RU2727557C1 - Способ изготовления функционального элемента полупроводникового прибора - Google Patents

Способ изготовления функционального элемента полупроводникового прибора Download PDF

Info

Publication number
RU2727557C1
RU2727557C1 RU2019142791A RU2019142791A RU2727557C1 RU 2727557 C1 RU2727557 C1 RU 2727557C1 RU 2019142791 A RU2019142791 A RU 2019142791A RU 2019142791 A RU2019142791 A RU 2019142791A RU 2727557 C1 RU2727557 C1 RU 2727557C1
Authority
RU
Russia
Prior art keywords
carbon
silicon
diamond
silicon carbide
atoms
Prior art date
Application number
RU2019142791A
Other languages
English (en)
Inventor
Сергей Арсеньевич Кукушкин
Андрей Викторович Осипов
Николай Александрович Феоктистов
Original Assignee
Общество с ограниченной ответственностью "Научно-технический центр "Новые технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-технический центр "Новые технологии" filed Critical Общество с ограниченной ответственностью "Научно-технический центр "Новые технологии"
Priority to RU2019142791A priority Critical patent/RU2727557C1/ru
Application granted granted Critical
Publication of RU2727557C1 publication Critical patent/RU2727557C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition

Abstract

Способ изготовления функционального элемента полупроводникового прибора осуществляется в вакуумной печи в два этапа, на первом из которых осуществляют нагрев основы до температуры 950-1400°С и синтез пленки карбида кремния на ее поверхности в газовой среде, представляющей собой оксид или диоксид углерода или смесь оксида или диоксида углерода с инертным газом и/или азотом (и/или силаном) при давлении 20-600 Па. На втором этапе в вакуумной печи в среде тетрафторида углерода при температуре 1300-1400°С и давлении 2500-6000 Па из полученной пленки карбида кремния формируют нанопленку углерода с кристаллической решеткой алмазного типа путем согласованного замещения атомов вплоть до полного замещения атомов кремния на атомы углерода в полученной на первом этапе пленке карбида кремния. Наилучший результат достигается, когда в качестве основы применяют кремний ориентации (111). Достигаемый технический результат - получение впервые на подложке (основе) из кремния углеродного нанокристаллического материала с кристаллической структурой алмазного типа высокого качества за счет сохранения алмазоподобного типа кристаллической решетки при конверсии Si→SiC→С. 1 з.п. ф-лы, 5 ил.

