RU2725004C1 - Система раскрытия посадочных опор космического корабля - Google Patents

Система раскрытия посадочных опор космического корабля Download PDF

Info

Publication number
RU2725004C1
RU2725004C1 RU2019106191A RU2019106191A RU2725004C1 RU 2725004 C1 RU2725004 C1 RU 2725004C1 RU 2019106191 A RU2019106191 A RU 2019106191A RU 2019106191 A RU2019106191 A RU 2019106191A RU 2725004 C1 RU2725004 C1 RU 2725004C1
Authority
RU
Russia
Prior art keywords
pneumatic
electro
output
telescopic rod
devices
Prior art date
Application number
RU2019106191A
Other languages
English (en)
Inventor
Дмитрий Степанович Белицкий
Михаил Николаевич Жарков
Original Assignee
Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" filed Critical Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва"
Priority to RU2019106191A priority Critical patent/RU2725004C1/ru
Application granted granted Critical
Publication of RU2725004C1 publication Critical patent/RU2725004C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Actuator (AREA)

Abstract

Изобретение относится к средствам мягкой вертикальной посадки, главным образом космического объекта. В системе раскрытия посадочных опор (ПО) использованы приводные механизмы: раздвижные упоры и устройства выдвижения телескопических штоков ПО, а также устройства разделения ПО - пневматического типа. Данные механизмы и устройства через трубопроводы с заправочными и электропневмоклапанами и через пневмоколлекторы связаны с баллонами высокого давления пневмоблока. Указанные раздвижные упоры и устройства выдвижения снабжены соответственно контактными датчиками поворота и датчиками выдвижения, связанными с блоком управления. Данный блок управляет работой системы при разделении ПО, их развороте и выдвижении штоков ПО в рабочее положение при посадке. Техническим результатом изобретения является обеспечение многократности раскрытия ПО. 2 ил.

