RU2723416C1 - Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине - Google Patents

Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине Download PDF

Info

Publication number
RU2723416C1
RU2723416C1 RU2019117645A RU2019117645A RU2723416C1 RU 2723416 C1 RU2723416 C1 RU 2723416C1 RU 2019117645 A RU2019117645 A RU 2019117645A RU 2019117645 A RU2019117645 A RU 2019117645A RU 2723416 C1 RU2723416 C1 RU 2723416C1
Authority
RU
Russia
Prior art keywords
well
oil
concentration
aqueous solution
repair
Prior art date
Application number
RU2019117645A
Other languages
English (en)
Inventor
Вячеслав Васильевич Климов
Юрий Павлович Арестенко
Анастасия Алексеевна Буркова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2019117645A priority Critical patent/RU2723416C1/ru
Application granted granted Critical
Publication of RU2723416C1 publication Critical patent/RU2723416C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/32Preventing gas- or water-coning phenomena, i.e. the formation of a conical column of gas or water around wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, в частности к ремонтно-изоляционным работам в нефтяных и газовых скважинах, проводимым для ликвидации заколонных перетоков флюидов, ограничения водопритоков, изоляции водоносных горизонтов и повышения эффективности работы скважин. Способ характеризуется тем, что производят закачку за обсадную колонну водного раствора хлористого кальция с концентрацией 10-12% и водного раствора сульфата натрия с концентрацией 13-15% при давлении, не превышающем 70% от допускаемого внутреннего давления на трубы обсадной колонны. Выдерживают скважину в покое 15-30 мин до завершения образования осадка CaSOпо приведенной химической формуле. Затем закачивают водный раствор полиакриламида с концентрацией 0,5-3% для создания эффекта докрепления изолируемого интервала при том же значении давления с последующей выдержкой скважины в течение 2-7 ч до завершения процесса гелеобразования. Техническим результатом является повышение герметичности заколонного пространства нефтегазовых скважин, изоляция пластовых флюидов, поступающих к перфорационным отверстиям из нижележащих или вышележащих пластов по трещинам в цементном камне и зазорам на контактах «колонна-цемент-порода», и сокращение времени образования тампонирующего вещества при заполнении каналов перетока в скважине. 1 пр., 1 ил.

