RU2726393C9 - Рельсовый электромагнитный ускоритель - Google Patents

Рельсовый электромагнитный ускоритель Download PDF

Info

Publication number
RU2726393C9
RU2726393C9 RU2019133512A RU2019133512A RU2726393C9 RU 2726393 C9 RU2726393 C9 RU 2726393C9 RU 2019133512 A RU2019133512 A RU 2019133512A RU 2019133512 A RU2019133512 A RU 2019133512A RU 2726393 C9 RU2726393 C9 RU 2726393C9
Authority
RU
Russia
Prior art keywords
rail
barrel
rails
accelerator
modulus
Prior art date
Application number
RU2019133512A
Other languages
English (en)
Other versions
RU2726393C1 (ru
Inventor
Александр Валентинович Плеханов
Original Assignee
Федеральное государственное учреждение "Федеральный исследовательский центр Институт прикладной математики им. М.В. Келдыша Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Федеральный исследовательский центр Институт прикладной математики им. М.В. Келдыша Российской академии наук" filed Critical Федеральное государственное учреждение "Федеральный исследовательский центр Институт прикладной математики им. М.В. Келдыша Российской академии наук"
Priority to RU2019133512A priority Critical patent/RU2726393C9/ru
Application granted granted Critical
Publication of RU2726393C1 publication Critical patent/RU2726393C1/ru
Publication of RU2726393C9 publication Critical patent/RU2726393C9/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B6/00Electromagnetic launchers ; Plasma-actuated launchers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

Изобретение относится к линейным электрическим двигателям, а более конкретно к электромагнитным ускорителям рельсового типа, обеспечивающим прямое преобразование электрической энергии, запасенной в импульсном источнике, в кинетическую энергию метаемого тела. Предлагаемое изобретение может быть использовано в системах разгона макротел (массой от нескольких граммов и выше) до высоких скоростей, предназначенных для исследования уравнения состояния материалов при сверхвысоких давлениях, развиваемых при соударении метаемого тела с мишенью, физического моделирования воздействия микрометеоритов на элементы космических объектов, изучения процессов ударного термоядерного синтеза, вывода миниатюрных спутников на низкую орбиту Земли непосредственно с ее поверхности или борта летательного аппарата, а также для различных военных целей, включая создание орудий для борьбы с бронированными целями, средств противовоздушной и противоракетной обороны, дальнобойной артиллерии морского базирования и прочее. Рельсовый электромагнитный ускоритель состоит из источника электрической энергии, соединенного токопроводящими линиями с коммутирующим устройством, ствола, включающего токопроводящие рельсы, межрельсовые изоляторы, образующие канал, в котором располагается метаемое тело с якорем, коммутирующим рельсы, и поддерживающие вставки из изоляционного материала, заключенные в силовую оболочку, а также предускорителя, обеспечивающего вход метаемого тела в канал ствола в момент начала протекания в нем тока с начальной скоростью. С целью повышения выходных характеристик и ресурса ствола величина начальной скорости метаемого тела превышает критическую скорость распространения волн изгиба в рельсах, рассчитанную по соотношениюгде Е, ρ - модуль Юнга и плотность материала рельса соответственно, F - площадь поперечного сечения рельса, I - момент инерции сечения на поворот, k - модуль упругости основания. Применение предлагаемого изобретения позволит избежать резонанса, возникающего при достижении скорости метаемого тела скорости распространения волн изгиба в элементах конструкции ствола, снизить в них максимальные напряжения и перемещения и, таким образом, увеличить эффективность процесса разгона и повысить ресурс ствола. 3 ил.