Description

Заявляемое изобретение относится к новому классу полупроводниковых приборов и может быть использовано в микро-, нано- и оптоэлектронике.
Основным направлением развития полупроводниковой техники является подбор материалов основания (подложки) и наращиваемых на нем эпитаксиальных пленок, определяющих свойства полупроводниковых приборов, а также решение проблемы согласования кристаллических решеток.
Одним из факторов, ограничивающих работу мощных электронных устройств, является теплопроводность материала. Известно, что алмаз и алмазоподобные углеродные материалы обладают феноменально высокой теплопроводностью, составляющей 20-33 Вт/смК. Для сравнения: у кремния, который является основным материалом, используемым до настоящего времени в полупроводниковых разработках, теплопроводность равна 1.5 Вт/смК. Кроме того, углерод с кристаллической решеткой алмазного типа (т.е. с преимущественной sp3-гибридизацией) прозрачен в широком диапазоне спектра, является радиационно-стойким материалом и не окисляется вплоть до 600°С. Все это делает алмазоподобный углерод идеальным теплоотводящим диэлектрическим материалом при изготовлении СВЧ-транзисторов, мощных мультичиповых модулей, линеек полупроводниковых лазеров, акустоэлектронных устройств, детекторов ионизирующего излучения и т.д.
Известен способ получения гомоэпитаксиальной алмазной тонкой пленки [1. Патент RU 2176683, опубл. 10.12.2001]. Способ изготовления изделия включает два этапа химического осаждения на поверхность подложки с помощью плазмы углерода из газовой фазы при использовании смеси метана и водорода. На первом этапе используют смешанный газ с пониженной концентрацией источника углерода, на втором - смешанный газ с концентрацией источника углерода более высоком, чем на первом. Получение алмазной тонкой пленки осуществляется при очень низкой скорости формирования структуры пленки (0.15-0.4 мкм/ч). Таким образом, способ характеризуется низкой производительностью и высокой сложностью его реализации. Кроме того, кинетическая энергия углерода в данном способе низка, что снижает концентрацию sp3 связей в конденсируемом на подложке углероде. Основным недостатком является невозможность получения алмазных пленок большой площади в силу отсутствия исходных алмазных подложек большой площади, а также высокая концентрация дефектов в алмазной пленке, вызванная дефектностью в исходной алмазной поликристаллической подложке.
Известен способ получения нанокристаллических алмазов на подложках сапфира в атмосфере кислорода с использованием импульсного лазера [2. Z.Y. Chen, J.P. Zhao, T. Yano, T. Ooie, M. Yoneda, J. Sakakibara. Growth of nanocrystalline diamond by pulsed laser deposition in oxygen atmosphere. Journal of Crystal Growth, 226 (2001) р. 62-66]. Способ позволяет получать кристаллы наноалмазов размером 30 нм, но носит исключительно лабораторный характер. Время цикла осаждения пленки составляет 4 часа при использовании подложки малой площади, что неприемлемо для промышленного производства.
Известен способ выращивания тонких алмазоподобных пленок при пиролизе метана в микроволновой плазме [3. May P. Diamond Thin Films: А 21st Century Material. Phil. Trans. R. Soc. Lond. A 358 (2000) p. 473-495]. Однако для его осуществления требуется крайне сложная и дорогая аппаратура, а сам процесс занимает много времени. Хотя этим способом алмазоподобные пленки могут изготавливаться на различных подложках (кремний, сапфир, кварц), их структура весьма далека от структуры кристаллического алмаза.
Описанные выше и другие известные авторам способы обладают одним общим недостатком - сложность технологии получения, а именно, сложность реализации требуемых условий процесса в больших реакторах, где сказывается неравномерность концентрации реагентов по объему за счет выработки реагентов из-за их температурного разложения и осаждения на стенки в процессе газопереноса. Это не позволяет обрабатывать большое количество подложек в одном технологическом цикле.
В настоящее время технология получения кремниевых подложек доведена до совершенства, и именно кремний является перспективной подложкой для изготовления полупроводниковых приборов.
Известен Способ получения изделия, имеющего основу из кремния с пленкой карбида кремния на ее поверхности, описанный в патенте RU 2363067. Способ заключается в нагреве основы (кремниевой подложки) и синтезе пленки на ее поверхности в газовой среде, содержащей соединения углерода. В качестве газовой среды использованы оксид или диоксид углерода, либо смесь оксида или диоксида углерода с инертным газом и/или азотом при давлении в камере реактора 20-600 Па, а нагрев кремниевой подложки осуществляют до температуры 950-1400°С. Возможно использование только оксида углерода СО или только диоксида углерода СО2.
Несмотря на то, что карбид кремния является весьма перспективным широкозонным полупроводниковым материалом, но, как отмечено выше, именно алмаз обладает уникальными тепловыми, оптическими, электрическими, радиационными и прочностными свойствами. В частности, углерод с решеткой алмазного типа имеет теплопроводность в 4-7 раз большую, чем карбид кремния, что позволяет создавать приборы большей мощности на его основе. Кроме того, подвижность электронов в алмазе достигает 2200 см2/В с, что примерно в 3 раза выше, чем максимальная подвижность у политипа 4Н карбида кремния и в 6 раз выше, чем максимальная подвижность у политипа 6Н карбида кремния. У гексагонального карбида кремния подвижность электронов сильно падает в направлении оси С, что существенно ограничивает его применение. Электрические поля, возникающие в гексагональном карбиде кремния за счет пьезо-эффектов также сильно ограничивают его применение в промышленности. Углеродные материалы с решеткой алмазного (т.е кубического) типа лишены указанных недостатков.