Description

Изобретение относится к нефтегазодобывающей промышленности, в частности к ремонтно-изоляционным работам в нефтяных и газовых скважинах, проводимым для ликвидации заколонных перетоков флюидов, ограничения водопритоков, изоляции водоносных горизонтов и повышения эффективности работы скважин.
Известен способ проведения ремонтно-изоляционных работ (РИР) в условиях больших поглощений (патент РФ 2405926)), который включает закачку в интервал поглощения суспензии фосфогипса и жидкого натриевого стекла. При этом в скважину предварительно закачивают оторочку из 1-3 м3 нефтекислотной эмульсии, а далее в 1-4 цикла последовательно закачивают равные количества стекла натриевого жидкого и 50%-ной водной суспензии фосфогипса с суммарным объемом одного цикла от 4 до 8 м3 с промежуточной закачкой между ними буфера из пресной воды. Далее после закачивания стекла натриевого жидкого и 50%-ной водной суспензии фосфогипса закачивают цементный раствор.
Основным недостатком этого способа является низкая эффективность герметизации заколонного пространства из-за низкой проникающей способности цементного раствора в трещины и каналы в горных породах и в цементном камне, а также прямые потери углеводородного сырья.
Известен способ проведения ремонтно-изоляционных работ в скважинах согласно патента РФ №2356929 МПК С09К 8/04 (2006.01), Е21В 33/138 (2006.01) с применением вязкоупругого состава, включающего в себя полиакриламид, сшивающий агент, регулятор гелеобразования, наполнитель растительного происхождения и воду, причем в качестве сшивающего агента применяют нитрат хрома, а в качестве регулятора гелеобразования - сульфаминовую кислоту и дополнительно «Монасил», а в качестве наполнителя растительного происхождения - органоминеральный реагент «АПТОН-РС» при следующем соотношении ингредиентов, мас. %: полиакриламид 1,4-1,9; нитрат хрома 0,25-0,32; сульфаминовая кислота 1,5-0,23; монасил 0,11-0,23; органический реагент «АПТОН-РН» 5-11; вода остальное.
Основными недостатками этого способа являются:
- невозможность герметизации заколонного пространства скважин из-за низкой проникающей способности реагентов в микротрещины и каналы в горных породах и в цементном камне;
- высокая экологическая опасность и биологическая вредность солей хрома.
Известен «Способ изоляции обводненных нефтяных коллекторов» согласно патента РФ №2224101. Суть способа заключается в получении устойчивого объемного изоляционного материала, эффективно препятствующего прорыву пластовых и нагнетательных вод, за счет закачки в пласт водной суспензии структурообразующего вещества - гипса и водного раствора силиката одновалентного катиона, причем в качестве гипса используют гипс химический - фосфогипс, фторогипс, борогипс, магнезия-гипс, гидролизный гипс, а одновалентным катионом является натрий, калий, литий. Указанная суспензия содержит гипс химический с концентрацией 2,1-7,5%, а указанный раствор используют с концентрацией 21-50%, причем закачку водной суспензии и водного раствора осуществляют одновременно или последовательно. Кроме того указанная суспензия может содержать дополнительно наполнитель - бентонитовую глину, древесную муку, кварцевый песок при следующем соотношении химический гипс: наполнитель 1-10:1.
Основными недостатками данного способа является низкая эффективность герметизации заколонного пространства за счет:
- длительного времени структурирования ремонтного состава (в течение 1-3 сут);
- низкой седиментационной устойчивости указанного состава (из-за осаждения фосфогипса);
- низкой прокачиваемости в изолируемых интервалах при малой приемистости;
- невозможности заполнения микротрещин и каналов в горных породах и в цементном камне из-за наличия в ремонтном составе твердой фазы.
Прототипом изобретения является «Способ ликвидации зон поглощения в скважине» согласно патента РФ №2405927, включающий одновременную закачку двух потоков - жидкого носителя с фосфогипсом и со стеклом натриевым жидким, в качестве жидкого носителя используют глинистый буровой раствор, содержащий карбоксиметилцеллюлозу или карбоксиметилированный крахмал, а указанную закачку осуществляют параллельно со смешением потоков перед закачкой в изолируемый интервал пласта. Объем потоков определяется в зависимости от приемистости изолируемого интервала и составляет от 10 до 50 м3.
После закачки в изолируемый интервал и смешения двух параллельных потоков происходит структурирование (отверждение) за счет взаимодействия фосфогипса со стеклом натриевым жидким, в результате чего образуется тампонирующая масса, обладающая улучшенными прочностными и водоизолирующими свойствами.
Основными недостатками данного способа является низкая эффективность герметизации заколонного пространства скважин за счет:
- невозможности герметизации заколонного пространства из-за низкой проникающей способности ремонтного состава в трещины и каналы в горных породах и в цементном камне;