Description

Изобретение относится к линейным электрическим двигателям, а более конкретно к электромагнитным (ЭМ) ускорителям рельсового типа, обеспечивающим прямое преобразование электрической энергии, запасенной в импульсном источнике, в кинетическую энергию метаемого тела. Предлагаемое изобретение может быть использовано в системах разгона макротел (массой от нескольких граммов и выше) до высоких скоростей, предназначенных для исследования уравнения состояния материалов при сверхвысоких давлениях, развиваемых при соударении метаемого тела с мишенью, физического моделирования воздействия микрометеоритов на элементы космических объектов, изучения процессов ударного термоядерного синтеза, вывода миниатюрных спутников на низкую орбиту Земли непосредственно с ее поверхности или борта летательного аппарата, а также для различных военных целей, включая создания орудий для борьбы с бронированными целями, средств противовоздушной и противоракетной обороны, дальнобойной артиллерии морского базирования и прочее. Применение предлагаемого изобретения позволит избежать резонанса, возникающего при достижении скорости метаемого тела скорости распространения волн изгиба в элементах конструкции ствола, снизить в них максимальные напряжения и перемещения и, таким образом, увеличить эффективность процесса разгона и повысить ресурс ствола. Указанная цель достигается тем, что предускоритель обеспечивает метаемому телу на входе в ствол начальную скорость, величина которой выше критического значения скорости распространения изгибных волн в рельсах.
На фиг. 1 приведена принципиальная схема рельсового ЭМ ускорителя, на фиг. 2 - поперечное сечение ствола ускорителя, на фиг. 3 - схема работы рельсового ЭМ ускорителя.
Фиг. 1 схематично показывает рельсовый ЭМ ускоритель простейшей формы, который включает в свой состав импульсный источник электрической энергии 1, коммутатор 2, подводящие линии 3, ствол 4, предускоритель 5 и метаемое тело 6.
Фиг. 2 показывает поперечное сечение одного из возможных видов ствола рельсового ЭМ ускорителя, включающего токопроводящие рельсы 7, силовую оболочку 8, межрельсовые изоляторы 9, и поддерживающие вставки 10 из материала, не проводящего электрический ток.
Фиг. 3 показывает принцип работы рельсового ЭМ ускорителя.
Электромагнитный ускоритель работает следующим образом (фиг. 1, 2, 3).
В канал ствола 4, образованного рельсами 7 и межрельсовыми изоляторами 9, с помощью предускорителя 5 подается метаемое тело 6, состоящее из полезной нагрузки 11, якоря 12 и поддона 13, обеспечивающего целостность метаемого тела в процессе выстрела. Импульсный источник тока 1 через коммутирующее устройство 2 и подводящие линии 3 подключается к токопроводящим рельсам 7 и соединенным с ними электрически последовательно якорю 12 в момент электрического замыкания якорем 12 рельсов 7.
При протекании тока 14 по рельсам вокруг них индуцируется магнитное поле 15, которое взаимодействует с током, протекающем в якоре 14. В результате этого взаимодействия возникает сила Лоренца, которая действует на якорь 12, разгоняя его вместе с поддоном 13 и полезной нагрузкой 11. Величина ускоряющей силы пропорциональна квадрату тока в якоре и градиенту индуктивности рельсов.
Силовая оболочка 8, охватывающая рельсы 7, межрельсовые изоляторы 9 и поддерживающие вставки 10, составляющие основные элементы ствола 4 рельсового электромагнитного ускорителя, должна противостоять высоким механическим напряжениям, возникающим в элементах конструкции ствола, удерживать геометрические размеры канала ствола постоянными или почти постоянными в процессе выстрела и обеспечивать их восстановление до близких к начальным после выстрела, что является необходимым условием выполнения повторных выстрелов. Силовая оболочка 8 может быть изготовлена как из электропроводных, так из изоляционных материалов. Поддерживающие вставки 10 служат для электрической изоляции рельсов от оболочки, если она выполнена из металла, и для передачи усилий, возникающий в рельсах при выстреле, силовой оболочке. Якорь 12 может быть металлическим, плазменным или гибридным.
Применение предускорителя 5 решает несколько задач. Так в работе [1] показано, что за счет теплового потока из плазменного якоря 12: 1) контактная поверхность рельсов 7 в процессе разгона сильно прогревается и частично проплавляется, 2) наиболее существенно оплавляются участки рельсов 7 на входе в ствол 4, 3) с увеличением начальной скорости метаемого тела 6 положение максимума проплавленного материала смещается по направлению к дульному срезу, а глубина расплава уменьшается с 60 мкм при нулевой начальной скорости до 20 мкм при начальной скорости 2000 м/с и 4) повышение начальной скорости выше 2000 м/с существенно не сказывается на распределение температуры в рельсах 7. Следовательно, применение предускорителя 5, обеспечивающего метаемому телу 6 некоторую начальную скорость на входе в ствол, позволяет снизить воздействие плазменного якоря на поверхность канала и таким образом повысить ресурс ствола. Такое решение подходит при разгоне тел 6 массой в несколько граммов, когда в качестве якоря 12, шунтирующего рельсы 7, используется плазма. При разгоне метаемых тел 6 массой в сотни граммов и выше обеспечение начальной скорости порядка 2000 м/с предускорителем 5 представляет самостоятельную задачу.
Известно техническое решение [2], в котором для избавления процесса разгона метаемого тела от возможных динамических последствий его взаимодействия с элементами канала ствола, связанные с образованием щелей между рельсами и межрельсовыми изоляторами и уменьшения расстояния между рельсами, предлагается обеспечить на входе в ствол метаемому телу скорость предускорения выше 500 м/с. Величина скорости получается из результатов сложных расчетов динамического поведения ствола и метаемого тела при выстреле и не имеет аналитического выражения, связывающего величину начальной скорости с характеристиками канала ствола.