Были предприняты попытки получения углеродных структур методом конверсией из SiC подложек. В частности, в статье [4. W.G. Spitzer, D.A. Kleinman, C.J. Frosch. Phys. Rev. 113, 133 (1959).] описано получение углеродной структуры путем окисления кристаллического SiC:
Figure 00000001
Однако в этом случае растет только аморфный графит.
В другой статье [5. Y. Gogotsi, S. Welz, D.A. Ersoy, M.J. McNallan. Nature 411, 283 (2001)] был предложен Способ получения наноалмазов на подложке из карбиде кремния, принятый в качестве прототипа заявляемого способа.
Технология основана на применении реакции:
Figure 00000002
Способ по прототипу осуществляется в вакуумной кварцевой печи при температурах 600-1100°С. В качестве SiC использовались небольшие образцы, спеченные из порошка SiC гексагональных политипов. Газ Cl2 поступал вместе с газом-носителем аргоном в отношении Cl2/Ar равным 1-3%. Если использовать чистый Cl2, то в результате реакции (2) образуется углерод только со структурой графита. Однако если газ Cl2 разбавить водородом Н2 в пропорции 3:1, то реакция (2) приводит к частичному появлению углерода со структурой алмаза
Как указано в статье [5], хлор "выедает" весь кремний из карбида кремния, а оставшийся углерод группируется в углеродные структуры.
Также отмечено, что если в хлор ничего не добавлять, то образуются аморфно-поликристаллические нанопористые углеродные структуры, близкие к луковичным (onion-like carbon). Но если к хлору добавить водород, то вырастают структуры размером порядка 5 нм, содержащие углерод с sp3 гибридизацией, но основная масса углерода будет все равно аморфной и поликристаллической. Однако, согласно описанной технологии не были получены эпитаксиальные пленки, когда подложка задавала бы ориентацию пленке. Причина, по которой нет эпитаксии: в этих реакциях вначале разрушаются старые химические связи, а затем образовываются новые. Такие топохимические реакции называют несогласованными. Отсутствие эпитаксии является основным недостатком вышеописанного способа получения. Кроме того, этим способом получаются слишком маленькие (~ 5 нм) алмазоподобные структуры, которые к тому же находятся внутри аморфного углерода.
В основу изобретения поставлена задача расширения арсенала средств и создание нового способа создания функционального элемента полупроводникового прибора, основой (подложкой) которого является кремний, а покрывающий слой - углеродный нанокристаллический материал с кристаллической структурой алмаза. Достигаемый технический результат - получение впервые на основе (подложке) из кремния углеродного нанокристаллического материала с кристаллической структурой алмазного типа высокого качества за счет сохранения алмазоподобного типа кристаллической решетки при конверсии Si→SiC→C.
Поставленная задача решается тем, что способ изготовления функционального элемента полупроводникового прибора характеризуется тем, что осуществляется в два этапа, на первом из которых основу, выполненную из кремния, нагревают в вакуумной печи до температуры 950-1400°С и осуществляют синтез пленки карбида кремния на поверхности основы в газовой среде, представляющей собой оксид или диоксид углерода или смесь оксида или диоксида углерода с инертным газом и/или азотом при давлении 20-600 Па. На втором этапе также в вакуумной печи в среде тетрафторида углерода при температуре 1300-1400°С и давлении 2500-6000 Па из полученной пленки карбида кремния формируют нанопленку углерода с кристаллической решеткой алмазного типа путем согласованного замещения атомов вплоть до полного замещения атомов кремния на атомы углерода в полученной на первом этапе пленки карбида кремния.
В способе предпочтительно применение основы из кремния ориентации (111).
Для того, чтобы лучше продемонстрировать отличительные особенности изобретения, в качестве примера, не имеющего какого-либо ограничительного характера, ниже описан предпочтительный вариант реализации применительно к устройству, основа которого выполнена из кремния, легированного бором (кристаллографическая ориентация (111)).
Пример реализации иллюстрируется Фигурами чертежей, на которых представлено:
Фиг. 1. Схематическое представление двухстадийной конверсии кристалла кремния в кристалл алмаза.
Фиг. 2. Микрофотография поперечного среза образца C/SiC/Si(111) с переходным слоем в виде пленки SiC,
Фиг. 3. Микрофотография среза без пленки SiC (с "растворившейся" пленкой), и с фрагментарным распределением SiC в Si,
Фиг. 4. Рамановский спектр от прозрачного слоя углерода на SiC/Si,
Фиг. 5. Электронограмма образца C/SiC/Si(111)
Figure 00000003
полученная электронографом ЭМР-100 при энергии электронов 50 keV.
