RU2732881C1 - Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина - Google Patents

Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина Download PDF

Info

Publication number
RU2732881C1
RU2732881C1 RU2020115822A RU2020115822A RU2732881C1 RU 2732881 C1 RU2732881 C1 RU 2732881C1 RU 2020115822 A RU2020115822 A RU 2020115822A RU 2020115822 A RU2020115822 A RU 2020115822A RU 2732881 C1 RU2732881 C1 RU 2732881C1
Authority
RU
Russia
Prior art keywords
phospholipase
alkaline
mononuclear cells
activity
germatran
Prior art date
Application number
RU2020115822A
Other languages
English (en)
Inventor
Ризо Максудович Расулов
Виктор Петрович Барышок
Ирина Валентиновна Жигачёва
Павел Аркадьевич Стороженко
Максуд Мухамеджанович Расулов
Андрей Рудольфович Евстигнеев
Ива Глебовна Воробьева
Татьяна Ивановна Никифорова
Ольга Даниаловна Лебедева
Original Assignee
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр реабилитации и курортологии» Министерства здравоохранения Российской Федерации (ФГБУ «НМИЦ РК» Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр реабилитации и курортологии» Министерства здравоохранения Российской Федерации (ФГБУ «НМИЦ РК» Минздрава России) filed Critical Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр реабилитации и курортологии» Министерства здравоохранения Российской Федерации (ФГБУ «НМИЦ РК» Минздрава России)
Priority to RU2020115822A priority Critical patent/RU2732881C1/ru
Application granted granted Critical
Publication of RU2732881C1 publication Critical patent/RU2732881C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к медицине и касается способа угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров, включающего введение животному лекарственного средства, где в качестве такого средства используют композицию, содержащую 1-(герматран-1-ил)-1-оксиэтиламина и фармацевтически приемлемый водный носитель, которую вводят животному внутримышечно в дозе 10 мг активного вещества/кг ежедневно в течение 2 месяцев. Изобретение обеспечивает угнетение суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров. 3 з.п. ф-лы, 1 пр., 2 табл.