При движении фронта давления (в пороховых пушках) или фронта электромагнитного давления (в ЭМ ускорителях), связанных с движением метаемого тела, по стволу в элементах, образующих канал, генерируются и распространяются волны изгиба. При достижении метаемым телом скорости распространения волн изгиба наступает резонанс, приводящий к значительному усилению напряжений и деформаций в элементах конструкции. Это может привести к ускоренному износу или даже к разрушению ствола ускорителя, нарушению характера протекания тока на границе якорь - рельсы и, таким образом, уменьшить ресурс рельсового ускорителя и ухудшить его характеристики.
Выражение для критической скорости (Vcr) получается из уравнения колебания рельса в приближении балки, покоящейся на упругом основании, при движении по ней нагрузки с постоянной скоростью и имеет вид [3]:
Figure 00000001
где: Е, ρ - модуль Юнга и плотность материала рельса, соответственно, F - площадь поперечного сечения рельса, I - момент инерции сечения на поворот, k - модуль упругости основания. Модуль упругости основания аналогичен модулю объемного сжатия материала основания и может быть записан в виде k=В=Еo/(3-6μo) [4], где Еo, μo - модуль Юнга и коэффициент Пуассона материала основания соответственно. Для прямоугольного сечения момент инерции каждого рельса I=bh3/12, при соответствующей площади поперечного сечения F=bh, где b - ширина рельса, h - его высота. Тогда выражение для критической скорости примет вид:
Figure 00000002
Поперечное сечение одного из возможных видов ствола рельсового ЭМ ускорителя показано на фиг. 2. Пусть рельс имеет следующие геометрические размеры [3]: ширина рельса b=0,0762 м, толщина рельса h=0,0125 м. Тогда момент инерции поперечного сечения 1=1,240×10-8 м4, а площадь F=9,525×10-4 м2 соответственно. Пусть рельсы выполнены из алюминия с модулем Юнга Е=69 ГПа и плотностью ρ=2750 кг/м3. Если поддерживающая вставка выполнена из фибергласса (материала типа текстолит), то значение модуля упругости основания k=4,72 ГПа [3]. Тогда величина критической скорости согласно уравнения (2) равна Vcr=1239 м/с. Для рельсов из литой стали модуль Юнга Е=197 ГПа, а плотность ρ=7830 кг/м3. Такое изменение материала рельса снизит величину критической скорости до 955 м/с. Если в качестве материала рельса снова взять алюминий, а поддерживающую вставку выполнить из керамики, то величина модуля упругости основания к вырастит до 154 ГПа [3], а значение критической скорости до 2961 м/с. Также величина критической скорости может быть увеличена или уменьшена за счет изменения формы или размеров поперечного сечения рельсов.
Известно техническое решение [5], которое наиболее близко к предлагаемому изобретению и взято за прототип, в котором за счет изменения конструкции ствола рельсового ускорителя обеспечивается непрерывное повышение величины критической скорости в осевом направлении от казенной части до дульного среза. Тогда метаемое тело при своем движении по каналу ствола не достигнет критической скорости. Это можно выполнить повышая от казенной части до дульного среза ствола соотношения, входящие в выражение для критической скорости (1) и зависящих от свойств материалов
Figure 00000003
геометрии рельса
Figure 00000004
и модуля упругости основания к. На наш взгляд технически это принципиально возможно (за счет применения сегментированных рельсов и изоляторов, набранных из материалов с различными плотностями и модулем Юнга рельсов и с изменяющимся видом поперечного сечения по длине ствола), но канал усложниться конструктивно, встанет вопрос о росте джоулевых потерь, так как придется применять материалы с плохой электропроводностью. Кроме того, величина критической скорости слабо (как корень четвертой степени) зависит от материала и геометрии рельсов и ограничено по величине: трудно представить реальную конструкцию, в которой величина критической скорости могла бы достичь 4000 м/с.
Целью предлагаемого изобретение является обеспечение безрезонансного процесса разгона метаемого тела и, таким образом, повышения выходных характеристик ЭМ рельсового ускорителя и его ресурса.
Указанная цель достигается тем, что предускоритель обеспечивает метаемому телу на входе в ЭМ ствол начальную скорость, величина которой выше критического значения скорости распространения волн изгиба в рельсах. В результате метаемое тело будет в процессе разгона в стволе рельсового ЭМ ускорителя всегда обгонять фронт волны распространения волны изгиба в рельсе, предотвращая, таким образом, наступление резонанса, что, в свою очередь, приведет к уменьшению максимальных напряжений и перемещений элементов конструкции ствола ЭМ рельсового ускорителя в процессе выстрела. Величина начальной скорости метаемого тела, обеспеченная работой предускорителя, определяется аналитически (1), используя физические характеристики рельса и его геометрические размеры.
Цитируемые источники
1. Жигар Т.А., Кудрявцев А.В., Кучерявая И.Н., Плеханов А.В., Подольцев А.Д., Чемерис В.Т., «Математическое моделирование электромеханических и тепловых переходных процессов в магнито-плазменном ускорителе», Теплофизика высоких температур, 1991, том 29, №2, стр. 360-364.
2. Hum T.W., D'Aoust J., Sevier L., Jonson R., Wesley J., "Development of an advanced electromagnetic gun barrel", IEEE Transaction on Magnetics, 1993, vol. 29, no. 1, pp. 837-842.
3. Nechitailo N.V., Lewis K.B., "Critical velocity for rails in hypervelocity launchers", International Journal of Impact Engineering, 2006, vo. 33, pp. 485-495
4. Timoshenko S., "Method of analysis of statical and dynamic stress in rail". Proc. 2th Int. Congress of Applied Mechanics, Zurich, 1927, pp. 1-12.
5. Nechitailo N.V., Lewis K.B., Rails for electromagnetic hypervelocity launcher. US Patent No. 7 409 900, August 12, 2008.