Заявляемый способ, позволяющий изготовить функциональный элемент полупроводникового прибора, реализуется в два этапа, первый из которых описан в патенте RU 2363067. В качестве основы (подложки) использована пластина монокристаллического кремния марки КДБ-3 (кремний полупроводниковой квалификации, легированный бором) с ориентацией поверхности, отклоненной от плоскости (111) на 4°. Эта кремниевая подложка размещалась в вакуумной печи, в которую после откачивания воздуха подавался оксид углерода СО до достижения давления 120 Па, затем нагревали печь до температуры 1050°С.
Таким образом, реализуется реакция согласованного замещения атомов:
Figure 00000004
После выдержки при указанных условиях в течение 30 минут оксид углерода откачивали, печь охлаждали и подложку извлекали из печи. Наличие пленки карбида кремния, сформированной на подложке кремния, было зафиксировано методом оптической микроскопии.
Структура полученного образца была исследована методом электронографии на отражение, а также электронным микроскопом высокого разрешения, растровым электронным микроскопом и люминесценцией. Исследования показали, что на поверхности кремниевой подложки сформирована пленка карбида кремния в основном политипа 3С толщиной 50-200 нм. Дислокации несоответствия решеток отсутствуют. Пленка карбида кремния имеет в объеме монокристаллическую и атомно-гладкую поверхность.
Аналогичные результаты получены при использовании на первом этапе вместо СО других углеродосодержащих газов: диоксид углерода или смесь оксида или диоксида углерода с инертным газом и/или азотом и/или силаном при давлении 20-600 Па, а нагрев кремниевой подложки осуществлялся до температуры 950-1400°С. В качестве газовой среды может быть использована смесь газов, например, состоящая из 45 мас. % оксида углерода СО, 50 мас. % аргона и 5 мас. % азота (или силана).
Подробное описание примеров реализации первого этапа и полученных результатов представлено в патенте RU 2363067. При этом образовывалась эпитаксиальная пленка SiC кубического политипа 3С толщиной от 50 до 200 нм в зависимости от ориентации подложки, состава и давления указанных газов.
На втором этапе реализации способа полученные образцы SiC-3C/Si обрабатывались в вакуумной печи в среде тетрафторида углерода (CF4) при температуре Т=1300-1400°С и давлении
Figure 00000005
в течение 15-30 мин. При этом в зависимости от ориентации исходной подложки, ее температуры, времени конверсии и давления
Figure 00000006
на поверхности образца образовывались наноуглеродные структуры. Таким образом, на втором этапе реализуется реакция замещения:
Figure 00000007
На Фиг. 1 дано схематическое представление двухстадийной конверсии кристалла кремния в кристалл алмаза. На первом этапе из кремния согласованным образом образуется кубический политип карбида кремния SiC-3С, т.е. половина атомов Si согласованно заменяется на атомы С за счет реакции замещения с монооксидом углерода СО (диоксидом углерода, их смеси или их смеси с инертными газами и/или азотом), в результате уменьшаются межатомные расстояния с сохранением структуры связей (Фиг. 1). На втором этапе вторая половина атомов Si (т.е. атомы Si в SiC) согласованно заменяется на атомы С за счет реакции замещения с тетрафторидом углерода CF4, в результате решетка вновь пропорционально уменьшается и образуется углерод с решеткой алмазного типа, т.е. с преимущественной sp3-гибридизацией.
Пример реализации.
В качестве основы была использована пластина монокристаллического кремния марки КДБ-3 (кремний полупроводниковой квалификации, легированный бором), диаметром 35 мм с ориентацией поверхности, отклоненной от плоскости (111) на 4 градуса. Эта кремниевая пластина была размещена в печи реактора, после чего был откачен воздух и подан оксид углерода СО до достижения давления в реакторе 70 Па, затем объем печи был нагрет до температуры 1350°С. После выдержки при указанных условиях в течение 30 минут была выращена пленка SiC толщиной ~200 нм.
Второй этап длился 25 мин при температуре 1350°С и давлении тетрафторида углерода 2500 Па. При этом толщины пленки SiC и сформированной на ней нанопленкой углерода с кристаллической решеткой алмазного типа оказались примерно по 80 нм. То есть, полученная на первом этапе пленка карбида кремния частично сохранилась, а часть ее конвертировалась в углерод с кристаллической решеткой алмазного типа. На Фиг. 2 приведена микрофотография поперечного среза полученного образца изделия C/SiC/Si(111).
Существенную роль в формировании качественной углеродной нанопленки играет кристаллографическая ориентация исходного кремния. Наилучшая упорядоченность получается на кремнии (111). Наихудшая упорядоченность, соответствующая поликристаллу, получается на поверхности кремния (110). В этом случае вырастают углеродные структуры с очень большой шероховатостью. На поверхности кремния (100) вырастают структуры с промежуточным качеством между качеством на (111) и качеством на (110). Эпитаксиальные углеродные структуры на кремнии (100) удается получить сравнительно небольшой толщины <50 нм. Это объясняется тем, что слой SiC, получаемый на первом этапе способа, существенно тоньше и хуже по качеству, чем на (111).
На Фиг. 3 показан срез образца, в котором нанопленка SiC, образованная на первом этапе, практически отсутствует за счет реакции SiC с CF4, и SiC лишь фрагментарно присутствует в основе Si. Такие образцы получены путем варьирования параметров процесса как первого, так второго этапа.
При малых временах второй стадии конверсии (меньше 20 мин), за редким исключением, образцы имеют рамановский спектр, состоящий из двух широких пиков D-полосы и G-полосы (Фиг. 4). В частности, данный конкретный спектр получен от образца C/SiC/Si(111) при времени протекания второго этапа 15 мин и давлении