- непродолжительности достигаемого эффекта (несколько месяцев после проведения ремонтно-изоляционных работ).
Таким образом, можно сделать вывод, что рассмотренные выше технические решения имеют существенные ограничения к применению в скважинах на нефтегазовых месторождениях по указанным причинам.
Задачей изобретения является повышение эффективности РИР, увеличение продолжительности их межремонтного периода, снижение биологической опасности и экологических нагрузок.
Техническим результатом изобретения является повышение герметичности заколонного пространства нефтегазовых скважин, изоляция пластовых флюидов, поступающих к перфорационным отверстиям из нижележащих или вышележащих пластов по трещинам в цементном камне и зазорам на контактах «колонна-цемент-порода»), и сокращение времени образования тампонирующего вещества при заполнении каналов перетока в скважине.
Технический результат достигается тем, что способ проведения ремонтно-изоляционных работ в нефтегазовой скважине, характеризующийся тем, что производят закачку за обсадную колонну водного раствора хлористого кальция с концентрацией 10-12% и водного раствора сульфата натрия с концентрацией 13-15% при давлении, не превышающем 70% от допускаемого внутреннего давления на трубы обсадной колонны, выдерживают скважину в покое 15-30 минут до завершения образования осадка CaSO4 по формуле (1):
Figure 00000001
и последующую закачку водного раствора полиакриламида с концентрацией 0,5-3%, для создания эффекта докрепления изолируемого интервала при том же значении давления с выдержкой скважины в покое в течении 2-7 часов до завершения процесса гелеобразования.
Повышение герметичности заколонного пространства нефтегазовых скважин с использованием предлагаемого способа проведения РИР достигается тем, что в изолируемом интервале:
- обеспечивается глубокое проникновение водных растворов Na2SO4 и CaCI2 в каналы и трещины в цементном камне;
- протекает химическая реакция по уравнению (1) с образованием твердого вещества - сульфата кальция CaSO4 (гипса) [1,2], выпадающего в осадок и заполняющего микротрещины, пустоты и флюидопроводящие каналы за обсадными колоннами.
Полученная тампонирующая масса обладает:
- улучшенными изолирующими свойствами;
- малым временем схватывания - от 2 до 15 минут (согласно работ авторов: Белов, В.В. Современные эффективные гипсовые вяжущие, материалы и изделия. Научно-справочное издание / В.В. Белов, А.Ф. Бурьянов, В.Б. Петропавловская; под общ. ред. А.Ф. Бурьянова. Тверь: ТГТУ, 2007. 132 с. стр. 21-23);
- коррозионной стойкостью и высокой адгезией к колонне, породе и старому тампонажному камню.
Закачка за обсадную колонну водного раствора CaCI2 и водного раствора Na2SO4 и выдержка скважины в покое в течение времени, необходимого для протекания реакции по формуле 1, осуществляется при давлении, не превышающем 70% от допускаемого внутреннего давления на трубы обсадной колонны во избежание порыва обсадных труб при возможных скачках давления.
Скорость протекания химической реакции для каждой скважины будет разной из-за разных температурных условий и не превышает 30-50 минут. Побочным продуктом реакции по уравнению (1) является образование водного раствора хлористого натрия NaCI.
Для создания эффекта докрепления изолируемых пространств за обсадную колонну дополнительно закачивают раствор полиакриламида (ПАА) с концентрацией 0,5-3%. (При большей концентрации ПАА консистенция гелеобразной субстанции увеличивается и могут возникнут трудности при его прокачке за обсадную колонну) [3].
В результате взаимодействия ПАА с NaCI происходит его коагуляция с образованием геля и «склеивание» микроскопических частичек CaSO4.
Таким образом, в результате докрепления, повышается герметичность изолируемого интервала с образованием непроницаемого тампона в каналах и трещинах в цементном камне и зазорах в системе колонна-цемент-порода.
Для каждой скважины, в зависимости от пластовой температуры, время протекания процесса гелеобразования будет разным. Экспериментально установлено, что при температуре 20-22°С процесс гелеобразования ПАА заканчивается через 5-7 часов.
В предлагаемом способе проведения ремонтно-изоляционных работ в нефтегазовой скважине, в отличие от прототипа, не используется крупнодисперсная твердая фаза (песок, техническая бетонитовая глина, цемент и т.п.), что особенно важно при проведении РИР по восстановлению герметичности заколонного пространства с малой приемистостью, поскольку крупнодисперсная фаза не пройдет зазоры в системе: колонна-цемент-порода, а также в микротрещины и флюидопроводящие каналы в цементном камне.
Указанный способ может быть эффективно использован для ликвидации заколонных перетоков флюидов (жидкостей, газа и газожидкостных смесей), ограничения водопритоков в нефтегазовых скважинах из нижележащих или вышележащих водоносных пластов. Он отличается:
- возможностью образования непроницаемого тампона для жидкостей, газа и газожидкостных смесей;
- отсутствием биологических и экологических ограничений к применению;