Claims (1)

  1. Рельсовый электромагнитный ускоритель, состоящий из источника электрической энергии, соединенного токопроводящими линиями с коммутирующим устройством, ствола, включающего токопроводящие рельсы, межрельсовые изоляторы, образующие канал, в котором располагается метаемое тело с якорем, коммутирующим рельсы, и поддерживающие вставки из изоляционного материала, заключенные в силовую оболочку, а также предускорителя, обеспечивающего вход метаемого тела в канал ствола в момент начала протекания в нем тока с начальной скоростью, отличающийся тем, что с целью повышения выходных характеристик и ресурса ствола величина начальной скорости метаемого тела превышает критическую скорость распространения волн изгиба в рельсах, рассчитанную по соотношению
    Figure 00000005
    где Е, ρ - модуль Юнга и плотность материала рельса соответственно, F - площадь поперечного сечения рельса, I - момент инерции сечения на поворот, k - модуль упругости основания.
RU2019133512A 2019-10-22 2019-10-22 Рельсовый электромагнитный ускоритель RU2726393C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019133512A RU2726393C9 (ru) 2019-10-22 2019-10-22 Рельсовый электромагнитный ускоритель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019133512A RU2726393C9 (ru) 2019-10-22 2019-10-22 Рельсовый электромагнитный ускоритель

