RU2723152C1 - Способ ультразвуковой спектрометрии при исследовании биологических жидкостей - Google Patents

Способ ультразвуковой спектрометрии при исследовании биологических жидкостей Download PDF

Info

Publication number
RU2723152C1
RU2723152C1 RU2019134163A RU2019134163A RU2723152C1 RU 2723152 C1 RU2723152 C1 RU 2723152C1 RU 2019134163 A RU2019134163 A RU 2019134163A RU 2019134163 A RU2019134163 A RU 2019134163A RU 2723152 C1 RU2723152 C1 RU 2723152C1
Authority
RU
Russia
Prior art keywords
frequency
peak
resonant
determined
width
Prior art date
Application number
RU2019134163A
Other languages
English (en)
Inventor
Максим Евгеньевич Асташев
Сергей Владимирович Гудков
Антон Владимирович Молочков
Иван Михайлович Дементьев
Елена Николаевна Кудрявцева
Original Assignee
Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) filed Critical Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского)
Priority to RU2019134163A priority Critical patent/RU2723152C1/ru
Application granted granted Critical
Publication of RU2723152C1 publication Critical patent/RU2723152C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Использование: для ультразвуковой спектрометрии при исследовании биологических жидкостей. Сущность изобретения заключается в том, что выполняют проведение измерения резонансной частоты и ширины резонансного пика образца биологической жидкости в акустической ячейке ультразвукового спектрометра фиксированной длины. Проведение измерения резонансной частоты ячейки с исследуемым образцом проводят последовательно относительно ячейки с дистиллированной водой, непосредственно оцифровывают опорный сигнал и сигнал на выходе из акустических ячеек, полученную информацию в виде массива акустических параметров и коэффициентов поглощения передают в персональный компьютер и обрабатывают с помощью программного обеспечения. С выхода синтезатора сигнал гармонических колебаний заданной частоты подают на вход резонатора и одновременно на первый вход аналого-цифрового преобразователя (АЦП). Запускают процесс синхронной дискретизации сигналов с обоих каналов аналого-цифрового преобразователя, вычисляют характеристики АЧХ и ФЧХ. В окрестности предполагаемой резонансной частоты формируется сетка частот. Определяют вторую производную фазы и зависимость, которую аппроксимируют прямой. С помощью полученных данных определяют текущую резонансную частоту и текущую ширину резонансного пика. Технический результат: увеличение точности и скорости измерения резонансной частоты и ширины резонансного пика в ультразвуковых спектрометрах фиксированной длины. 2 ил.

