки залежи. Далее через них производят опробование залежи и при получении притока нефти проводят исследования проб нефти. Проводят ее физико-химический анализ, определяют вязкость нефти в пластовых условиях, глубину кровли нефтенасыщенного пласта, допустимое давление закачки.
Далее в пределах продуктивного пласта 1 бурят одиночную горизонтальную скважину 2, на которой предполагается циклическая эксплуатация - закачка теплоносителя и отбор жидкости. В условно вертикальную часть скважины 2 спускают эксплуатационную колонну 3, а горизонтальную часть скважины 2 оборудуют щелевым фильтром-хвостовиком 4. Для закачки растворителя и парогазовой смеси спускают в скважину 2 насосно-компрессорные трубы (НКТ) 5 (фиг. 1). Перед закачкой теплоносителя в продуктивный пласт 1 закачивают растворитель, представляющий собой смесь углеводородов предельного алифатического и ароматического рядов.
По способу используют растворители, например, растворитель промышленный - РП (ТУ 0258-007-60320171-2016), растворитель углеводородный - РУ (ТУ 19.20.23-030-60320171-2019), ароматический растворитель - толуол (ГОСТ 5789 –78) и др.
По результатам проведенных опытов, а также промысловых испытаний можно сделать вывод о том, что данные растворители обладают наиболее растворяющими и разбавляющими способностями и не вызывают выпадение нерастворимого осадка, обладают наилучшими вытесняющими свойствами, дают одинаково положительные результаты, обеспечивают получение одного и того же технического результата и применяются на месторождениях разработки залежи высоковязкой нефти и/или битума. Выбор растворителя (растворителя промышленного или растворителя углеводородного или толуола) определяется его наличием.
Объем растворителя определяют по формуле:
где V - объем закачиваемого растворителя, м3;
K=1,2÷2,4, безразмерный коэффициент, выбираемый в зависимости от вязкости нефти в пластовых условиях;
π – математическая константа, равная 3,14;
d - диаметр горизонтальной фильтровой части скважины, м;
L - длина горизонтальной фильтровой части скважины, м.
Зависимость коэффициента К от вязкости нефти в пластовых условиях представлена в таблице:
Таблица. Зависимость коэффициента К от вязкости нефти в пластовых условиях.
Динамическая вязкость мПа*с | К |
менее 12000 | 1,2 |
12001-19000 | 1,5 |
19001-26000 | 1,8 |
26001-35000 | 2,1 |
более 35001 | 2,4 |
Продавливают растворитель технологической жидкостью. Оставляют скважину 2 на технологическую выдержку для реагирования всего объема растворителя на не менее 4 суток. После технологической выдержки осуществляют закачку теплоносителя в течение 70-180 суток.
В качестве теплоносителя закачивают парогазовую смесь. Парогазовая смесь, применяемая по предлагаемому способу, представляет собой смесь, которая состоит из: 40-60 мас. % пара, 5-15 мас. % углекислого газа - СО2, 35-55 мас. % азота - N2, 0,5 мас. % и менее кислорода - О2, и обладающую рядом преимуществ перед закачкой пара:
1. Закачка полного объема смеси с продуктами горения установки, производящей парогазовую смесь, в пласт;
2. СО2 в составе парогазовой смеси помогает снизить вязкость сырой нефти. Обычно СО2 может снизить вязкость до 1/10 от исходного уровня. Также СО2 отмывает связанную нефть с поверхности породы, уменьшая межфазное натяжение нефти и воды;
3. Отсутствие выброса СО2 в атмосферу с установки, производящей парогазовую смесь;
4. Неконденсирующийся газ N2 полезен для повышения давления в пластовом резервуаре и создает довольно широкую газовую зону вокруг добывающей скважины, чтобы усилить движущие силы газа и жидкости и привести к перераспределению тепла и газа в нефтяных слоях. Эффект подъема давления N2 увеличивает коэффициент извлечения нефти;
5. Тепловой эффект – снижение вязкости и повышение текучести сырой нефти.
После чего закачку парогазовой смеси в скважину прекращают, скважину
останавливают на выдержку в течение 20-30 суток для термокапиллярной пропитки и остывания призабойной зоны добывающей скважины 2. Далее из скважины 2 извлекают НКТ 5 и проводят геофизические исследования для определения распределения температуры вдоль горизонтального ствола 4 скважины 2. После чего спускают в скважину 2 насос 6 (фиг. 2) на НКТ 7, располагают его в пределах эксплуатационной колонны 3 и осуществляют отбор продукции скважины с контролируемым расходом для поддержания температуры на приеме насоса 6 близкой, но не выше предельной для сохранения работоспособности насоса 6.
