RU2724931C1 - Способ траекторного отслеживания боеприпасов - Google Patents

Способ траекторного отслеживания боеприпасов Download PDF

Info

Publication number
RU2724931C1
RU2724931C1 RU2020100457A RU2020100457A RU2724931C1 RU 2724931 C1 RU2724931 C1 RU 2724931C1 RU 2020100457 A RU2020100457 A RU 2020100457A RU 2020100457 A RU2020100457 A RU 2020100457A RU 2724931 C1 RU2724931 C1 RU 2724931C1
Authority
RU
Russia
Prior art keywords
eos
field
tracking
trajectory
ammunition
Prior art date
Application number
RU2020100457A
Other languages
English (en)
Inventor
Михаил Николаевич Белобородов
Валерий Иванович Беляков
Владимир Валентинович Колтунов
Original Assignee
Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (*ФКП "НИИ "Геодезия")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (*ФКП "НИИ "Геодезия") filed Critical Федеральное казенное предприятие "Научно-исследовательский институт "Геодезия" (*ФКП "НИИ "Геодезия")
Priority to RU2020100457A priority Critical patent/RU2724931C1/ru
Application granted granted Critical
Publication of RU2724931C1 publication Critical patent/RU2724931C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B35/00Testing or checking of ammunition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • G01P3/685Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light for projectile velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к области испытательной и измерительной техники, конкретно к способам внешнебаллистических измерений, заключающихся в визуальном отслеживании и регистрации поведения боеприпаса на траектории. Техническим результатом изобретения является повышение информативности испытаний и точности их результатов за счет обеспечения наблюдаемости отслеживаемых объектов по всей траектории полета при снижении энергозатрат на работу используемого оборудования. Способ траекторного отслеживания боеприпасов включает размещение нескольких оптико-электронных станций (ОЭС) слежения для отслеживания движения объекта по предполагаемой траектории, расчет направления перемещения объекта для каждой ОЭС, ориентацию каждой ОЭС на расчетные направления съемки, обработку видеосигнала и передачу результатов съемки для дальнейшего анализа. Для осуществления способа ОЭС размещают со взаимным перекрытием их поля зрения в горизонтальном направлении вдоль возможной траектории полета боеприпаса, ориентацию отдельных ОЭС на направления съемки осуществляют с учетом захвата в поле зрения в вертикальной плоскости «пучка» траекторий, рассчитанных с учетом погрешностей измерений в момент выстрела скорости бросания, угла бросания и азимута. Видеофиксацию ведут поочередным последовательным включением ОЭС. 3 ил.