Figure 00000008
Как правило, образцы этого типа являются прозрачными. В частности, эллипсометрический анализ дает полную прозрачность слоя углерода в диапазоне энергий фотонов вплоть до 6.5eV. Это означает, что выращенная структура полностью соответствует sp3-гибридизации, т.е. решетке алмазного типа. Пик D-полосы у спектра соответствует частоте 1350 см-1, максимум пика G-полосы соответствует частоте 1600 см-1 (для справки у непрозрачного графита с sp2-гибридизацией 1579 см-1). Рамановский спектр соответствует спектру наноалмазов, в частности, детонационных алмазов и шаровидных неограненных алмазов (ballas).
Исследования упорядоченности углеродных наноструктур дифракцией быстрых электронов на отражение показали, что при малых временах (до 20 минут) второго этапа способа качество кристаллической структуры углеродных слоев близко к эпитаксиальным, но при увеличении времени конверсии качество структур заметно падает вплоть до поликристалла. Наиболее упорядоченными углеродные слои (нанопленка) растут на вицинальной поверхности Si(111) с 4° отклонением. Типичная электронограмма такого слоя толщиной 50-100 нм при времени конверсии 15-20 мин. образца C/SiC/Si(111) 4°, полученная электронографом ЭМР-100 при энергии электронов 50 keV приведена на Фиг. 5. Из микрофотографии следует, что на дифракционной картине имеются лишь точки, отвечающие кристаллической фазе, а поликристаллическая фаза углерода отсутствует, так как отсутствуют круги и дуги, соответствующие поликристаллической фазе и размытое гало, отвечающее аморфной фазе. Поскольку глубина проникновения электронов в образец меньше толщины слоя углерода, то фактически это электронограмма только углеродного слоя.
Приведенные выше режимы осуществления способа (температура, временные интервалы, давление) получены экспериментальным путем и могут варьироваться в заданных пределах. Это зависит от многих факторов (марка кремния, задаваемой толщина переходного слоя (пленки карбида кремния) задаваемой толщины нанопленки углерода и т.д.)
Как известно, многообразие структуры и свойств углеродных наноматериалов определяется уникальной способностью атомов углерода к различным типам гибридизации электронных оболочек: плоскостной «графеновой, sp2 типа», пространственной «алмазной, sp3 типа» и линейной «карбиновой - sp типа». Возможность создания углеродных наноматериалов с предельно близким расположением областей, имеющих различный тип гибридизации электронных оболочек, делает метод конверсии особенно актуальным при получении углеродных слоев.
В настоящем изобретении слои наноструктурированного углерода предлагается получать на подложке из кремния посредством создания переходного слоя карбида кремния и только за счет согласованных реакций замещения, в которых "новые" атомы встают на место "старых", сохраняя всю структуру связей. Т.е. новые связи создаются одновременно с разрушением старых связей.
В отличие от реакции (2), при которой связи просто не могут сохраниться, так как хлор «выедает» весь кремний в карбиде кремния, уничтожая алмазоподобную структуру связей карбида кремния, реакция (3) также является согласованной.
Это позволяет получать на подложке покрывающий слой высоких потребительских свойств в виде нанопленки углерода с кристаллической решеткой алмазного типа. Поскольку данная решетка получается напрямую из алмазоподобной решетки кубического карбида кремния, то она не содержит ростовых дефектов, подобных дислокациям несоответствия решеток, сильно ухудшающих электрические свойства слоев, так как они резко ограничивают подвижность носителей заряда. Отсутствие дислокаций несоответствия в углеродных слоях, получаемых путем согласованного замещения атомов из кубического карбида кремния, является характерной особенностью данных слоев и обеспечивает высокую подвижность носителей заряда, часто используемую при работе приборов в микроэлектронике.
Способ является высокотехнологичным, не требует применения специально разработанного оборудования, осуществляется с применением доступных кремниевых подложек, технология изготовления которых в настоящее время доведена до совершенства, и доступных газов. Способ позволяет одновременно получать достаточное количество изделий в одном реакторе, количество зависит от его объема реакционной камеры. В рамках заявляемого способа, варьируя технологические режимы в рамках заявленных интервалов параметров, возможно получение изделий с заданными свойствами при значительной вариации давления тетрафторида углерода
Figure 00000009
что позволяет применять способ для широкого номенклатурного ряда полупроводниковый изделий различного назначения. Применение кремния в виде основы (подложки) также позволяет использовать высокоразвитую современную технологию производства подложек кремния в диапазоне от 5 до 25 см для роста на них углеродных слоев с кристаллической решеткой алмазного типа.
Как отмечено выше, способ позволяет получать функциональные элементы полупроводниковых приборов, в которых нанопленка SiC, образованная на первом этапе, практически отсутствует за счет реакции SiC с CF4, то есть практически "растворяется", при этом SiC лишь фрагментарно присутствует в основе Si. Такие образцы получены путем варьирования параметров процесса как первого, так второго этапа.