Примеры конкретного выполнения. Пример 1.
Пробурили оценочные скважины для оконтуривания продуктивной залежи, произвели опробования через оценочные скважины в нефтенасыщенном пласте 1 (фиг. 1), провели исследования проб нефти и определили вязкость нефти, которая составила 27042 мПа*с (при 8°С начальной пластовой температуры), глубина кровли нефтенасыщенного пласта 124 м, допустимое давление закачки на устье – 16 атм.
В пределах продуктивного пласта 1 пробурили одиночную горизонтальную скважину 2 глубиной 1050 м, длиной горизонтально ствола 853 м, предполагающую циклическую эксплуатацию закачки теплоносителя и отбора жидкости. В условно вертикальную часть скважины 2 спустили эксплуатационную колонну 3 диаметром 244,5 мм длиной 421,6 м, а горизонтальную часть оборудовали щелевым фильтром-хвостовиком 4 диаметром 168 мм длиной 646,5 м. Для проведения
закачки растворителя и парогазовой смеси спустили НКТ 5 на глубину 692 м. Рассчитали объем растворителя:
Перед первоначальным циклом закачки теплоносителя и отбора жидкости осуществили закачку растворителя в продуктивный пласт 1 в объеме 30,1 м3. В качестве растворителя закачали растворитель промышленный на углеводородной основе (ТУ 0258-007-60320171-2016) с продавкой технологической жидкостью объемом 1,5 м³ и выдержкой в течение 4 суток. После технологической выдержки на реагирование растворителя осуществили закачку парогазовой смеси в объеме 8123 т в течение 70 суток с температурой не менее 180°С на устье скважины со средне-суточным расходом 116 т/сут. После чего закачку в скважину остановили на ожидание в течение 20 суток для перераспределения тепла и термокапиллярной пропитки в продуктивном пласте 1. Далее из скважины 2 извлекли НКТ 5 и провели геофизические исследования для определения распределения температуры вдоль горизонтального ствола 4 скважины 2 после чего спустили насос 6 (фиг. 2) на НКТ 7, расположили его в пределах эксплуатационной колонны 3 и осуществили отбор продукции скважины с контролируемым расходом для поддержания температуры на приеме насоса 6 близкой, но не выше предельной для сохранения работоспособности насоса 6.
Пример 2.
Пробурили оценочные скважины для оконтуривания продуктивной залежи, произвели опробования через оценочные скважины в нефтенасыщенном пласте 1 (фиг. 1), провели исследования проб нефти и определили вязкость нефти, которая составила 42753 мПа*с (при 8°С начальной пластовой температуры), глубина кровли нефтенасыщенного пласта 189 м, допустимое давление закачки на устье – 22,3 атм.
В пределах продуктивного пласта 1 пробурили одиночную горизонтальную скважину 2 глубиной 1286 м, предполагающую циклическую эксплуатацию закачки теплоносителя и отбора жидкости. В условно вертикальную часть скважины 2 спустили эксплуатационную колонну 3 диаметром 244,5 мм длиной 501 м, а горизонтальную часть оборудовали щелевым фильтром-хвостовиком 4 диаметром
168 мм длиной 803 м. Для проведения закачки растворителя и парогазовой смеси спустили НКТ 5 на глубину 843 м. Рассчитали объем растворителя:
Перед закачкой теплоносителя и отбора жидкости осуществили закачку растворителя в продуктивный пласт 1 в объеме 42,7 м³. В качестве растворителя закачали толуол (ГОСТ 5789 – 78) с продавкой технологической жидкостью объемом 1,5 м³. После технологической выдержки на реагирование продолжительностью 23 суток осуществили закачку парогазовой смеси в объеме 11391 т в течение 180 суток с температурой не менее 180 °С на устье скважины со среднесуточным расходом 63 т/сут. После чего закачку в скважину остановили на ожидание в течение 30 суток для перераспределения тепла и термокапиллярной пропитки в продуктивном пласте 1. Далее из скважины 2 извлекли НКТ 5 и провели геофизические исследования для определения распределения температуры вдоль горизонтального ствола 4 скважины 2 после чего спустили насос 6 (фиг. 2) на НКТ 7, расположили его в пределах эксплуатационной колонны 3 и осуществили отбор продукции скважины с контролируемым расходом для поддержания температуры на приеме насоса 6 близкой, но не выше предельной для сохранения работоспособности насоса 6.
