RU2732987C1 - Устройство формирования квазипостоянного сильного магнитного поля в больших объемах - Google Patents

Устройство формирования квазипостоянного сильного магнитного поля в больших объемах Download PDF

Info

Publication number
RU2732987C1
RU2732987C1 RU2020109259A RU2020109259A RU2732987C1 RU 2732987 C1 RU2732987 C1 RU 2732987C1 RU 2020109259 A RU2020109259 A RU 2020109259A RU 2020109259 A RU2020109259 A RU 2020109259A RU 2732987 C1 RU2732987 C1 RU 2732987C1
Authority
RU
Russia
Prior art keywords
solenoid
current
circuit
magnetic field
parameters
Prior art date
Application number
RU2020109259A
Other languages
English (en)
Inventor
Алексей Александрович Тренькин
Александр Борисович Буянов
Андрей Викторович Лимонов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом"), Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ) filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2020109259A priority Critical patent/RU2732987C1/ru
Application granted granted Critical
Publication of RU2732987C1 publication Critical patent/RU2732987C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

Изобретение относится к высоковольтной импульсной технике, к сильноточной электронике, физике плазмы и может быть использовано для создания стационарных магнитных полей с напряженностями ~10 кА/м в объемах ~10 м3 в целях проведения научно-исследовательской деятельности. Техническим результатом предложенного изобретения является повышение стабильности параметров формируемого магнитного поля за счет стабилизации тока в соленоиде. Сущность изобретения: в устройстве формирования квазипостоянного сильного магнитного поля в больших объемах, содержащем последовательно соединенные источник питания и соленоид, новым является то, что источник питания выполнен в виде батареи гальванических элементов, между источником питания и соленоидом включен сильноточный коммутатор, причем параллельно выводам сильноточного коммутатора подключена схема, защищающая его от импульсного перенапряжения, также параллельно соленоиду к участку цепи между сильноточным коммутатором и соленоидом катодом подключен замыкающий диод, а между точкой присоединения катода замыкающего диода к цепи и соленоидом включена схема контроля параметров тока. 2 ил.