Description

Изобретение относится к биохимии германийорганических соединений и касается биологически активного вещества 1-(герматран-1-ил)-1-оксиэтиламина, имеющего формулу:
Figure 00000001
(соединение I). Изобретение также относится к медицине, фармакологии и биологии и, конкретно, может быть использовано, например, для повышения устойчивости сосудистой системы к холестерину при развитии атеросклеротического процесса.
В последнее время доказано участие в атерогенезе лизосомальных липолитических ферментов, ответственных за деградацию липидных компонентов липопротеидов (ЛП). Определено их участие в механизме нарушений обмена липидов и липопротеидов при атеросклерозе, выявлена взаимосвязь между степенью изменений их активности в мононуклеарах крови, уровнем липидов крови и коэффициентом атерогенности [см. Серебров В.Ю., Балашов П.П., Шарыпова Н.Г. Исследование активности фосфолипаз плазматических мембран лимфоцитов при абстинентном синдроме у больных опийной наркоманией: // Сб. науч. трудов Сиб. Мед. Универ. (Томск). Актуальные проблемы биологии; - 2004. - Т. 3. - С. 209; Mallat Z, Benessiano J, Simon T, et al. Circulating secretory phospholipase A2 activity and risk of incident coronary events in healthy men and women: The EPIC-NORFOLK Study. // Arterioscler. Thromb. Vasc. Biol. - 2007; - V. 27: - P.1177-83].
Развитие атеросклероза связано с патологическими процессами в эндотелии сосудов. На раннем этапе атерогенеза активируется эндотелий, который экспрессирует на своей поверхности адгезионные молекулы для моноцитов (Мц), нейтрофилов и лейкоцитов крови и продуцирует хемоаттрактанты, привлекающие Мц в интиму сосудов. Мц, мигрирующие в субэндотелиальное пространство, дифференцируются в макрофаги, которые выступают как катализаторы образования окисленных липопротеидов низкой плотности (ЛНП), миграции и пролиферации гладкомышечных клеток из мышечной оболочки в интиму. Частицы модифицированных ЛНП захватываются макрофагами, которые трансформируются в пенистые клетки. Активированные макрофаги, продуцирующие металлопротеиназы и коллагеназу, способствуют распаду коллагена в бляшке и возникновению разрыва бляшки, образованию тромба и развитию инфаркта миокарда. Следовательно, макрофаги играют ключевую роль в развитии атеросклеротических повреждений [см. Душкин М.И. Макрофаги и атеросклероз: патофизиологические и терапевтические аспекты // Бюлл. СО РАМН (2006); №2 (120), с. 47-55]. В этом плане заслуживают внимания исследования средств, изменяющих активность гидролаз Мц, в частности фосфолипазы А2 (ФЛА2) (КФ 3.1.1.14) – лизосомального липолитического фермента класса гидролаз, имеющей оптимум действия при щелочных значениях рН, участвующего в атерогенезе, что обусловлено его участием в метаболизме липидов клеточных мембран, процессах перекисного окисления липидов (ПОЛ), синтезе эйкозаноидов и др. [см. Ji Huang, Hai-Yan Qian, Zhi-Zhong Li,. et al. Role of endothelial lipase in atherosclerosis // Translational Research, - 2010, vol. 156, Issue 1. - P. 1-6; Бельков В.В. С-реактивный белок и липопротеин-ассоциированная фосфолипаза А2: новые факты и новые возможности для диагностики и стратификации сердечно-сосудистых рисков // Ж. «Поликлиника» - 2010 - №1. - С. 18-21]. Следовательно, изменение активности ФЛА2 под влиянием тех или иных средств может служить критерием эффективности антиатеросклеротических препаратов. При этом существует потребность в поиске и внедрении в практику новых диагностических и лекарственных средств, обладающих указанной активностью.
Известно, что некоторые герматраны обладают адаптогенным действием [cм. Жигачёва И.В., Бинюков В.И., Миль Е.М., Генерозова И.П., Расулов М.М. Влияние германийорганического соединения на функциональное состояние митохондрий растительного и животного происхождения // Научный альманах (Биологические науки) 2015, N 7(9), 955-966]. Органические соединения германия обладают биологической активностью (см. кн. - Лукевиц Э.Я. и др. Биологическая активность соединений германия. Рига: Зинатне, 1990, стр.981). Содержащие германий органические полимеры эффективны при лечении психоневрологических нарушений (патент США 4281015, 1981 г., МПК А61К 31/28), офтальмологических расстройств (патент США 4296123, 1981 г., МПК А61К 31/28), нарушений функций печени (патент США 4309412, 1982 г., МПК А61К 31/74), фиброза легких (патент США 4321273, 1982 г., МПК А61К 31/28), аллергических заболеваний (патент США 4322402, 1982 г., МПК А61К 31/74) и гепатита (патент США 5340806, 1994 г., МПК А61К 31/79). Также они способствуют выработке интерферона в организме (патент США 4473581, 1984 г., МПК А61К 31/28) и защищают его от простуды (патент США 4898882, 1990 г., МПК А61К 31/28). Моногидрат 1-гидроксигерматрана обладает цитокинной активностью в отношении триптофанил-тРНК синтетазы (патент РФ № 2553986, 2015 г., МПК А61К 31/205).