Description

Изобретение относится к медицине, а именно к ультразвуковой интерферометрии, и предназначено для ультразвуковой спектрометрии при исследовании биологических жидкостей.
Исследование физических характеристик биологических жидкостей является актуальной задачей, имеющей как самостоятельное научное (т.к. организм создает уникальные по своим свойствам жидкости и структуры), так и прикладное значение в области медицины и биологии. В настоящее время известен целый ряд физических методов, с помощью которых можно получать разнообразную информацию о биологических средах, т.е. средах, содержащих малые молекулы (органические и неорганические), макромолекулы (биополимеры: белки, полипептиды, нуклеиновые кислоты), клеточные и субклеточные элементы, которые имеют биологическое происхождение. Примерами жизненно важных биосред являются кровь, лимфа, желудочный сок, слюна, различные внутренние органы и ткани человека.
Экспериментальные исследования физических характеристик биосред имеют, некоторые особенности, которые связаны с их спецификой, поэтому это накладывает определенные ограничения на выбор физического метода их исследования. Определенные успехи при изучении биосред были сделаны при использовании ультразвуковых методов для измерения их акустических характеристик. Именно акустические исследования этих биологических сред позволяют изучить тонкие структурные характеристики, их межмолекулярные взаимодействия и конформационные перестройки.
Исследование физических характеристик биологических жидкостей является актуальной задачей, имеющей как самостоятельное научное (т.к. организм создает уникальные по своим свойствам жидкости и структуры), так и прикладное значение в области медицины и биологии. В настоящее время известен целый ряд физических методов, с помощью которых можно получать разнообразную информацию о биожидкостях (Буров В.А. и др., Активная и пассивная медицинская акустическая томография сильно неоднородных сред, Биомедицинские технологии и радиоэлектроника. 2002. №3. с. 5-13), т.е. водных растворах и суспензиях, содержащих малые молекулы (органические и неорганические), макромолекулы (биополимеры: белки, полипептиды, нуклеиновые кислоты), клеточные и субклеточные элементы, которые имеют биологическое происхождение. Примерами жизненно важных биожидкостей являются кровь, лимфа, желудочный сок, слюна.
Экспериментальные исследования физических характеристик биожидкостей имеют, по сравнению с обычными жидкостями, некоторые особенности, которые связаны с их спецификой.
Компоненты биожидкостей сохраняют нативное (естественное) состояние в ограниченном интервале внешних условий. Поэтому физические методы, не позволяющие работать с биожидкостями в нативном состоянии, заведомо дадут искаженную информацию. Измерения их физических характеристик необходимо производить в условиях, близких к условиям организма. Биожидкость, постоянно взаимодействуя с организмом, отражает изменения, которые происходят в нем под действием внешних факторов. Следовательно, в каждый момент времени их физические характеристики различны и, несмотря на то, что в нормальном состоянии адаптационные системы организма поддерживают постоянство внутренней среды, всегда приходится иметь дело с усредненными физическими характеристиками биологических жидкостей. Физический метод исследования биожидкостей, основанный на взаимодействии какого - либо вида энергии с биологической средой, должен незначительно возмущать равновесные состояния, существующие в жидкости, чтобы не вызвать необратимых изменений. Отсюда вытекает требование высокой чувствительности приемного устройства в установке, реализующей метод исследования биожидкостей.
Небольшие изменения внешних условий приводят к незначительным изменениям биосред. Тем не менее, эти небольшие изменения могут повлечь за собой серьезные последствия для организма. Это означает, что для исследования необходим метод, позволяющий регистрировать крайне малые изменения их свойств, т.е. обладающий повышенной точностью изменения регистрируемых параметров.
Биожидкости могут иметь как высокую (кровь, лимфа), так и низкую (желудочный сок) концентрацию компонентов. Поэтому, при выборе физического метода их исследования желательно, чтобы была возможность извлекать информацию о физических свойствах как в высоко-, так и в низко-концентрированных биожидкостях.
Все выше сказанное накладывает определенные ограничения на выбор физического метода исследования свойств биожидкостей.
Определенные успехи при изучении биосред были сделаны при использовании ультразвуковой интерферометрии для измерения акустических характеристик растворов белков и аминокислот. Именно акустические исследования этих биологических жидкостей позволяют изучить тонкие структурные характеристики и гидратацию биологических макромолекул в растворе, их межмолекулярные взаимодействия и конформационные перестройки биополимеров.
Ультразвуковые методы с целью их применения для исследования биологических сред использовались еще с девятнадцатого века, однако для медико-биологических приложений, в частности, в области медицинской диагностики известные технические решения применять не представляется возможным из-за того, что биосреды организма человека, используемые для медицинской диагностики (кровь, образцы внутренних органов), как правило, могут быть использованы в очень ограниченном объеме, а также точность измерений скорости и поглощения ультразвука должна быть предельно высокой для высококонцентрированных биосред (Клемин В.А Безреагентная диагностика: акустические технологии, Н. Новгород, 2014 г., 12 с.).