Description

Изобретение относится к области машиностроения и может быть использовано в тех областях, где необходимо осуществить раскрытие посадочных опор при осуществлении мягкой посадки объекта, например, в ракетно-космической технике при посадке возвращаемого (посадочного) аппарата пилотируемого космического корабля на Землю или другие планеты по вертикальной схеме.
Известна система раскрытия посадочных опор в составе советского лунного корабля, содержащая блок управления с кабелями связи и шарниры крепления посадочных опор, которые располагались на наружной поверхности корпуса лунного корабля. Перед посадкой посадочные опоры приводились из исходного в рабочее положение раскрытием пирозамков, после чего пружинные механизмы подкосов раскрывали посадочные опоры. Описание системы раскрытия посадочных опор советского лунного корабля приведено в книге В.М. Филина «Воспоминания о лунном корабле», издательство «Культура», 1992.
Система раскрытия посадочных опор космического корабля Х-38, выбранная в качестве прототипа (см. материалы NASA Х-38 Landing Gear Development, Adalbert Wagner, 1998 г), содержит блок управления с кабелями связи и размещенные в посадочных опорах устройства разделения - пироустройства, устройства выдвижения телескопических штоков - пружинные механизмы выдвижения. Посадочные опоры выдвигаются через вырезы в корпусе и теплозащитном покрытии, открываемые пироустройствами непосредственно перед приземлением.
Раскрытие посадочных опор начинается с момента подачи из блока управления по кабелям связи электрической команды на срабатывание пироустройств, фиксирующих опоры в убранном положении. После этого опора под действием сил гравитации совершает поворотное движение, затем при помощи пружинного привода выдвигается телескопический шток, и опора при помощи фиксирующих подкосов занимает рабочее положение.
Недостатком системы раскрытия посадочных опор - прототипа, является однократность использования из-за необходимости замены устройств фиксации посадочных опор, связанного с использованием пироустройств.
Задачей системы раскрытия посадочных опор является обеспечение многократности раскрытия и складывания посадочных опор космического корабля без замены их механизмов фиксации.
Техническим результатом настоящего изобретения является обеспечение многократности использования системы раскрытия посадочных опор.
Технический результат достигается тем, что в систему раскрытия посадочных опор космического корабля, содержащую блок управления с кабелями связи, устройства разделения, устройства выдвижения телескопических штоков в отличие от прототипа введен пневмоблок и пневмоколлекторы, пневматические раздвижные упоры с контактными датчиками их поворота, устройства разделения и устройства выдвижения телескопических штоков выполнены пневматическими, при этом пневматические раздвижные упоры кинематически связаны с указанными контактными датчиками поворота раздвижных упоров, а устройства выдвижения телескопических штоков снабжены датчиками выдвижения штоков и кинематически связаны с этими датчиками, причем пневмоблок выполнен в виде баллонов высокого давления со сжатым газом, связанных трубопроводами с заправочными клапанами и с электропневмоклапанами, при этом первый из электропневмоклапанов связан входом с первым баллоном, а выходом соединен через первый пневмоколлектор с тормозными полостями пневматических раздвижных упоров, второй электропневмоклапан связан входом со вторым баллоном, а выходом соединен через второй пневмоколлектор с устройствами разделения, а третий электропневмоклапан входом связан с выходом первого электропневмоклапана, а выходом соединен через третий пневмоколлектор с полостями устройств выдвижения телескопических штоков, при этом четвертый электропневмоклапан связан входом с выходом второго электропневмоклапана, а выходом соединен через четвертый пневмоколлектор с разгонными полостями пневматических раздвижных упоров, вход пятого электропневмоклапана связан с выходом первого электропневмоклапана и с входом третьего электропневмоклапана, а выход соединен с атмосферой, при этом электрические входы электропневмоклапанов и электрические выходы контактных датчиков поворота раздвижных упоров и датчиков выдвижения телескопических штоков кабелями связи соединены с блоком управления.
Использование пневматических устройств позволяет обеспечить многоразовость системы раскрытия посадочных опор.
Осуществление заявленного технического решения поясняется с помощью чертежей, на которых на фиг. 1 приведена система раскрытия посадочных опор космического корабля, а на фиг. 2 схема посадочной опоры, раскрытие которой предлагается.
1 - блок управления
2 - пневмоблок;
3, 4 - баллоны высокого давления;
5, 6 - клапаны заправочные;
7, 8, 9, 10, 11 - электропневмоклапаны;
12, 13, 14, 15 - пневмоколлекторы;
161, 162, 163, 164 - пневматические раздвижные упоры;
171, 172, 173, 174 - контактные датчики поворота раздвижных упоров;
181, 182, 183, 184 - устройства разделения;
191, 192, 193, 194 - устройства выдвижения телескопических штоков;
201, 202, 203, 204 - датчики выдвижения телескопических штоков;
21 - главный цилиндр;
22 - телескопический шток;
23 - опорная тарель;
24 - тросы;
25 - поперечная балка;
26 - кронштейн;
27 - корпус космического корабля;
28 - тяга;
29 - корпус устройства разделения;