В настоящее время существует необходимость поиска новых эффективных препаратов, обеспечивающих торможение атерогенеза.
В качестве средства, понижающего общую активность основной (щелочной) фосфолипазы А 2 , предлагается использовать синтезированное ранее [см. Воронков М.Г., Адамович С.Н., Мирсков Р.Г., Мирскова А.Н. Синтез новых биологически активных О гидрометаллоатранов // ЖОХ, 2009, т. 79, №1, С. 162-163] биологически активное соединение - 1-(герматран-1-ил)-1-оксиэтиламин, имеющее формулу:
Figure 00000001
и вид:
Figure 00000002
В качестве ближайшего аналога может быть указан источник: М.И. Яхкинд, М.Г. Воронков, М.И. Сусова, М.К. Нурбеков, М.М. Расулов, К.А. Абзаева, Р.М. Расулов. Применение протатран 4-хлор-2-метил-феноксиацетата для угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров // Патент на изобретение RU №2619860 от 15.04.2016.
Хлоркрезацин (аналог) или: протатран 4-хлор-2-метилфеноксиацетат, имеет формулу:
4-Cl-2-CH 3 C 6 H 3 OCH 2 COO - [NH(CH 2 CH 2 OH) 3 ] + ,
и вид:
Figure 00000003
Задачей изобретения является разработка нового средства, которое возможно применить для понижения общей активности основной фосфолипазы А2 мононуклеаров.
Технический результат – расширение арсенала способов воздействия на активность основной (щелочной) фосфолипазы А2 мононуклеаров путем применения средства - 1-(герматран-1-ил)-1-оксиэтиламина, за счет его новой выявленной биологической активности, а именно, способности снижать суммарную активность основной (щелочной) фосфолипазы А2 мононуклеаров.
Предлагается способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров, включающий введение композиции, которая содержит 1-(герматран-1-ил)-1-оксиэтиламин в качестве активного вещества, а также фармацевтически приемлемый водный носитель, экспериментальному животному внутримышечно ежедневно в течение 2 месяцев в дозе активного вещества 10 мг/кг массы животного.
При этом в качестве фармацевтически приемлемого водного носителя предлагается использование официальной дистиллированной воды, воды для инъекций или официального физиологического раствора – 0,9% раствора натрия хлорида.
При этом раствор готовится «ex tempore» и может содержать 5-20 мас.% 1-(герматран-1-ил)-1-оксиэтиламина.
Заявляемая биологическая активность 1-(герматран-1-ил)-1-оксиэтил-амина в отношении щелочной ФЛА2 не была известна.
Свойство 1-(герматран-1-ил)-1-оксиэтиламина снижать общую (суммарную) активность основной (щелочной) фосфолипазы A2 в литературе не описано.
Применение 1-(герматран-1-ил)-1-оксиэтиламина по новому назначению стало возможным благодаря нами выявленным его новым свойствам.
Впервые показано, что введение 1-(герматран-1-ил)-1-оксиэтиламина снижает активность лизосомального липолитического фермента из класса гидролаз (КФ 3.1.1): ФЛА2.
Заявляемое изобретение относится к приоритетному направлению развития науки и технологий «Биомедицинские и ветеринарные технологии жизнеобеспечения и защиты человека и животных» [см. Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов – М.: ПАТЕНТ, 2008. – с.15].
При разработке изобретения авторы использовали различные растворители для получения средства для воздействия на активность основной (щелочной) ФЛА2 мононуклеаров. Были испытаны различные растворы на водной основе, в частности раствор вышеуказанного активного вещества в воде для инъекций и в официальном 0,9% растворе натрия хлорида. При этом в том и в другом случае были получены аналогичные результаты. Следует отметить, что нами исследовались полученные таким образом растворы с различной концентрацией активного вещества – 1-(герматран-1-ил)-1-оксиэтиламина (5%, 10%, 20%, 50%, 70%). При этом положительные эффекты от их использования, отмеченные ниже, значимо не различались. В исследованиях использовали различные дозы активного вещества: от 0,1 мг/кг до 20 мг/кг массы животного. Эффект угнетения активности фермента ФЛА2 присутствовал во всех случаях и был прямо пропорционален дозе используемого активного вещества. Соответственно, для достижения указанного нами технического результата важным является как таковое новое свойство данного соединения, а не его доза. Поэтому ниже, в примере, приведен для демонстрации только опыт с использованием активного вещества в дозе 10 мг/кг ежедневно. В данном случае применяли раствор активного вещества, который приготовляли ex tempore, используя воду для инъекций, смешивая с нею активное вещество.