- возможность применения серийного оборудования и традиционных технологий закачки герметизирующих составов при проведении ремонтных работ.
На фиг. 1 показана схема нефтегазовой скважины, где:
стенка скважины 1; эксплуатационная колонна 2; цементный камень 3; колонна НКТ 4; продуктивный пласт 5; интервал перфорации 6; межтрубное пространство 7 (пространство между эксплуатационной колонной и колонной НКТ).
Способ осуществляют, например, следующим образом:
1. Спускают колонну НКТ 4 в эксплуатационную колонну 2 до верхних отверстий интервала перфорации 6 и производят отсыпку песком пространства внутри эксплуатационной колонны 2 в интервале от забоя до верхних перфорационных отверстий (для защиты продуктивного пласта 5 от прокачиваемых жидкостей). При этом объем образующейся песчаной пробки внутри эксплуатационной колонны 2 контролируют по объему технической воды, вытесняемой из ее внутриколонного пространства.
2. Подключают насосный агрегат к НКТ 4 (не показано) и определяют приемистость скважины закачкой технической воды при давлении закачки, не превышающем 70% от допустимого внутреннего давления на трубы обсадной колонны.
3. После определения приемистости скважины, приготавливают в двух раздельных емкостях расчетные количества водных растворов CaCI2 и Na2SO4 в соответствии с уравнением (1).
4. Устанавливают первую разделительную манжету - пробку внутри колонны НКТ 4 и подсоединяют к ней первый насосный агрегат с водным раствором CaCI2.
5. Закачивают расчетное количество приготовленного водного раствора CaCI2 внутрь колонны НКТ 4 при открытой задвижке межтрубного пространства 7.
6. Отсоединяют первый насосный агрегат от колонны НКТ 4 и устанавливают вторую разделительную манжету - пробку внутри колонны НКТ 4.
7. Подсоединяют второй насосный агрегат с водным раствором Na2SO4 к колонне НКТ 4 и закачивают в нее пачку водного раствора Na2SO4 в расчетном количестве согласно уравнения (1).
8. Отсоединяют второй насосный агрегат от колонны НКТ 4 и устанавливают третью разделительную манжету - пробку внутри колонны НКТ 4.
9. Наполняют второй насосный агрегат продавочной жидкостью (например, технической водой) и подсоединяют его к колонне НКТ 4.
10. Продавливают расчетное количество приготовленного водного раствора CaCI2 в межтрубное пространство 7, исходя из известного внутреннего объема НКТ 4, а также объемов водного раствора Na2SO4.
11. Наполняют первый насосный агрегат продавочной жидкостью (например, технической водой) и подсоединяют его к межтрубному пространству 7.
12. Производят одновременную продавку водного раствора CaCI2 и водного раствора Na2SO4 за обсадную колонну 2 в ремонтируемую зону при (одинаковой производительности насосных агрегатов) через верхние отверстия интервала перфорации 6 путем создания давления в межколонном пространстве 7 (с помощью первого насосного агрегата) и в НКТ 4 (с помощью второго насосного агрегата).
13. Закрывают задвижки на устье скважины и отсоединяем первый и второй насосные агрегаты.
14. Скважину выдерживают под давлением (не превышающем 70% от допускаемого внутреннего давления на трубы обсадной колонны) в течение времени, достаточного для протекания реакции, в результате которой в пустотах и флюидопроводящих каналах образуется гипс-алебастр по уравнению (1). (При уменьшении или сбросе давления возможно обратное движение прокачиваемых растворов CaCI2 и Na2SO4 из заколонного пространства во внутриколонное).
15. Устанавливают четвертую разделительную манжету - пробку внутри колонны НКТ 4 и производят закачку раствора полиакриламида в расчетном объеме в НКТ 4 при открытой задвижке межтрубного пространства 7.
16. Устанавливают пятую разделительную манжету - пробку в колонну НКТ 4 и присоединяют первый насосный агрегат с объемом продавочной жидкости, достаточным для продавливания пачки полиакриламида в ремонтируемую зону.
17. Продавливают пачку полиакриламида в ремонтируемую зону при закрытой задвижке межколонного пространства 7, а затем закрывают задвижки межтрубного пространства и НКТ и отсоединяют насосный агрегат от НКТ 4.
18. Выдерживают скважину в покое в течение времени, достаточного для образования гелеобразной массы.
19. Производят проверку герметичности заколонного пространства, вымывают песчаную пробку и производят очистку интервала перфорации от остатков гелеобразной массы полиакриламида, продуктов реакции и остатков разделительных манжет. \
20. Осуществляют вызов притока добываемой углеводородной продукции известными способами с последующим пуском скважины в эксплуатацию.
Предлагаемый способ проведения ремонтно-изоляционных работ в нефтегазовых скважинах может быть легко реализуем при использовании стандартных быстросъемных соединений (БСС) и другого стандартного оборудования, традиционно применяемого при проведении ремонтно-изоляционных работ [4] известных приемов, причем в качестве разделительных манжет-пробок может быть использован легко разрушаемый тампон из волокнистого материала (например, пакли), пропитанный гипсовым «молоком».