Description

Изобретение относится к области испытательной и измерительной техники, конкретно к способам внешнебаллистических измерений, заключающихся в визуальном отслеживании и регистрации поведения боеприпаса на траектории, позволяющем при проведении испытаний получать достоверные результаты.
Видеорегистрация и анализ параметров функционирования различных боеприпасов во время движения по траектории от дульного среза орудия до цели, позволяет получать данные об их баллистических характеристиках, поведении в полете, в том числе и непрогнозируемом, условиях возможного аварийного срабатывания отдельных частей изделия, эффективности работы боеприпаса у цели. Эта информация существенно повышает информативность испытаний, и позволяет снизить необходимые сроки на отработку конструкции боеприпаса.
Известен метод определения характеристик траектории движения пиротехнических изделий /1/, позволяющий определять координаты точек срабатывания (разрыва), подъема, догорания, угол отклонения от направления стрельбы, скорость движения пиротехнического изделия, снабженного трассером или работающим двигателем, и радиус разлета горящих (светящихся) элементов.
Сущность метода заключается в визуализации траектории полета пиротехнического изделия видеорегистрацией с двух взаимно перпендикулярных направлений, с записью результатов наблюдений и обработке изображения по заданному алгоритму.
Данный способ требует наличия на испытательной площадке вертикальных реперных знаков - вех, стрельба пиротехническими изделиями ведется преимущественно в вертикальном направлении, а их срабатывание происходит на относительно небольших высотах (не более 500 м), т.е. линейный диапазон траекторного отслеживания невелик. Кроме того способ предусматривает ручное управление процессом видеорегистрации операторами, что в определенных условиях повышает опасность его применения. В силу вышеизложенного, данный метод для траекторного отслеживания артиллерийских снарядов, перемещающихся по длинным (несколько километров) траекториям, практически не применим.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ обнаружения и сопровождения низколетящих целей /2/, по сути - их траекторного отслеживания, включающий размещение нескольких оптико-электронных станций (ОЭС) слежения с возможностью отслеживания движения объекта по предполагаемой траектории, расчет направления перемещения объекта для каждой ОЭС, ориентацию каждой ОЭС на расчетные направления съемки, обработку видеосигнала и передачу результатов съемки для дальнейшего анализа.
Недостатки у данного способа следующие:
- размещение ОЭС не предусматривает перекрытия зон их зрения, что исключает наблюдаемость объекта во всем диапазоне дальностей, высот и скоростей;
- включение ОЭС предполагается сразу всех, что ограничивает возможности способа по энергопотреблению;
- ориентацию каждой ОЭС на расчетные направления съемки осуществляют прогнозно по результатам предварительного радиолокационного измерения, причем без учета диапазона погрешностей измеряемых величин (азимутальные углы, расстояния до летящего объекта, углы места и т.п.).
Технической задачей предлагаемого изобретения в первую очередь является повышение информативности испытаний и точности их результатов за счет обеспечения наблюдаемости отслеживаемых объектов по всей траектории полета - во всем диапазоне дальностей, высот и скоростей, а также снижение энергозатрат на работу используемого оборудования.
Решение задачи достигается тем, что в известном способе траекторного отслеживания боеприпасов, включающем размещение нескольких оптико-электронных станций (ОЭС) слежения с возможностью отслеживания движения объекта по предполагаемой траектории, расчет направления перемещения объекта для каждой ОЭС, ориентацию каждой ОЭС на расчетные направления съемки, обработку видеосигнала и передачу результатов съемки для дальнейшего анализа, в соответствии с изобретением ОЭС размещают со взаимным перекрытием их поля зрения в горизонтальном направлении вдоль возможной траектории полета боеприпаса, ориентацию отдельных ОЭС на направления съемки осуществляют с учетом захвата в поле зрения в вертикальной плоскости «пучка» траекторий, рассчитанных с учетом погрешностей измерений в момент выстрела скорости бросания, угла бросания и азимута, а видеофиксацию ведут поочередным последовательным включением ОЭС.
Таким образом, совокупностью основных отличительных признаков предлагаемого технического решения являются:
- размещение ОЭС со взаимным перекрытием их поля зрения в горизонтальном направлении вдоль возможной траектории полета боеприпаса;
- ориентация отдельных ОЭС на направления съемки с учетом захвата в поле зрения в вертикальной плоскости «пучка» расчетных траекторий, с учетом погрешностей измерений в момент выстрела скорости бросания, угла бросания и азимута;
- поочередное последовательное включение ОЭС для видеофиксации и передачи результатов съемки.
Необходимость и достаточность вышеуказанных отличительных признаков предложенного технического решения может быть пояснена следующим образом.
Размещение ОЭС со взаимным перекрытием их поля зрения в горизонтальном направлении вдоль возможной траектории полета боеприпаса (вдоль баллистической трассы) позволяет регистрировать поведение снаряда в полете от дульного среза орудия до цели без пропусков отдельных участков траектории. Так визуализация траектории снаряда вплоть до цели позволяет также оценить его эффективность при встрече с преградой, что существенно повышает информативность испытаний.
Измерения в момент выстрела характеристик, необходимых для расчета его траектории - скорости бросания Vo, угла бросания θo и азимута β осуществляются каждое со своей некоторой погрешностью, т.е. результат получают в виде «номинальных» значений
Figure 00000001