Возможность осуществления изобретения может быть проиллюстрирована следующим примером.
Пример.
Исследование проводили на кроликах Шиншилла с исходной массой 1,8-2,0 кг в соответствии с «Правилами лабораторной практики в Российской Федерации». Правила утверждены приказом Министерства здравоохранения РФ от 19.06.2003 г №267 (Правила лабораторной практики в Российской Федерации Министерства здравоохранения РФ Приказ от 19 июня 2003 года № 267 http://www.kodeks.ru (24 апреля 2010г.)). Животных содержали в соответствии с правилами Европейской конвенции по защите позвоночных животных, используемыми для экспериментальных и иных научных целей. По окончании эксперимента животным проводили эвтаназию цервикальной дислокацией 5 позвонка, соблюдая правила «Европейской конвенции о защите позвоночных животных, которые используются для экспериментальных и других научных целей» (Страсбург, 1986).
Гиперлипидемию у кроликов вызывали методом Аничкова-Халатова.
Испытуемые вещества для инъекций растворяли «ex tempore» в официальной дистиллированной воде, воде для инъекций.
Кроликов разделяли на следующие группы (по 10 голов):
1) группа опыта, которым вводили внутримышечно ежедневно свежеприготовленный водный раствор 1-(герматран-1-ил)-1-оксиэтиламина, доза активного вещества 10 мг/кг веса животного, в течение 2 месяцев.
2) группа плацебо – контроля, которым вводили внутримышечно ежедневно эквиобъёмное количество официального 0,9% раствора натрия хлорида в течение 2 месяцев.
3) группа, получавшие внутримышечно свежеприготовленный водный раствор аналога – хлоркрезацина в дозе 10 мг/кг в течение 2 месяцев.
Эталоном служили данные, полученные у интактных кроликов.
В конце экспериментов в крови животных стандартными методами определяли содержание липидов, триацилглицеринов, β-липопротеинов и холестерина.
Мононуклеары (моноциты – Мц) выделяли из крови путем последовательного центрифугирования в градиенте фикол-верографин [см. Gmelig - Meyling F., Waldman T.A. Separation of human blood monocytes and lymphocytes on a continuous percoll gradient // J. Immunol. Method. - 1980. -Vol. 26. - P. 603-308. Гепаринизированную кровь разводили 0,9% официальным раствором натрия хлорида в соотношении 1:1 и осторожно наслаивали раствор фикола с 76% верографином, центрифугировали 45 мин. После центрифугирования отбирали Мц и вновь центрифугировали их 30 мин при 1200 g. Полученные в виде осадка Мц троекратно отмывали физиологическим раствором в соотношении 5:1 центрифугируя по 10 мин при 1200 g. Осадок гомогенизировали в 2 мл 0,25М раствора сахарозы pH 7,4 с 0,001М ЭДТА. Активность ФЛА2 определяли радиометрическим методом [см. Stoffel. W., Trabert. U. Studies on the occerence and proparties of lisosomal phospholipases Al and A2 and the degradation of posphatidie acid in rat liver lysosomes // Hoppe-Seyler's Z. Fhysiol. Chem. - 1969. - Bd/ 350. - S. 836-844] с использованием в качестве субстрата синтезированного ранее 1-ацил-2(13-Н) арахидоноил-глицеро-3sn-фосфорилхолина [см. Robertson A.F., Lends W.E.M. Positional specificities in phospholipid hydrolises // Biochemistry (Wash.). - 1962. - Vol.1. - P. 804-810]. Инкубационная смесь содержала 150 нмолей меченого лецитина, 8 ммоль CaCl 2 при pH 8,0 и источник ферментов (исследуемые Мц) в конечном объеме 1,3 мл. Инкубацию проводили на водяной вибробане в течение 30 мин при 37°C. Реакцию останавливали добавлением 3 мл смеси хлороформ: метанол (1:2 об/об) и немедленно экстрагировали по методу Клайера и Дайера. Продукты реакции разделяли тонкослойной хроматографией в закрепленном слое силикагеля («Chemapol») на стеклянных пластинах размером 20×20 см в системе растворителей хлороформ: метанол:вода (65:25:4). Фракции лизолецитина, лецитина и жирных кислот экстрагировали смесью хлороформ:метанол (1:2 об/об). Экстракты помещали во флаконы с 10 мл сцинциляционной жидкости, содержащей в 100 мл толуола особой чистоты 5 г 2,5-дифенилоксазола и 300 мг 1,4-бис-(5-фенилоксазолил-2)-бензола. Радиоактивность измеряли на сцинцилляционном счетчике «Rackbeta 1215» ЛКБ (Швеция). Об активности ФЛА2 судили по образованию меченой жирной кислоты, получившейся в результате воздействия этих ферментов на 1-ацил-2(13-H)-арахидонил-глицеро-3sn-фосфорилхолин.