Кроме того, для разобщения пластов - коллекторов с различным флюидосодержанием (нефте-газо-водоносных), залегающих в стволе скважины на разных глубинах, закачка ремонтного состава в зону негерметичности заколонного пространства может производиться по данному способу не только через верхние перфорационные отверстия, но и через специальные (технологические) отверстия в обсадной колонне и с использованием другого известного нефтегазового оборудования [4].
Пример конкретной реализации способа проведения ремонтно-изоляционных работ в нефтегазовой скважине глубиной 985 метров (Краснодарский край).
Конструкция скважины: направление диаметром 426 мм, спущено на глубину 6 метров; кондуктор диаметром 245 мм, спущен на 250 м; техническая колонна диаметром 245 мм, спущена на 860 м; эксплуатационная колонна диаметром 168 мм, спущена до глубины 985 м. Все колонны зацементированы до устья, однако заколонное пространство скважины оказалось негерметичным и вокруг устья наблюдались грифоны [5].
Порядок проведения РИР:
1. Подготовили рабочую площадку у устья скважины в соответствии с действующими нормативными документами и едиными правилами безопасности в нефтегазовой промышленности.
2. Подготовили оборудование для проведения РИР, доставили необходимые реагенты для приготовления рабочих растворов на земной поверхности при атмосферном давлении.
3. Заглушили скважину глинистым раствором плотностью 1240 кг/м3 во избежание флюидопроявлений.
4. Перед закачкой рабочих растворов CaCI2 и Na2SO4 в скважину, спустили следующую компоновку:
- пакер с опорой пятой, которая упирается в верхнюю часть фильтра, и циркуляционным клапаном;
- НКТ диаметром 89 мм, длиной 83 м;
- гидроперфоратор с двумя насадками диаметром 4 мм;
- НКТ диаметром 89 мм до устья.
5. Разгрузкой НКТ на 5÷6 т произвели распакеровку с последующей установкой на устье фонтанной арматуры, а затем опрессовали пакер давлением раствора 25,0 МПа через межтрубное пространство.
6. Промыли два технологических отверстия в эксплуатационной колонне на глубинах 881 и 887 метров с помощью гидроперфоратора и агрегата АН-700 при давлении 25 МПа.
7. Определили приемистость заколонного пространства после перфорации - она составила при давлении 14,0 МПа 0,51 м3 за 5 минут.
8. Приготовили по 1 м3 растворов CaCI2 и Na2SO4 (с целью обеспечения некоторого запаса ремонтного состава), исходя из количественных соотношений, определяемых условиями протекания реакции по уравнению (1). Так, для приготовления 1 м3 водного раствора CaCI2 с концентрацией 10% взяли 25,5 кг CaCI2 и 227,2 литров технической воды, а для приготовления водного раствора Na2SO4 с концентрацией 13% - 43,01 кг Na2SO4 и 288,01 литров технической воды.
9. Определили в лабораторных условиях время протекания реакции образования CaSO4 по уравнению (1) при температуре, равной температуре в зоне закачки (на глубинах 881 и 887 метров). Для данной скважины указанная температура составила 48,7°С, а время окончания реакции - 11 минут.
10. Подключили первый насосный агрегат к межколонному пространству, а второй - к НКТ и произвели одновременную закачку (продавку) водных растворов CaCI2 и Na2SO4 за обсадную колонну в ремонтируемую зону через технологические отверстия путем создания давления в межколонном пространстве (с помощью первого насосного агрегата) и в НКТ (с помощью второго насосного агрегата).
11. Закрыли задвижки на устье скважины и отключили первый и второй насосные агрегаты.
12. Скважину выдержали в покое под давлением в течение 20 минут.
13. Приготовили 1 м3 водного раствора полиакриламида с концентрацией 1%, при следующем расходе компонентов: 4,203 кг полиакриламида и 412 литров технической воды.
14. Произвели его закачку через НКТ и оставили скважину в покое на 6 часов для образования гелеобразной массы.
15. Проверили герметичность заколонного пространства, удалили песчаную пробку и произвели очистку интервала перфорации от остатков полиакриламида, продуктов реакции и разделительной манжеты.
В результате проведенных РИР, в заколонном пространстве скважины был сформирован непроницаемый для газа экран и скважина была пущена в работу без грифонов и межколонных давлений.
Источники информации
1. Будников П.П. Гипс и его исследование, второе исправленное и дополнительное издание, издательство академии наук СССР, Ленинград 1933 г., 266 с.
2. Вихтер Я.И. Производство гипса, всесоюзное учебно-педагогическое издательство, М., Профтехиздат Москва 1962, 242 с. с илл.
3. Басарыгин Ю.М., Булатов А.И., Дадыка В.И., Материалы и реагенты для ремонтно-изоляционных работ в нефтяных и газовых скважинах. - М.: ООО «Недра-Бизнесцентр», 2004. - 349 с. ил.
4. А.Г. Аветисов, А.Т., Кошелев, В.И. Крылов «Ремонтно-изоляционные работы при бурении нефтяных и газовых скважин. М., Недра, 1981. 215 с.
5. Басарыгин Ю.М., Макаренко П.П., Мавромати В.Д. Ремонт газовых скважин. - М.: ОАО издательство «Недра», 1998 - 271 с: ил.