находящихся в границах полей допусков точности измерений. Очевидно, что в случае всего трех измеряемых вышеуказанных величин «крайнее» значение любой точки расчетной траектории в пространстве может принять одно из 27-ми (3×3×3) значений в границах некоторого «пучка» возможных траекторий, - имеется неопределенность, результат которой может сказаться на точности траекторного отслеживания.
Поэтому учет погрешностей измерений в момент выстрела (скорости бросания, угла бросания и азимута) для расчета «пучка» траекторий позволяет задать более точную исходную ориентацию отдельных ОЭС на направления съемки с захватом «пучка» траекторий в поле зрения в вертикальной плоскости, и тем самым, наряду со взаимным перекрытием поля зрения отдельных ОЭС в горизонтальном направлении, также повысить информативность и точность выполняемых наблюдений.
Наконец, поочередное последовательное включение ОЭС для видеофиксации и съемки позволит снизить общие энергозатраты на проведение испытаний с осуществлением способа.
Для проведения траекторных измерений могут использоваться отечественные мобильные оптико-электронные станции «Вереск» («Вереск-М», «Вереск МР»), а для измерения скорости бросания, угла бросания и азимута - устройства фотоэлектронной блокировки типа ФЭБ-5 и высокоскоростные видеокамеры со специальным программным обеспечением обработки изображений.
Изобретение поясняется следующей графической информацией:
На фиг. 1 схематично представлен пример исполнения программно-аппаратного комплекса (ПАК) для проведения траекторных измерений с размещением ОЭС относительно плоскости бросания по всей длине баллистической трассы со взаимным перекрытием их поля зрения в горизонтальном направлении. Для упрощения изображения средства измерений скорости бросания, угла бросания и азимута условно не показаны.
На фиг. 2 - проекция плоскости стрельбы и азимутальный угол относительно цели в момент выстрела.
На фиг. 3 схематично представлен пример ориентации отдельной ОЭС в направлении съемки с захватом в поле зрения в вертикальной плоскости «пучка» расчетных траекторий.
Необходимое количество ОЭС 1 (№1, №2, …, №n - фиг. 1) размещено вдоль баллистической трассы таким образом, что углы их зрения а в горизонтальном направлении вдоль возможной траектории полета боеприпаса взаимно перекрываются. Ориентация отдельных ОЭС 1 на направления съемки осуществлена с учетом «пучка» траекторий 2 в проекции на плоскость бросания 3. Выстрел боеприпаса осуществляется из орудия 4 в направлении цели 5. В состав ПАК входит центральный вычислительный комплекс 6, содержащий систему единого координатно-временного обеспечения 7, предназначенную для привязки элементов измерительного комплекса к местности и обеспечения временного единства измерений, банк расчетных данных с банком программ 8, блок команд и вычислительный блок 9.
Азимутальный угол β относительно цели в момент выстрела определяется относительно проекции плоскости стрельбы 10 (фиг. 2).
Каждая ОЭС 1 ориентирована в направлении съемки с захватом в поле зрения в вертикальной плоскости «пучка» расчетных траекторий 2 в проекции на плоскость бросания 3 (фиг. 3).
Способ осуществляется по следующему алгоритму.
ОЭС 1 размещают вдоль возможной траектории полета боеприпаса со взаимным перекрытием их поля зрения в горизонтальном направлении, ориентацию отдельных ОЭС на направления съемки осуществляют с учетом захвата в поле зрения в вертикальной плоскости «пучка» траекторий 2, предварительно рассчитанного исходя из условий планируемого выстрела.
По команде, поступающей с ЦБК 6, в направлении цели 5 производится выстрел из орудия 4, расположенного на нулевой отметке трассы. Одновременно осуществляются измерения скорости бросания, угла бросания и азимута (например, локационным способом), и запускается система единого координатно-временного обеспечения 7, которая синхронизирует работу всех измерительных, вычислительных и управляющих систем.
По результатам конкретных измерений скорости бросания, угла бросания и азимута из банка данных 8 «извлекаются» заранее рассчитанные характеристики «пучка» возможных траекторий, в соответствии с которым по команде блока 9 осуществляется уточненная ориентация ОЭС 1 с захватом в поле зрения в вертикальной плоскости «пучка» траекторий 2 в проекции на плоскость бросания 3.
ОЭС №1, в поле зрения которой находится срез ствола орудия 4, захватывает выходящий из ствола снаряд и начинает сопровождать его, одновременно регистрируя его изображение и транслируя его в ЦБК 6.
При подлете снаряда к краю поля зрения ОЭС №1 ЦБК 6 выдает команду ОЭС №2 для захвата и сопровождения летящего снаряда, после чего ОЭС №1 отключается.
ОЭС №2 захватывает снаряд и начинает сопровождать его, одновременно регистрируя его изображение и транслируя его в ЦБК 6.
При подлете снаряда к краю поля зрения ОЭС №2 ЦБК 6 выдает команду для захвата и сопровождения летящего снаряда ОЭС №3, после чего ОЭС №2 отключается.
Далее эти действия повторяются пока снаряд не достигнет цели 5 (ОЭС №n), после чего вся результирующая информация передается на ЦБК 6 и система регистрации вновь приводится в исходное положение для работы с последующими выстрелами.
Таким образом обеспечение наблюдаемости отслеживаемых объектов по всей траектории полета - во всем диапазоне дальностей, высот и скоростей с использованием предложенного способа позволяет повысить информативность испытаний и точность их результатов, снизить энергозатраты на работу используемого энергоемкого оборудования - ОЭС за счет их последовательного включения, а также получать данные об баллистических характеристиках, поведении в полете, в том числе и непрогнозируемом, условиях возможного аварийного срабатывания отдельных частей испытываемого изделия, эффективности работы боеприпаса у цели, что в итоге позволит снизить необходимые сроки на отработку его конструкции.
Источники информации, принятые во внимание при оформлении заявки
1) ГОСТ Р 51271-99. Изделия пиротехнические. Методы испытаний - М.: Стандартинформ, 2011, 67 с.
2) Патент РФ №2361235 от 10.07.2009 «Способ обнаружения и сопровождения низколетящих целей», G01S 13/66 - прототип.