30 - шток устройства разделения;
31 - пневмоштуцер.
На фиг. 1 представлена схема системы раскрытия посадочных опор космического корабля. Пневмоблок 2 включает в себя в два баллона высокого давления 3 и 4 которые через трубопроводы связаны с клапанами заправочными 5 и 6 с входами электропневмоклапанов 7 и 8. Выход электропневмоклапана 7 связан с входом электропневмоклапанов 9 и 11, выход электропневмоклапана 8 связан с входом электропневмоклапана 10. При этом выход электропневмоклапана 11 связан с атмосферой. Электрические входы электропневмоклапанов 7, 8, 9, 11 связаны с блоком управления 1. Выход электропневмоклапана 7 через пневмоколлектор 12 связан с тормозными полостями пневматических раздвижных упоров 161, 162, 163, 164. Пневматические раздвижные упоры 161, 162, 163, 164 кинематически связаны с контактными датчиками поворота упора раздвижного 171, 172, 173, 174, электрические выходы которых связаны с блоком управления 1. Выход электропневмоклапана 8 через пневмоколлектор 13 связан с устройствами разделения 181, 182, 183, 184. Выход электропневмоклапана 9 через пневмоколлектор 14 связан с устройствами выдвижения телескопических штоков 191, 192, 193, 194. Выход электропневмоклапана 10 через пневмоколлектор 15 связан с разгонными полостями пневматических раздвижных упоров 161, 162, 163, 164, устройства выдвижения телескопических штоков 191, 192, 193, 194 кинематически связаны с датчиками выдвижения телескопических штоков 201, 202, 203, 204, электрические выходы которых связаны блоком управления 1.
На фиг. 2 представлена схема посадочной опоры в раскрытом (рабочем) положении. Центральная стойка посадочной опоры содержит главный цилиндр 21, телескопический шток 22 и опорную тарель 23. Тросы 24 с одной стороны крепятся к телескопическому штоку 22, а другими концами к корпусу космического корабля 27. На поверхности главного цилиндра 21 расположены датчики выдвижения телескопических штоков 20, предназначенные для формирования сигнала в блок управления 1 о выдвижении штока. Пневматический раздвижной упор 16 представляет собой механизм, состоящий из двух частей: пневматической в виде цилиндра со штоком и замковой в виде зубчатой поверхности с цанговым механизмом. Цилиндр пневматического раздвижного упора 16 содержит две полости: полость торможения и полость разгона. На оси пневматического раздвижного упора 16 со стороны замковой части расположен контактный датчик поворота раздвижного упора 17. На поперечной балке 25 расположено устройство разделения 18, конструкция которого подробно раскрыта в патенте №2494289 с приоритетом от 10.02.2012, оно состоит из корпуса 29, внутри которого расположены подпружиненные штоки 30, и тяги 28, на корпусе 29 расположен пневмоштуцер 31. Тяга 28 связана с центральной стойкой через телескопический шток 22. Центральная стойка посадочной опоры крепится к корпусу космического корабля 27 при помощи кронштейна 26.
Рассмотрим работу системы раскрытия посадочных опор.
Перед началом работы баллоны высокого давления 3 и 4 заправлены сжатым газом через клапаны заправочные 5 и 6 до давления, например, 150 атм. При подаче команды с блока управления 1 на вход электропневмоклапана 7 он открывается, и сжатый газ из баллона 3 поступает в тормозные полости пневматических раздвижных упоров 161, 162, 163, 164. Через промежуток времени, например, 5 с из блока управления 1 подается команда на вход электропневмоклапана 8, при открытии которого сжатый газ из баллона 4 поступает через штуцеры 31 в полости устройств разделения 181, 182, 183, 184. При их срабатывании центральные стойки посадочных опор высвобождаются из сложенного положения и начинают поворачиваться под действием сил гравитации.
В процессе поворота центральных стоек относительно кронштейнов 26 начинают поворачиваться связанные с центральными стойками пневматические раздвижные упоры 161, 162, 163, 164, при этом после отклонения осей пневматических раздвижных упоров на определенный угол, например, 19° срабатывают контакты соединенных с ними контактных датчиков поворота раздвижных упоров 171, 172, 173, 174.
По сигналу с контактных датчиков поворота раздвижных упоров блок управления 1 формирует команду на срабатывание электропневмоклапана 9, с выхода которого сжатый газ из баллона 3 и электропневмоклапанов 7 и 9 поступает на устройства выдвижения телескопических штоков 191, 192, 193, 194. В результате в посадочных опорах происходит выдвижение телескопических штоков 22, в конце хода осуществляется механическая фиксация их относительно главных цилиндров 21 с помощью внутренних замков и происходит срабатывание датчиков выдвижения телескопических штоков 201, 202, 203, 204.
По сигналу с датчиков выдвижения телескопических штоков блок управления 1 формирует команду на открытие электропневмоклапанов 10 и 11, с выхода электропневмоклапана 10 сжатый газ поступает в разгонные полости пневматических раздвижных упоров 161, 162, 163, 164, при этом штоки пневматических раздвижных упоров выдвигаются и создают усилия на центральные стойки, происходит их дополнительный поворот, что приводит к натяжению тросов 24 посадочных опор, при этом центральные стойки устанавливаются в рабочее положение. Благодаря открытию электропневмоклапана 11 сжатый воздух из тормозных полостей пневматических раздвижных упоров свободно выходит в атмосферу и не препятствует выдвижению их штоков.