Пример 3.
Пробурили оценочные скважины для оконтуривания продуктивной залежи, произвели опробования через оценочные скважины в нефтенасыщенном пласте 1 (фиг. 1, 2), провели исследования проб нефти и определили вязкость нефти, которая составила 14089 мПа*с (при 9°С начальной пластовой температуры), глубина кровли нефтенасыщенного пласта 212 м, допустимое давление закачки на устье – 25,2 атм.
В пределах продуктивного пласта 1 пробурили одиночную горизонтальную скважину 2 глубиной 693 м, предполагающую циклическую эксплуатацию за- качки теплоносителя и отбора жидкости. В условно вертикальную часть скважины 2 спустили эксплуатационную колонну 3 диаметром 244,5 мм длиной 356 м, а горизонтальную часть оборудовали щелевым фильтром-хвостовиком 4 диаметром 168 мм длиной 335 м. Для проведения закачки растворителя и парогазовой смеси спустили НКТ 5 на глубину 489 м. Рассчитали объем растворителя:
Осуществили закачку растворителя в продуктивный пласт 1 в объеме 11,13 м3. В качестве растворителя закачали растворитель углеводородный – РУ (ТУ 19.20.23-030-60320171-2019), с продавкой технологической жидкостью объемом 1,5 м³ и выдержкой в течение 12 суток. После технологической выдержки на реагирование растворителя осуществили закачку парогазовой смеси в объеме 8123 т в течение 123 суток с температурой не менее 180 °С на устье скважины со среднесуточным расходом 66 т/сут. После чего закачку в скважину остановили на ожидание в течение 22 суток для перераспределения тепла и термокапиллярной пропитки в продуктивном пласте 1. Далее из скважины 2 извлекли НКТ 5 и провели геофизические исследования для определения распределения температуры вдоль горизонтального ствола 4 скважины 2 после чего спустили насос 6 (фиг. 2) на НКТ 7, расположили его в пределах эксплуатационной колонны 3 и осуществили отбор продукции скважины с контролируемым расходом для поддержания температуры на приеме насоса 6 близкой, но не выше предельной для сохранения работоспособности насоса 6.
Предлагаемый способ повышает эффективность разработки залежи высоковязкой нефти и/или битума за счет обработки залежи растворителем, обладающим наиболее растворяющими и разбавляющими способностями и не вызывающим выпадение нерастворимого осадка, повышает коэффициент извлечения нефти, позволяет получить дополнительную добычу нефти за счет увеличения пластовой энергии, снижения вязкости сырой нефти в пластовых условия, а также позволяет снизить эксплуатационные затраты на производство и закачку пара.
Claims (8)
- Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт, включающий бурение горизонтальной скважины, закачку теплоносителя для прогрева пласта и последующий отбор продукции из скважины, отличающийся тем, что до бурения горизонтальной скважины бурят оценочные скважины для оконтуривания нефтенасыщенной залежи и оценки потенциала промышленной разработки залежи, производят опробование залежи и при получении притока нефти проводят исследования проб нефти, проводят ее физико-химический анализ, определяют вязкость нефти в пластовых условиях, перед закачкой теплоносителя закачивают растворитель, представляющий собой смесь углеводородов предельного алифатического и ароматического рядов, в объеме, который определяют по формуле:
- где V - объем закачиваемого растворителя, м3;
- K=1,2-2,4, безразмерный коэффициент, выбираемый в зависимости от вязкости нефти в пластовых условиях следующим образом: при динамической вязкости нефти менее 12000 мПа*с К равен 1,2; при динамической вязкости нефти 12001-19000 мПа*с К равен 1,5; при динамической вязкости нефти 19001-26000 мПа*с К равен 1,8; при динамической вязкости нефти 26001-35000 мПа*с К равен 2,1; при динамической вязкости нефти более 35001 мПа*с К равен 2,4;
- d - диаметр горизонтальной фильтровой части скважины, м;
- L - длина горизонтальной фильтровой части скважины, м,
- продавливают растворитель и оставляют скважину на технологическую выдержку для реагирования всего объема растворителя на не менее 4 суток, после технологической выдержки осуществляют закачку теплоносителя в течение 70-180 суток, а в качестве теплоносителя закачивают парогазовую смесь, в качестве парогазовой смеси используют состав, содержащий, мас.%: пар 40-60; углекислый газ СО2 5-15; азот N2 35-5; кислород О2 0,5 и менее.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020112643A RU2733636C1 (ru) | 2020-03-27 | 2020-03-27 | Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020112643A RU2733636C1 (ru) | 2020-03-27 | 2020-03-27 | Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2733636C1 true RU2733636C1 (ru) | 2020-10-05 |