Claims (1)

  1. Способ траекторного отслеживания боеприпасов, включающий размещение нескольких оптико-электронных станций (ОЭС) слежения с возможностью отслеживания движения объекта по предполагаемой траектории, расчет направления перемещения объекта для каждой ОЭС, ориентацию каждой ОЭС на расчетные направления съемки, обработку видеосигнала и передачу результатов съемки для дальнейшего анализа, отличающийся тем, что ОЭС размещают со взаимным перекрытием их поля зрения в горизонтальном направлении вдоль возможной траектории полета боеприпаса, ориентацию отдельных ОЭС на направления съемки осуществляют с учетом захвата в поле зрения в вертикальной плоскости «пучка» траекторий, рассчитанных с учетом погрешностей измерений в момент выстрела скорости бросания, угла бросания и азимута, а видеофиксацию ведут поочередным последовательным включением ОЭС.
RU2020100457A 2020-01-13 2020-01-13 Способ траекторного отслеживания боеприпасов RU2724931C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020100457A RU2724931C1 (ru) 2020-01-13 2020-01-13 Способ траекторного отслеживания боеприпасов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020100457A RU2724931C1 (ru) 2020-01-13 2020-01-13 Способ траекторного отслеживания боеприпасов

Publications (1)

Publication Number Publication Date
RU2724931C1 true RU2724931C1 (ru) 2020-06-26

Family

ID=71136185

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020100457A RU2724931C1 (ru) 2020-01-13 2020-01-13 Способ траекторного отслеживания боеприпасов

Country Status (1)