Claims (3)

  1. Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине, характеризующийся тем, что производят закачку за обсадную колонну водного раствора хлористого кальция с концентрацией 10-12% и водного раствора сульфата натрия с концентрацией 13-15% при давлении, не превышающем 70% от допускаемого внутреннего давления на трубы обсадной колонны, выдерживают скважину в покое 15-30 мин до завершения образования осадка CaSO4 по формуле (1)
  2. Figure 00000002
  3. а затем закачивают водный раствор полиакриламида с концентрацией 0,5-3%, для создания эффекта докрепления изолируемого интервала при том же значении давления с последующей выдержкой скважины в течение 2-7 ч до завершения процесса гелеобразования.
RU2019117645A 2019-06-06 2019-06-06 Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине RU2723416C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117645A RU2723416C1 (ru) 2019-06-06 2019-06-06 Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117645A RU2723416C1 (ru) 2019-06-06 2019-06-06 Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине

Publications (1)

Publication Number Publication Date
RU2723416C1 true RU2723416C1 (ru) 2020-06-11

Family

ID=71096066

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117645A RU2723416C1 (ru) 2019-06-06 2019-06-06 Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине

Country Status (1)

Country Link
RU (1) RU2723416C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768785C1 (ru) * 2021-03-24 2022-03-24 Ильшат Ахметович Мустафин Способ восстановления разрушенных месторождений нефти
RU2785984C1 (ru) * 2022-04-12 2022-12-15 Общество с ограниченной ответственностью "Интеллект-Развитие-Технологии" Способ проведения ремонтно-изоляционных работ в скважине