Publications (2)

Publication Number Publication Date
RU2726393C1 RU2726393C1 (ru) 2020-07-13
RU2726393C9 true RU2726393C9 (ru) 2020-08-24

Family

ID=71616619

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019133512A RU2726393C9 (ru) 2019-10-22 2019-10-22 Рельсовый электромагнитный ускоритель

Country Status (1)

Country Link
RU (1) RU2726393C9 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009439C1 (ru) * 1991-05-22 1994-03-15 Александр Михайлович Овчинников Электродинамическая метательная установка
US7409900B1 (en) * 2006-11-02 2008-08-12 United States Of America As Represented By The Secretary Of The Navy Rails for electromagnetic hypervelocity launcher
RU181799U1 (ru) * 2017-10-30 2018-07-26 Равиль Ризанурович Юсупов Электромагнитный ускоритель метаемого тела

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009439C1 (ru) * 1991-05-22 1994-03-15 Александр Михайлович Овчинников Электродинамическая метательная установка
US7409900B1 (en) * 2006-11-02 2008-08-12 United States Of America As Represented By The Secretary Of The Navy Rails for electromagnetic hypervelocity launcher
RU181799U1 (ru) * 2017-10-30 2018-07-26 Равиль Ризанурович Юсупов Электромагнитный ускоритель метаемого тела

Also Published As

Publication number Publication date
RU2726393C1 (ru) 2020-07-13

Similar Documents

Publication Publication Date Title
US5483863A (en) Electromagnetic launcher with advanced rail and barrel design
US9784523B2 (en) Hybrid propellant electromagnetic gun system
US9551548B2 (en) Barrel and an electromagnetic projectile launching system
Hundertmark et al. Payload acceleration using a 10-MJ DES railgun
RU2726393C9 (ru) Рельсовый электромагнитный ускоритель
CN115930702B (zh) 一种基于电磁轨道发射破片毁伤模拟试验技术和系统
Cable Hypervelocity accelerators
Castillo et al. Projectile accelerator prototype using electromagnetic fields
Geng et al. Analysis of projectile motion in bore and transfer efficiency for electromagnetic railgun
Praneeth et al. Analysis of an electromagnetic railgun with tapered rails and concave armature using 3-D FEM
Kozlov et al. Electromagnetic launcher for heavy projectiles
Han et al. Study of employing railguns in close-in weapon systems
Tang et al. Simulation of a High-Frequency Loading Machine for Railguns Utilizing Residual Electric Energy
Hayden et al. Hypervelocity projectile development for electromagnetic guns
Sasek et al. Railguns: An Overview
Tower et al. Hypervelocity impact testing using an electromagnetic railgun launcher
Haugh ‘Field’guns: Electromagnetic launchers
Gherman et al. Linear electromagnetic accelerator
RU119383U1 (ru) Пушка (параболоид инженера киселева)
Haugh et al. Large calibre armature firings at Green Farm electric gun test facility
Lehman et al. ISL studies on electromagnetic railguns
Tzeng et al. Comparison of electromagnetic and conventional guns from a mechanics and material aspect
從海軍戰術目標的觀點來設計一適合艦用電磁砲的 Design of a 150MJ Pulsed Power System for Railgun from Navy Tactical Point of View
RU2191978C1 (ru) Метаемое тело для электромагнитного ускорителя
JANISZEWSKI et al. HYPERSONIC PROPULSION SYSTEMS–A REVIEW OF DESIGN SOLUTIONS

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: CORRECTION TO CHAPTER -FG4A- IN JOURNAL 20-2020 FOR INID CODE(S) (72)

TH4A Reissue of patent specification