Активность ФЛА2 выражали в микромолях образовавшихся продуктов в минуту на 1 г белка.
Статистическую обработку данных проводили методом Стьюдента. Данные представляли в виде средних и стандартных значений ошибки – М и m, соответственно. Достоверными считали различия при р ≤ 0,05 (см. Петри А., Сэбин К., 2009].
Результаты.
Выявлено, что при применении 1-(герматран-1-ил)-1-оксиэтиламина в виде раствора в Мц снижается уровень холестерола и общих липидов (таблица 1).
Результаты ферментативного анализа, представленные в таблице 2, свидетельствуют, что развитие атеросклероза сопровождается значительным увеличением суммарной активности ФЛА2 в Мц по сравнению с эталоном. При введении 1-(герматран-1-ил)-1-оксиэтиламина достоверно снижается активность ФЛА2 в Мн по сравнению с контролем, как и при применении аналога – хлоркрезацина.
Активацию лизосомального липолиза можно рассматривать как компенсаторную реакцию ферментных систем на фоне преобладания неспецифического нерегулируемого эндоцитоза модифицированных ЛНП или надмолекулярных ЛНП-содержащих комплексов. При этом в условиях субстратного насыщения может возникнуть относительная недостаточность отдельных лизосомальных ферментов, в частности ФЛА2. ФЛА2 секретируется в виде профермента, и для ее активации требуется гидролиз специфических пептидных связей. Для проявления каталитической активности ФЛА 2 необходим Ca 2+ в миллимолярных концентрациях. ФЛА 2 имеет ключевое значение в продукции провоспалительных медиаторов – арахидоновой кислоты (АрК) и эйкозаноидов. Все метаболиты АрК называются эйкозаноидами. АрК образуется из фосфолипидов мембраны клеток (лейкоциты, тромбоциты).
Существует два основных пути метаболизма АрК – циклоксигеназный и липоксигеназный. Конечными продуктами циклоксигеназного пути являются простагландины и тромбоксаны, а липоксигеназного – гидроксиэйкозатетраеновая кислота и лейкотриены. Помимо циклооксигеназы и липоксигеназы, выявлен третий фермент – эпоксигеназа, который окисляет АрК в эпоксиэйкозатриеновую кислоту и дигидроксиэйкозатриеновую кислоту. Высвобождение АрК происходит преимущественно через активацию ФЛА 2 , а фосфатидилхолин является первичным субстратом. ФЛА 2 принимает участие в многочисленных физиологических процессах, включая иммунные реакции, воспаление, пролиферацию, вазо- и бронхоконстрикцию [см. Zhao Y, Tong J, Не D, et all. Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma // Am. J. Respir. Crit. Care Med. - 2009. - Nov. 20, - p. 10-11].
Таким образом, применение химического соединения - 1-(герматран-1-ил)-1-оксиэтиламина в водном растворе приводит к достоверному снижению общей активности основной (щелочной) фосфолипазы А 2 мононуклеаров (Мн).
В связи с этим изобретение позволит создать на основе 1-(герматран-1-ил)-1-оксиэтиламина новые фармакологические препараты для предотвращения нарушений липидного обмена.
Таблица 1
Показатели липидного обмена при применении 1-(герматран-1-ил)-1-оксиэтиламина в дозе 10 мг/кг в виде водного раствора
Показатели Сыворотка крови
Эталон - интактные
Липиды общие (моль/л) 4,3±0,4
Холестерол (моль/л) 3,5±0,3
Триацилглицерины (моль/л) 1,7±0,2
β-липопротеины (моль/л) 0,78±0,09
Контроль – нелеченые
Липиды общие (моль/л) 72,4±4,9 **
Холестерол (моль/л) 34,5±1,9 **
Триацилглицерины (моль/л) 16,2±2,1 **
β-липопротеины (моль/л) 3,8±0,3 **
Аналог – хлоркрезацин 10 мг/кг
Липиды общие (моль/л) 42,5±3,3* **
Холестерол (моль/л) 23,2±1,5* **
Триацилглицерины (моль/л) 8,2±0,7* **
β-липопротеины (моль/л) 1,6±0,2* **
Опыт – 1-(герматран-1-ил)-1-оксиэтиламин в дозе 10 мг/кг
Липиды общие (моль/л) 31,5±2,1* **
Холестерол (моль/л) 19,1±0,9* **
Триацилглицерины (моль/л) 6,6±0,35* **
β-липопротеины (моль/л) 0,92±0,09* **
Примечание : * - p<0.05 по отношению к контролю;
** - p<0.05 по отношению к эталону.
Таблица 2
Изменения активности ФЛА2 в моноцитах кроликов (мкмоль/мин на 1 г белка) при применении 1-(герматран-1-ил)-1-оксиэтиламина в дозе 10 мг/кг, в водном растворе
Объект эталон контроль Хлоркрезацин Опыт
Моноциты 1,85±0,03* 3,1±0,1** 1,98±0,21* ** 1,89±0,09* **
Примечание : * - p<0.05 по отношению к контролю;
** - p<0.05 по отношению к эталону.