Description

Изобретение относится к высоковольтной импульсной технике, к сильноточной электронике, физике плазмы и может быть использовано для создания стационарных магнитных полей с напряженностями ~10 кА/м в объемах ~10 м3 в целях проведения научно-исследовательской деятельности.
Из предшествующего уровня техники известно устройство для формирования квазипостоянного магнитного поля, выполненное на основе катушек Гельмгольца диаметром ~1 м, запитываемых от источника тока небольшой мощности [1].
Основными недостатками этого устройства, обусловленными особенностями конструкции магнитной системы и источника питания являются, соответственно, резкий спад магнитной индукции в рабочем объеме за пределами катушек и ее малая величина.
Известно устройство для формирования квазипостоянного сильного магнитного поля на лабораторном стенде LAPD [2], состоящее из сегментированного соленоида диаметром ~1 м с общей длиной ~10 м и набора мощных источников питания. Каждый сегмент соленоида запитывается независимо друг друга от отдельного источника.
Электрические параметры источников и сегментов различаются друг от друга, поэтому через разные сегменты соленоида протекают отличные друг от друга токи. Неидентичность токов в сегментах соленоида отрицательно сказывается на однородности, а также на стабильности параметров формируемого устройством магнитного поля.
Наиболее близким к заявляемому устройству является устройство для формирования квазипостоянного сильного магнитного поля в составе лабораторного стенда LVPD [3]. Это устройство содержит соленоид и источник питания в виде мощного AC/DC преобразователя, питаемого от электросети.
AC/DC преобразователь выполнен на основе сильноточных тиристоров и при их работе в цепи соленоида возникают интенсивные электромагнитные помехи. Также при длительном прохождении тока соленоид разогревается и его сопротивление возрастает, в результате чего ток уменьшается и, следовательно, изменяются параметры магнитного поля в рабочем объеме соленоида. Вышеперечисленные обстоятельства негативно влияют на стабильность параметров формируемого магнитного поля.
Задачей, на решение которой направлено заявляемое изобретение, является создание устройства для формирования квазипостоянного сильного магнитного поля в больших объемах с более стабильными параметрами.
Техническим результатом предложенного изобретения является повышение стабильности параметров формируемого магнитного поля за счет стабилизации тока в соленоиде.
Технический результат достигается тем, что в устройстве формирования квазипостоянного сильного магнитного поля в больших объемах, содержащем последовательно соединенные источник питания и соленоид, новым является то, что источник питания выполнен в виде батареи гальванических элементов, между источником питания и соленоидом включен сильноточный коммутатор, причем параллельно выводам сильноточного коммутатора подключена схема, защищающая его от импульсного перенапряжения, также параллельно соленоиду к участку цепи между сильноточным коммутатором и соленоидом катодом подключен замыкающий диод, а между точкой присоединения катода замыкающего диода к цепи и соленоидом включена схема контроля параметров тока.
Использование батареи гальванических элементов обеспечивает гальваническую развязку источника питания от паразитных токовых контуров, а также исключает необходимость использования преобразовательных схем, создающих в соленоиде интенсивные электромагнитные помехи, и тем самым позволяет повысить стабильность параметров магнитного поля, формируемого устройством.
Включение в участок цепи между источником питания и соленоидом сильноточного коммутатора позволяет осуществлять подключения источника питания к соленоиду в импульсно-периодическом режиме. Благодаря этому обеспечивается работа устройства в режиме импульсной стабилизации тока в индуктивной нагрузке, что, в свою очередь, позволяет повысить стабильность параметров формируемого устройством магнитного поля.
Подключение параллельно выводам сильноточного коммутатора схемы, защищающей его от импульсного перенапряжения, позволяет гасить губительные для коммутатора выбросы напряжения, возникающие на его выводах при переключениях. Тем самым обеспечивается функционирование устройства в режиме импульсной стабилизации тока, что, как следствие, позволяет повысить стабильность параметров магнитного поля, формируемого устройством.
Диод замыкает при отключениях коммутатора, работающего в импульсно-периодическом режиме, токовый контур с соленоидом. Благодаря этому обеспечивается работа устройства в режиме стабилизации тока, что, в свою очередь, позволяет повысить стабильность параметров формируемого устройством магнитного поля.
Включение схемы контроля параметров тока позволяет автоматически измерять величину тока в соленоиде и производить переключения сильноточного коммутатора в моменты времени, точно соответствующие заданным верхней и нижней границам диапазона стабилизации тока. Тем самым обеспечивается функционирование устройства в режиме импульсной стабилизации тока, что, как следствие, позволяет повысить стабильность параметров магнитного поля, формируемого устройством.