Claims (2)

1. Способ изготовления функционального элемента полупроводникового прибора, характеризующийся тем, что осуществляется в два этапа, на первом из которых основу, выполненную из кремния, нагревают в вакуумной печи до температуры 950-1400°С и осуществляют синтез пленки карбида кремния на поверхности основы в газовой среде, представляющей собой оксид или диоксид углерода или смесь оксида или диоксида углерода с инертным газом и/или азотом при давлении 20-600 Па, на втором этапе в вакуумной печи в среде тетрафторида углерода при температуре 1300-1400°С и давлении 2500-6000 Па из полученной пленки карбида кремния формируют нанопленку углерода с кристаллической решеткой алмазного типа путем согласованного замещения атомов вплоть до полного замещения атомов кремния на атомы углерода в полученной на первом этапе пленке карбида кремния.
2. Способ по п. 1, отличающийся тем, что в качестве основы применяют кремний ориентации (111).
RU2019142791A 2019-12-17 2019-12-17 Способ изготовления функционального элемента полупроводникового прибора RU2727557C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019142791A RU2727557C1 (ru) 2019-12-17 2019-12-17 Способ изготовления функционального элемента полупроводникового прибора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019142791A RU2727557C1 (ru) 2019-12-17 2019-12-17 Способ изготовления функционального элемента полупроводникового прибора

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2019118196A Division RU2715472C1 (ru) 2019-06-11 2019-06-11 Изделие, содержащее основу из кремния и покрывающий слой в виде нанопленки углерода с кристаллической решеткой алмазного типа, и способ изготовления этого изделия

Publications (1)