Family
ID=72927045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020112643A RU2733636C1 (ru) | 2020-03-27 | 2020-03-27 | Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2733636C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2775630C1 (ru) * | 2021-11-11 | 2022-07-05 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ извлечения сверхвязкой нефти и/или битума из залежи с малыми толщинами пласта (варианты) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2342955A1 (en) * | 2001-04-04 | 2002-10-04 | Roland P. Leaute | Liquid addition to steam for enhancing recovery of cyclic steam stimulation or laser-css |
RU2387818C1 (ru) * | 2009-03-04 | 2010-04-27 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки залежей тяжелых и сверхвысоковязких нефтей |
RU2470149C1 (ru) * | 2011-06-07 | 2012-12-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой и сверхвязкой нефти |
RU2560036C1 (ru) * | 2014-07-04 | 2015-08-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти и/или битума методом пароциклического воздействия на пласт |
RU2663530C1 (ru) * | 2017-07-07 | 2018-08-07 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин |
-
2020
- 2020-03-27 RU RU2020112643A patent/RU2733636C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2342955A1 (en) * | 2001-04-04 | 2002-10-04 | Roland P. Leaute | Liquid addition to steam for enhancing recovery of cyclic steam stimulation or laser-css |
RU2387818C1 (ru) * | 2009-03-04 | 2010-04-27 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки залежей тяжелых и сверхвысоковязких нефтей |
RU2470149C1 (ru) * | 2011-06-07 | 2012-12-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой и сверхвязкой нефти |
RU2560036C1 (ru) * | 2014-07-04 | 2015-08-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти и/или битума методом пароциклического воздействия на пласт |
RU2663530C1 (ru) * | 2017-07-07 | 2018-08-07 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти с использованием парных горизонтальных скважин |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2775630C1 (ru) * | 2021-11-11 | 2022-07-05 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ извлечения сверхвязкой нефти и/или битума из залежи с малыми толщинами пласта (варианты) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Butler et al. | Theoretical studies on the gravity drainage of heavy oil during in‐situ steam heating | |
US4565249A (en) | Heavy oil recovery process using cyclic carbon dioxide steam stimulation | |
US2910123A (en) | Method of recovering petroleum | |
US2859818A (en) | Method of recovering petroleum | |
US3554285A (en) | Production and upgrading of heavy viscous oils | |
US3292702A (en) | Thermal well stimulation method | |
US4186802A (en) | Fracing process | |
RU2344280C1 (ru) | Способ разработки месторождений высоковязких нефтей и битумов направленно-горизонтальными скважинами | |
CN104981584A (zh) | 低渗透率轻质油储层中的流体注入 | |
RU2358099C1 (ru) | Способ разработки месторождения высоковязкой нефти | |
RU2478164C1 (ru) | Способ разработки залежи нефти, расположенной над газовой залежью и отделенной от нее непроницаемым пропластком | |
US3993135A (en) | Thermal process for recovering viscous petroleum | |
US2876838A (en) | Secondary recovery process | |
US3782470A (en) | Thermal oil recovery technique | |
US4427066A (en) | Oil recovery method | |
AU2010278850B2 (en) | A method for recovering oil from an oil well | |
RU2733636C1 (ru) | Способ разработки залежи высоковязкой нефти и/или битума методом циклического воздействия на пласт | |
RU2386801C1 (ru) | Способ разработки месторождения высоковязкой нефти с использованием внутрипластового горения | |
RU2066744C1 (ru) | Способ интенсификации добычи нефти | |
RU2672272C2 (ru) | Способ разработки месторождений сверхвязкой нефти | |
US3465823A (en) | Recovery of oil by means of enriched gas injection | |
WO2016139498A2 (en) | Method for operating a carbonate reservoir | |
US11661829B1 (en) | Sequential injection of solvent, hot water, and polymer for improving heavy oil recovery | |
Smirnov et al. | Innovative methods of enhanced oil recovery | |
RU2499134C2 (ru) | Способ разработки залежи нефти, расположенной под газовой залежью и отделенной от нее непроницаемым пропластком |