Claims (1)

  1. Система раскрытия посадочных опор космического корабля, содержащая блок управления с кабелями связи, устройства разделения, устройства выдвижения телескопических штоков, отличающаяся тем, что она снабжена пневмоблоком, пневмоколлекторами и пневматическими раздвижными упорами с контактными датчиками их поворота, устройства разделения и устройства выдвижения телескопических штоков выполнены пневматическими, при этом пневматические раздвижные упоры кинематически связаны с указанными контактными датчиками поворота раздвижных упоров, а устройства выдвижения телескопических штоков снабжены датчиками выдвижения штоков и кинематически связаны с этими датчиками, причем пневмоблок выполнен в виде баллонов высокого давления со сжатым газом, связанных трубопроводами с заправочными клапанами и с электропневмоклапанами, при этом первый из электропневмоклапанов связан входом с первым баллоном, а выходом соединен через первый пневмоколлектор с тормозными полостями пневматических раздвижных упоров, второй электропневмоклапан связан входом со вторым баллоном, а выходом соединен через второй пневмоколлектор с устройствами разделения, а третий электропневмоклапан входом связан с выходом первого электропневмоклапана, а выходом соединен через третий пневмоколлектор с полостями устройств выдвижения телескопических штоков, при этом четвертый электропневмоклапан связан входом с выходом второго электропневмоклапана, а выходом соединен через четвертый пневмоколлектор с разгонными полостями пневматических раздвижных упоров, вход пятого электропневмоклапана связан с выходом первого электропневмоклапана и с входом третьего электропневмоклапана, а выход соединен с атмосферой, при этом электрические входы электропневмоклапанов и электрические выходы контактных датчиков поворота раздвижных упоров и датчиков выдвижения телескопических штоков кабелями связи соединены с блоком управления.
RU2019106191A 2019-03-04 2019-03-04 Система раскрытия посадочных опор космического корабля RU2725004C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019106191A RU2725004C1 (ru) 2019-03-04 2019-03-04 Система раскрытия посадочных опор космического корабля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019106191A RU2725004C1 (ru) 2019-03-04 2019-03-04 Система раскрытия посадочных опор космического корабля

Publications (1)

Publication Number Publication Date
RU2725004C1 true RU2725004C1 (ru) 2020-06-29

Family

ID=71509804

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019106191A RU2725004C1 (ru) 2019-03-04 2019-03-04 Система раскрытия посадочных опор космического корабля

Country Status (1)

Country Link
RU (1) RU2725004C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227494B1 (en) * 1998-06-16 2001-05-08 Lockheed Martin Corporation Deployable spacecraft lander leg system and method
US20070221783A1 (en) * 2004-09-17 2007-09-27 Robert Parks Adaptive landing gear
RU2521451C2 (ru) * 2012-08-15 2014-06-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Посадочное устройство космического корабля
RU2529988C1 (ru) * 2013-02-13 2014-10-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Пневмопривод с тормозным устройством
RU2621416C2 (ru) * 2015-10-27 2017-06-05 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Посадочное устройство космического корабля

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6227494B1 (en) * 1998-06-16 2001-05-08 Lockheed Martin Corporation Deployable spacecraft lander leg system and method
US20070221783A1 (en) * 2004-09-17 2007-09-27 Robert Parks Adaptive landing gear
RU2521451C2 (ru) * 2012-08-15 2014-06-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Посадочное устройство космического корабля
RU2529988C1 (ru) * 2013-02-13 2014-10-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Пневмопривод с тормозным устройством
RU2621416C2 (ru) * 2015-10-27 2017-06-05 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Посадочное устройство космического корабля

Similar Documents

Publication Publication Date Title
Koivumäki et al. High performance nonlinear motion/force controller design for redundant hydraulic construction crane automation
Viquerat et al. Inflatable rigidisable mast for end-of-life deorbiting system
RU2725004C1 (ru) Система раскрытия посадочных опор космического корабля
CN105008226B (zh) 具有电和固体燃料化学推进的空间推进模块
GB1579528A (en) Thrust reverser for a jet engine
CA2491101A1 (en) Zero-g emulating testbed for spacecraft control system
CN109163624B (zh) 一种可分离的火箭推进系统
US20050178601A1 (en) Control device for moving a vehicle closure element
US2639582A (en) Mount for reaction motors
RU2621416C2 (ru) Посадочное устройство космического корабля
CN104648699B (zh) 载人航天飞船囊舱工作室
De Silva Trajectory design for robotic manipulators in space applications
GB1579434A (en) Combined actuation and suspension systems for exhaust nozzles of jet propelled vehicles
US3123230A (en) Manipulators
RU2560645C1 (ru) Система выдачи импульсов тяг
US2451334A (en) Fluid pressure operated actuating device
US2347837A (en) Servomotor
RU2676368C1 (ru) Способ очистки орбит от объектов космического мусора
US3231224A (en) Fluid thrust attitude control system for space vehicles
US3008672A (en) Altitude responsive aircraft jet control
RU2199474C2 (ru) Устройство надувной пассивной системы торможения последней ступени ракеты-носителя
RU2533592C1 (ru) Система подачи топлива двигательной установки космического аппарата
US3170371A (en) Missile snubber mechanism
RU2809408C1 (ru) Возвращаемая верхняя ступень двухступенчатой ракеты-носителя и способ её посадки
CN212423535U (zh) 一种基于气动的太阳翼控制及振动快速抑制机构