На Фиг. 1 представлена принципиальная электрическая схема устройства, где 1 - батарея гальванических элементов (источник питания), 2 - сильноточный коммутатор, 3 - схема контроля параметров тока, 4 - соленоид, 5 - схема защиты сильноточного коммутатора от перенапряжения, 6 - замыкающий диод.
На Фиг. 2 приведена типовая осциллограмма стабилизированного тока, протекающего через соленоид.
Устройство для формирования квазипостоянного сильного магнитного поля в больших объемах (Фиг. 1) содержит батарею гальванических элементов 1, состоящую из последовательной сборки стартерных аккумуляторных батарей. Клеммой с отрицательной полярностью батарея 1 подключена к схемной «земле», а клеммой с положительной полярностью - к сильноточному коммутатору 2. С другой стороны к коммутатору 2 катодом подключен замыкающий диод 6 и формирующий магнитное поле прямолинейный соленоид 4. С другой стороны соленоид соединен с арюдом замыкающего диода 6, а также со схемной «землей». Параллельно выводам коммутатора 2 подключена схема его защиты от импульсного перенапряжения 5. Между точкой присоединения к цепи катода замыкающего диода 6 и соленоидом 4 подключена схема контроля параметров тока 3.
Устройство работает следующим образом. При подаче логического сигнала управления сильноточный коммутатор 2, выполненный на основе полупроводникового IPM IGBT-модуля («Mitsubishi» PM800HSA120), замыкается и между выводами соленоида 4 появляется напряжение источника питания 1, состоящего из 64 последовательно соединенных стартерных аккумуляторных батарей («Optima Red Тор», 12 В, 50 А⋅ч). При появлении напряжения в соленоиде 4 начинает плавно нарастать электрический ток, максимальная величина которого ограничивается активным сопротивлением соленоида 4.
Схема контроля параметров тока 3 содержит линейный датчик Холла (HASS 100-S), аналого-цифровой преобразователь (AD7105), микроконтроллер (ATmega85I5) и драйвер (74АС241). Датчик Холла измеряет величину тока в соленоиде 4 и формирует соответствующий данной величине тока слаботочный аналоговый сигнал, который посредством аналого-цифрового преобразователя трансформируется в цифровой код. Далее цифровой код транслируется на микроконтроллер, который сравнивает его с кодами, соответствующими токам верхней и нижней границ предварительно заданного диапазона стабилизации тока. При достижении верхней границы диапазона стабилизации микроконтроллер через драйвер, усиливающий сигналы управления, выдает команду сильноточному коммутатору 2 на размыкание. При этом источник питания 1 отключается от соленоида 4, и ток начинает плавно спадать до нижней границы диапазона стабилизации. По достижению нижней границы микроконтроллер схемы контроля параметров тока 3 выдает команду на включение, коммутатор 2 замыкается, и ток в соленоиде 4 снова начинает плавно возрастать. Плавность нарастания и спада тока обеспечивается индуктивностью соленоида 4. Диодом 6 («Mitsubishi» RM400HA-34S) обеспечивается замкнутый токовый путь «схема контроля параметров тока 3 - соленоид 4 -диод 6» при разомкнутом коммутаторе.
Из-за наличия магнитной энергии, накапливаемой на паразитных индуктивностях подводящих проводов, на выводах коммутатора 2 при его переключениях возникают высоковольтные выбросы напряжения, губительные для полупроводникового IGBT-модуля. Схема защиты 5, выполненная в виде последовательной сборки из четырех параллельно соединенных конденсаторов (EPCOS B32656-S7105-K500, 1250 В) с суммарной емкостью 4 мкФ и резистора с сопротивлением 1 Ом (ТВО-60), поглощает энергию паразитных индуктивностей и тем самым снижает амплитуду выбросов напряжения до допустимого уровня.
Функционирование сильноточного коммутатора 2 в импульсно-периодическом режиме позволяет получать в соленоиде 4 стабилизированный ток и, соответственно, магнитное поле со стабилизированными параметрами. Границы диапазона стабилизации тока регулируются посредством изменения интервалов времени между переключениями сильноточного коммутатора 2.
Также следует отметить, что за счет использования стартерных аккумуляторных батарей, имеющих большой энергозапас, выходные параметры источника питания 1 в процессе импульсно-периодической работы сильноточного коммутатора 2 практически неизменны.
В примере конкретного исполнения на предприятии ФГУП «РФЯЦ-ВНИИЭФ» при проведении экспериментальной деятельности посредством заявляемого устройства в соленоиде длинной 7 м и диаметром ≈1,5 м многократно формировалось стабилизированное квазипостоянное магнитное поле с индукцией ~0,1 Тл для замагничивания низкотемпературной гелиевой плазмы. Величина стабилизированного тока в соленоиде составляла ~200 А (Фиг. 2). Как правило, в опытах ширина диапазона стабилизации составляла два процента от величины формируемого в соленоиде тока. При этом происходило несколько десятков переключений силового коммутатора, в которых выбросы напряжения были ниже предельно допустимого уровня в 400 В и составляли ≈100 В.
Источники информации:
[1] Garima Joshi, G. Ravi, S. Mukherjee Pramana - J. Phys. (2018) 90:79.
[2] Gekelman W., Pfister H., Lucky Z., Bamber J., Leneman D., Maggs 3. Rev. Sci. Instrum. 1991,62 (12), p. 2875.
[3] S.K. Mattoo, V.P. Anitha, L.M. Awasthi, G. Ravi J. Rev. Sci. Instrum. 2001, 72 (10), p. 3864.