Country Link
RU (1) RU2724931C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2444464A1 (en) * 2003-10-15 2005-04-15 Dimitri Petrov Method and aparatus for locating the trajectory of a projectile in motion
RU2279105C2 (ru) * 2004-08-02 2006-06-27 Владимир Романович Мамошин Комплексный способ определения координат и параметров траекторного движения авиационно-космических объектов, наблюдаемых группировкой станций слежения
RU2361235C1 (ru) * 2007-12-03 2009-07-10 Открытое акционерное общество "Научно-производственное предприятие "Рубин" (ОАО "НПП "Рубин") Способ обнаружения и сопровождения низколетящих целей
RU106760U1 (ru) * 2010-03-30 2011-07-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Оптико-электронная система сопровождения
US8046951B2 (en) * 2005-11-01 2011-11-01 Leupold & Stevens, Inc. Rangefinders and aiming methods using projectile grouping
RU2442997C2 (ru) * 2009-07-06 2012-02-20 Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования Военная Академия Войсковой Противовоздушной Обороны Вооруженных Сил Российской Федерации Способ измерения дальности и оптико-электронная система (оэс) поиска и сопровождения (варианты)
CN107561930A (zh) * 2017-08-28 2018-01-09 西京学院 一种外弹道组网测试引导控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2444464A1 (en) * 2003-10-15 2005-04-15 Dimitri Petrov Method and aparatus for locating the trajectory of a projectile in motion
RU2279105C2 (ru) * 2004-08-02 2006-06-27 Владимир Романович Мамошин Комплексный способ определения координат и параметров траекторного движения авиационно-космических объектов, наблюдаемых группировкой станций слежения
US8046951B2 (en) * 2005-11-01 2011-11-01 Leupold & Stevens, Inc. Rangefinders and aiming methods using projectile grouping
RU2361235C1 (ru) * 2007-12-03 2009-07-10 Открытое акционерное общество "Научно-производственное предприятие "Рубин" (ОАО "НПП "Рубин") Способ обнаружения и сопровождения низколетящих целей
RU2442997C2 (ru) * 2009-07-06 2012-02-20 Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования Военная Академия Войсковой Противовоздушной Обороны Вооруженных Сил Российской Федерации Способ измерения дальности и оптико-электронная система (оэс) поиска и сопровождения (варианты)
RU106760U1 (ru) * 2010-03-30 2011-07-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Оптико-электронная система сопровождения
CN107561930A (zh) * 2017-08-28 2018-01-09 西京学院 一种外弹道组网测试引导控制方法

Similar Documents

Publication Publication Date Title
US3955292A (en) Apparatus for antiaircraft gunnery practice with laser emissions
US8074555B1 (en) Methodology for bore sight alignment and correcting ballistic aiming points using an optical (strobe) tracer
US4333106A (en) Method of measuring firing misses and firing miss-measuring installation for the performance of the method
US20120274922A1 (en) Lidar methods and apparatus
EP0925516B1 (en) Method for determining an impact point of a fired projectile relative to the target
KR102079688B1 (ko) 대공화기 및 그의 서브 전자광학추적장치를 이용한 사격통제방법
CN104634186B (zh) 对地攻击训练弹丸弹着点激光探测报靶系统
CN108225122A (zh) 一种用于无人机激光制导导弹以门限抑制后向散射的方法
US3882496A (en) Non-destructive weapon system evaluation apparatus and method for using same
Decker et al. Measurement of bullet impact conditions using automated in-flight photography system
RU2007124062A (ru) Способ стрельбы боевой машины по цели (варианты) и информационно-управляющая система для его осуществления
US4253249A (en) Weapon training systems
WO2013055422A2 (en) Optically augmented weapon locating system and methods of use
RU2724931C1 (ru) Способ траекторного отслеживания боеприпасов
RU2694421C1 (ru) Способ борьбы с артиллерией противника
RU2555643C1 (ru) Способ автоматического наведения оружия на подвижную цель
Li Multi-target space position identification and matching algorithm in multi-screen intersection measurement system using information constraint method
RU2558407C2 (ru) Способ определения наклонной дальности воздушной цели по ее установленной скорости
RU2642554C1 (ru) Способ пристрелки цели с использованием квадрокоптера
Brzozowski et al. Radars with the function of detecting and tracking artillery shells-selected methods of field testing
US3286955A (en) Low altitude air defense system and method
RU2595813C1 (ru) Способ стрельбы ракетами и артиллерийскими снарядами с лазерными полуактивными головками самонаведения и в телеметрическом исполнении
Bitan et al. Evaluation systems for antiaircraft artillery and surface-to-air live firing activities
RU2706432C1 (ru) Способ определения времени распознавания цели при стрельбе из танка
RU2818895C1 (ru) Способ контроля результатов боевой стрельбы зенитных комплексов и машина для его реализации