Claims (4)

1. Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров, включающий введение животному лекарственного средства, отличающийся тем, что в качестве такого средства используют композицию, содержащую 1-(герматран-1-ил)-1-оксиэтиламина и фармацевтически приемлемый водный носитель, которую вводят животному внутримышечно в дозе 10 мг активного вещества/кг ежедневно в течение 2 месяцев.
2. Способ по п. 1, отличающийся тем, что используют композицию, полученную extempore смешиванием 1-(герматран-1-ил)-1-оксиэтиламина и фармацевтически приемлемого водного носителя.
3. Способ по п. 1, отличающийся тем, что в качестве водного носителя используют воду для инъекций или физиологический раствор натрия хлорида.
4. Способ по любому из пп. 1, или 2, или 3, отличающийся тем, что композиция может содержать 5-20 мас.% 1-(герматран-1-ил)-1-оксиэтиламина.
RU2020115822A 2020-05-14 2020-05-14 Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина RU2732881C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020115822A RU2732881C1 (ru) 2020-05-14 2020-05-14 Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020115822A RU2732881C1 (ru) 2020-05-14 2020-05-14 Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина

Publications (1)

Publication Number Publication Date
RU2732881C1 true RU2732881C1 (ru) 2020-09-24

Family

ID=72922310

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020115822A RU2732881C1 (ru) 2020-05-14 2020-05-14 Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина

Country Status (1)

Country Link
RU (1) RU2732881C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039706A (en) * 1987-11-30 1991-08-13 Du Pont Merck Pharmaceutical Company Antiinflammatory PLA2 inhibitors
US20020035060A1 (en) * 1995-03-07 2002-03-21 Steven R. Patierno Pharmaceutical compositions, methods, and kits for treatment and diagnosis of lung cancer
RU2619860C1 (ru) * 2016-04-15 2017-05-18 Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук Применение протатран 4-хлор-2-метилфеноксиацетата для угнетения суммарной активности основной (щелочной) фосфолипазы а2 мононуклеаров

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039706A (en) * 1987-11-30 1991-08-13 Du Pont Merck Pharmaceutical Company Antiinflammatory PLA2 inhibitors
US20020035060A1 (en) * 1995-03-07 2002-03-21 Steven R. Patierno Pharmaceutical compositions, methods, and kits for treatment and diagnosis of lung cancer
RU2619860C1 (ru) * 2016-04-15 2017-05-18 Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук Применение протатран 4-хлор-2-метилфеноксиацетата для угнетения суммарной активности основной (щелочной) фосфолипазы а2 мононуклеаров