Claims (1)

  1. Устройство формирования квазипостоянного сильного магнитного поля в больших объемах, содержащее последовательно соединенные источник питания и соленоид, отличающееся тем, что источник питания выполнен в виде батареи гальванических элементов, между источником питания и соленоидом включен сильноточный коммутатор, причем параллельно выводам сильноточного коммутатора подключена схема, защищающая его от импульсного перенапряжения, также параллельно соленоиду к участку цепи между сильноточным коммутатором и соленоидом катодом подключен замыкающий диод, а между точкой присоединения катода замыкающего диода к цепи и соленоидом включена схема контроля параметров тока.
RU2020109259A 2020-03-02 2020-03-02 Устройство формирования квазипостоянного сильного магнитного поля в больших объемах RU2732987C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020109259A RU2732987C1 (ru) 2020-03-02 2020-03-02 Устройство формирования квазипостоянного сильного магнитного поля в больших объемах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020109259A RU2732987C1 (ru) 2020-03-02 2020-03-02 Устройство формирования квазипостоянного сильного магнитного поля в больших объемах

Publications (1)

Publication Number Publication Date
RU2732987C1 true RU2732987C1 (ru) 2020-09-28

Family

ID=72926797

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020109259A RU2732987C1 (ru) 2020-03-02 2020-03-02 Устройство формирования квазипостоянного сильного магнитного поля в больших объемах

Country Status (1)

Country Link
RU (1) RU2732987C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2056082A (en) * 1979-08-10 1981-03-11 Emi Ltd Nuclear magnetic logging
US6326784B1 (en) * 1998-11-05 2001-12-04 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution using gradient coils
RU2269823C1 (ru) * 2004-10-11 2006-02-10 Военно-космическая академия им. А.Ф. Можайского Установка для исследования вихревого электрического поля
RU2351959C1 (ru) * 2007-07-02 2009-04-10 Общество с Ограниченной Ответственностью "ТНГ-Групп" Способ ядерно-магнитного каротажа и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2056082A (en) * 1979-08-10 1981-03-11 Emi Ltd Nuclear magnetic logging
US6326784B1 (en) * 1998-11-05 2001-12-04 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution using gradient coils
RU2269823C1 (ru) * 2004-10-11 2006-02-10 Военно-космическая академия им. А.Ф. Можайского Установка для исследования вихревого электрического поля
RU2351959C1 (ru) * 2007-07-02 2009-04-10 Общество с Ограниченной Ответственностью "ТНГ-Групп" Способ ядерно-магнитного каротажа и устройство для его осуществления

Similar Documents

Publication Publication Date Title
Wu et al. Repetitive and high voltage Marx generator using solid-state devices
US7898114B2 (en) Protective circuit device for a solar module
WO2018006769A1 (zh) 迟滞型电源电路
Redondo et al. Flyback versus forward switching power supply topologies for unipolar pulsed-power applications
CN104980133B (zh) 过驱动发射极开关的双极性结型晶体管的基极电流的方法和相应电路
Wang et al. A novel repetitive high-voltage resonant pulse generator for plasma-assisted milling
RU2732987C1 (ru) Устройство формирования квазипостоянного сильного магнитного поля в больших объемах
Korotkov et al. Microsecond range RSD-based generators for pulse power technologies
RU2398347C1 (ru) Формирователь импульсов энергии с регулируемой формой
Nayak et al. Analysis of switching loss reduction of SiC MOSFET in presence of antiparallel SiC schottky diode
KR101220910B1 (ko) 병렬형 능동 스위칭 소자를 구비한 영전압 방전회로
US7489052B2 (en) High voltage pulse generating circuit
US6633093B1 (en) High voltage pulse generator using a non-linear capacitor
KR101197078B1 (ko) 능동 스위칭 소자를 구비한 영전압 방전회로 장치
Perez et al. Marx generators based on MOS-gated switches with magnetic assist for accelerator applications
Sack et al. Auxiliary Power Supply for a Semiconductor-based Marx Generator
Baek et al. High voltage pulse generator using boost converter array
Busquets-Monge et al. Performance analysis and design optimization of a self-powered gate-driver supply circuit
JP2023038969A (ja) 高圧電源装置
Urabe et al. Power loss analysis of tapped-inductor buck converter for home DC power supply system
JP4516308B2 (ja) パルス発生装置
Korotkov et al. High-voltage diode-dynistor switches of high-power alternating current pulses
JP2004220985A (ja) プラズマ処理装置及びプラズマ処理方法
Perez et al. MOS-GATED THYRISTOR BASED MARX GENERATOR FOR ACCELER-ATOR APPLICATIONS
Redondo et al. Resonant converter topology for the new ISOLDE/CERN modulator