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2175053C1 (ru) * 2000-02-14 2001-10-20 Открытое акционерное общество "Сибирская инновационная нефтяная корпорация" Способ выравнивания профиля приемистости нагнетательных скважин
RU2204016C1 (ru) * 2001-10-12 2003-05-10 Шарифуллин Фарид Абдуллович Способ разработки нефтяной залежи
RU2405927C1 (ru) * 2010-01-11 2010-12-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ ликвидации зон поглощения в скважине
RU2447127C2 (ru) * 2010-07-23 2012-04-10 Ибрагим Измаилович Абызбаев Состав для регулирования проницаемости неоднородного нефтяного пласта
WO2012080296A1 (en) * 2010-12-17 2012-06-21 Akzo Nobel Chemicals International B.V. Process and fluid to improve the permeability of sandstone formations using a chelating agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2175053C1 (ru) * 2000-02-14 2001-10-20 Открытое акционерное общество "Сибирская инновационная нефтяная корпорация" Способ выравнивания профиля приемистости нагнетательных скважин
RU2204016C1 (ru) * 2001-10-12 2003-05-10 Шарифуллин Фарид Абдуллович Способ разработки нефтяной залежи
RU2405927C1 (ru) * 2010-01-11 2010-12-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ ликвидации зон поглощения в скважине
RU2447127C2 (ru) * 2010-07-23 2012-04-10 Ибрагим Измаилович Абызбаев Состав для регулирования проницаемости неоднородного нефтяного пласта
WO2012080296A1 (en) * 2010-12-17 2012-06-21 Akzo Nobel Chemicals International B.V. Process and fluid to improve the permeability of sandstone formations using a chelating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768785C1 (ru) * 2021-03-24 2022-03-24 Ильшат Ахметович Мустафин Способ восстановления разрушенных месторождений нефти
RU2785984C1 (ru) * 2022-04-12 2022-12-15 Общество с ограниченной ответственностью "Интеллект-Развитие-Технологии" Способ проведения ремонтно-изоляционных работ в скважине

Similar Documents

Publication Publication Date Title
US6732797B1 (en) Method of forming a cementitious plug in a well
SA517381160B1 (ar) أسمنت ذاتي الالتئام يشتمل على بوليمر قادر على الانتفاخ في بيئة غازية
NO20160856A1 (en) Colloidal high aspect ratio nanosilica additives in sealants and methods relating thereto
US10047587B2 (en) Methods for producing fluid invasion resistant cement slurries
RU2386787C9 (ru) Способ строительства конструкции глубокой скважины, тампонажный раствор для его осуществления и конструкция глубокой скважины
US20150232736A1 (en) Methods for Producing Fluid Migration Resistant Cement Slurries
AU2015390249A1 (en) Fracture having a bottom portion of reduced permeability and a top portion having a higher permeability
RU2571474C1 (ru) Способ изоляции водопритоков в трещиноватых карбонатных коллекторах
US20180065891A1 (en) Carbon dioxide-resistant portland based cement composition
RU2320849C2 (ru) Способ строительства и эксплуатации скважин
RU2723416C1 (ru) Способ проведения ремонтно-изоляционных работ в нефтегазовой скважине
US20080099202A1 (en) Method of cementing well bores
Gu et al. Solidifying mud cake to improve cementing quality of shale gas well: a case study
RU2580565C1 (ru) Способ заканчивания скважины
AU2012301442A1 (en) Carbon dioxide-resistant Portland based cement composition
CN105567188B (zh) 用于提高氰凝类堵漏剂堵漏性能的助剂及其制备方法,氰凝类堵漏剂
RU2569941C2 (ru) Способ изоляции подошвенной воды
RU2209928C1 (ru) Способ изоляции зон поглощения в скважине
RU2459072C1 (ru) Способ гидроразрыва малопроницаемого пласта нагнетательной скважины
RU2378493C1 (ru) Способ расконсервации нефтегазовой скважины с негерметичной эксплуатационной колонной в условиях наличия в разрезе многолетнемерзлых пород
RU2283422C1 (ru) Способ изоляции зон водопритока в скважине
RU2519262C1 (ru) Способ изоляции пластов цементосиликатными растворами
RU2273722C2 (ru) Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины
RU2618539C1 (ru) Способ ремонтно-изоляционных работ в скважине
RU2528805C1 (ru) Способ повышения нефтеотдачи в неоднородных, высокообводненных, пористых и трещиновато-пористых, низко- и высокотемпературных продуктивных пластах