Publication Number Publication Date
RU2727557C1 true RU2727557C1 (ru) 2020-07-22

Family

ID=71741214

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019142791A RU2727557C1 (ru) 2019-12-17 2019-12-17 Способ изготовления функционального элемента полупроводникового прибора

Country Status (1)

Country Link
RU (1) RU2727557C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2286616C2 (ru) * 2005-02-10 2006-10-27 Фонд поддержки науки и образования Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности
RU2363067C1 (ru) * 2008-01-22 2009-07-27 Фонд поддержки науки и образования Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности
US20110256371A1 (en) * 2010-04-14 2011-10-20 Iscar, Ltd. Hard Carbon Coating and Method of Forming The Same
RU2446511C1 (ru) * 2010-12-08 2012-03-27 Общество с ограниченной ответственностью "Новые Кремневые Технологии" (ООО НКТ) Полупроводниковый прибор
RU2685032C1 (ru) * 2018-07-26 2019-04-16 Общество с ограниченной ответственностью "Научно технический центр "Новые технологии" Фоточувствительное устройство и способ его изготовления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2286616C2 (ru) * 2005-02-10 2006-10-27 Фонд поддержки науки и образования Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности
RU2363067C1 (ru) * 2008-01-22 2009-07-27 Фонд поддержки науки и образования Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности
US20110256371A1 (en) * 2010-04-14 2011-10-20 Iscar, Ltd. Hard Carbon Coating and Method of Forming The Same
RU2446511C1 (ru) * 2010-12-08 2012-03-27 Общество с ограниченной ответственностью "Новые Кремневые Технологии" (ООО НКТ) Полупроводниковый прибор
RU2685032C1 (ru) * 2018-07-26 2019-04-16 Общество с ограниченной ответственностью "Научно технический центр "Новые технологии" Фоточувствительное устройство и способ его изготовления

Similar Documents

Publication Publication Date Title
US5628824A (en) High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition
Vlasov et al. Hybrid diamond‐graphite nanowires produced by microwave plasma chemical vapor deposition
US20160229696A1 (en) Polycrystalline diamond and manufacturing method thereof
Lopes Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films
Nabi et al. Synthesis, photoluminescence and field emission properties of well aligned/well patterned conical shape GaN nanorods
TW201035393A (en) Production of single crystal CVD diamond at rapid growth rate
JP2011178617A (ja) グラフェン膜の形成方法
CN108611679B (zh) 一种绿色无催化剂法制备氮化镓纳米线的方法
Wang et al. Substrate-orientation dependent epitaxial growth of highly ordered diamond nanosheet arrays by chemical vapor deposition
Yang et al. Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition
RU2727557C1 (ru) Способ изготовления функционального элемента полупроводникового прибора
CN109119327A (zh) 在纳米图形化蓝宝石衬底上外延生长氮化铝的方法
RU2715472C1 (ru) Изделие, содержащее основу из кремния и покрывающий слой в виде нанопленки углерода с кристаллической решеткой алмазного типа, и способ изготовления этого изделия
Rius et al. Epitaxial Graphene on Silicon Carbide: Modeling, Characterization, and Applications
Hu et al. High-rate growth of single-crystal diamond with an atomically flat surface by microwave plasma chemical vapor deposition
Chen et al. The interface microstructure and band alignment of hexagonal boron nitride/diamond heterojunctions
CN107244666B (zh) 一种以六方氮化硼为点籽晶生长大晶畴石墨烯的方法
RU2730402C1 (ru) Функциональный элемент полупроводникового прибора
Asgary et al. Evolution of physical properties of diamond nanoparticles deposited by DC-PECVD method after post deposition annealing
Oba et al. Growth of (111)-oriented diamond grains on hexagonal GaN
Nakamura et al. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates
Liu et al. Induced growth of quasi-free-standing graphene on SiC substrates
Weidong et al. A novel method of fabricating a well-faceted large-crystal diamond through MPCVD
Jayaseelan et al. Diamond nucleation in carbon films on Si wafer during microwave plasma enhanced chemical vapor deposition for quantum applications
Ferro Epitaxial graphene on SiC substrate: a view from a specialist of SiC growth and materials science