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM Y-S., et al., Effect of cytosolic phospholipase A2 on proinflammatory cytokine-induced bone resorptive genes including receptor activator of nuclear factor kappa B ligand in human dental pulp cells. J Endod. 2010 Apr;36(4):636-41.doi: 10.1016/j.joen.2009.12.009. *
ЖИГАЧЕВА И. В. Функциональное состояние митохондрий проростков гороха в условиях дефицита воды и обработки фосфорорганическим, германийорганическим соединениями и производным 5-гидроксибензимидазола / И. В. Жигачева, В. И. Бинюков, Е. М. Миль // Вiсник Харкiвського нацiонального аграрного унiверситету. Серiя : Бiологiя. - 2017. - Вип. 1. - С. 69-80 *
ЖИГАЧЕВА И. В. Функциональное состояние митохондрий проростков гороха в условиях дефицита воды и обработки фосфорорганическим, германийорганическим соединениями и производным 5-гидроксибензимидазола / И. В. Жигачева, В. И. Бинюков, Е. М. Миль // Вiсник Харкiвського нацiонального аграрного унiверситету. Серiя : Бiологiя. - 2017. - Вип. 1. - С. 69-80. *

Similar Documents

Publication Publication Date Title
RU2732883C1 (ru) Применение 1-(герматран-1-ил)-1-оксиэтиламина для угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров
Arora et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat
Potts et al. Phospholipase A2 inhibitors from marine organisms
Machy et al. Small liposomes are better than large liposomes for specific drug delivery in vitro
Elias et al. Skin barrier
Petrosino et al. Protective role of palmitoylethanolamide in contact allergic dermatitis
US5620962A (en) Anti-inflammatory compositions containing monogalactosyl dieicosapentaenoyl glycerol and methods of relating thereto
RU2619860C1 (ru) Применение протатран 4-хлор-2-метилфеноксиацетата для угнетения суммарной активности основной (щелочной) фосфолипазы а2 мононуклеаров
Svensson et al. Spinal phospholipase A2 in inflammatory hyperalgesia: role of the small, secretory phospholipase A2
JP2009520730A (ja) アレルギー性疾患を治療および予防するための手段および方法
RU2733166C1 (ru) Применение бис(μ-тартрато)ди(μ-гидроксо) германата (IV) триэтаноламмония для угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров
Hurst et al. Differential effects of mepacrine, chloroquine and hydroxychloroquine on superoxide anion generation, phospholipid methylation and arachidonic acid release by human blood monocytes
EA018246B1 (ru) Везикулярные составы, содержащие производные органических кислот, и процесс их приготовления
RU2732881C1 (ru) Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью 1-(герматран-1-ил)-1-оксиэтиламина
Yanoshita et al. Hydrolysis of platelet activating factor and its methylated analogs by acetylhydrolases
RU2732880C1 (ru) Способ угнетения суммарной активности основной (щелочной) фосфолипазы А2 мононуклеаров с помощью бис(µ-тартрато)ди(µ-гидроксо) германата (IV) триэтаноламмония
Mahmoudi et al. Effect of diabetes on efferocytosis process
Haughey et al. A biological perspective of CSF lipids as surrogate markers for cognitive status in HIV
US5602094A (en) Treatment of tumors
Kaplan-Harris et al. The antiinflammatory activity of analogs of indomethacin correlates with their inhibitory effects on phospholipase A2 of rabbit polymorphonuclear leukocytes
RU2545888C1 (ru) Применение комплекса-трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом) цинка (цинкатрана) для снижения общей активности кислой фосфолипазы а1
Marone et al. Pharmacological modulation of human mast cells and basophils.
US20050159334A1 (en) Method for treating rheumatoid arthritis by inhibiting peptidylarginine deiminase
RU2741906C1 (ru) Способ коррекции атерогенеза в эксперименте с помощью 1-(герматран-1-ил)-1-оксиэтиламина
RU2746321C1 (ru) Применение 1-(герматран-1-ил)-1-оксиэтиламина для торможения развития атеросклероза в эксперименте