Известны различные способы измерения резонансной частоты в таких ячейках. Широкое применение получил способ, реализованный в устройстве (SU 1758510 А1, 30.08.1992), которое выполнено на базе экстремального регулятора. В этом устройстве высокочастотный генератор, управляемый напряжением (ГУН), автоматически настраивается на резонансную частоту радиочастотного датчика и отслеживает все ее изменения. При этом частота высокочастотного генератора осциллирует около максимума амплитудно-частотной характеристики (АЧХ) этого датчика и усредненное значение этой частоты считается резонансной частотой этого датчика. Однако данный способ имеет следующие недостатки. Получаемые данные могут быть значительно искажены за счет множества резонансных пиков при произвольном захвате соседних резонансных пиков, погрешность измерения частоты зависит от времени измерения.
Кроме того, в уровне техники известен способ ультразвуковой спектрометрии при исследовании биологических жидкостей (Клемин В.А Безреагентная диагностика: акустические технологии, Н. Новгород, 2014 г., 12 с.), принятый нами за прототип. Способ заключается в проведении исследования образца биологической жидкости в акустической ячейке ультразвукового спектрометра фиксированной длины, а именно подаче на пластины пьезопреобразователей ячейки высокочастотного сигнала, частотное и температурное сканирование исследуемого образца, при этом проведение измерения резонансной частоты ячейки с исследуемым образцом проводят последовательно относительно ячейки с дистиллированной водой, непосредственно оцифровывают опорный сигнал и сигнал на выходе из акустических ячеек, полученную информацию в виде массива акустических параметров и коэффициентов поглощения передают в персональный компьютер и обрабатывают с помощью программного обеспечения. Способ обладает следующими недостатками: во-первых, сигнал при подаче гармонических колебаний заданной частоты на вход резонатора подвержен искажениям за счет нарушения нормальных амплитудных и фазовых соотношений между отдельными парами боковых частот, что негативно влияет на погрешность измерения при изменении резонансной частоты в ячейке во время измерения, во-вторых, погрешность измерения частоты зависит от времени измерения.
Таким образом, существует потребность в способе ультразвуковой спектрометрии при исследовании биологических жидкостей, позволяющем избежать вышеуказанных недостатков.
Техническим результатом настоящего изобретения является создание способа ультразвуковой спектрометрии при исследовании биологических жидкостей, позволяющего увеличить точность и скорость измерения резонансной частоты и ширины резонансного пика в ультразвуковых спектрометрах фиксированной длины.
Этот технический результат достигается тем, что в способе ультразвуковой спектрометрии при исследовании биологических жидкостей, заключающемся в проведении измерения образца биологической жидкости в акустической ячейке ультразвукового спектрометра фиксированной длины, а именно подаче на пластины пьезопреобразователей ячейки высокочастотного сигнала, частотное сканирование исследуемого образца, при этом проведение измерения резонансной частоты ячейки с исследуемым образцом проводят последовательно относительно ячейки с дистиллированной водой, непосредственно оцифровывают опорный сигнал и сигнал на выходе из акустических ячеек, полученную информацию в виде массива акустических параметров и коэффициентов поглощения передают в персональный компьютер и обрабатывают с помощью программного обеспечения, предлагается процесс измерения одной точки частотной характеристики осуществлять в следующей последовательности: с помощью управляющей программы записывать в цифровой синтезатор значение частоты, которую необходимо подать на резонатор, с выхода синтезатора сигнал гармонических колебаний заданной частоты подавать на вход резонатора и одновременно на первый вход аналого-цифрового преобразователя, после окончания переходного процесса в резонаторе и установления в нем стационарных колебаний, полученный на выходе резонатора стабильный по амплитуде и фазе гармонический сигнал направлять на второй вход аналого-цифрового преобразователя, одномоментно с помощью управляющей программы запускать процесс синхронной дискретизации сигналов с обоих каналов аналого-цифрового преобразователя, при этом результат дискретизации сохраняют в буферной памяти аналого-цифрового преобразователя и затем передают в управляющую программу, при этом из ячейки с образцом получают два массива цифровых данных регистрации гармонических сигналов, для построения амплитудо-частотной характеристики (АЧХ) вычисляют значение коэффициента передачи амплитуды в резонаторе по формуле:
Figure 00000001
где i - номер измерения, х1(i) - значения, измеренные в первом канале, x2(i) - значения, измеренные во втором канале, Х1 - среднее значений x1(i), Х2 - среднее значений x1(i).
Для построения фазо-частотной характеристики (ФЧХ) R(j), значение фазового сдвига для заданной частоты вычисляют по формулам:
Figure 00000002
ϕ(j) = arccos(R(j)).
получают график зависимости ϕ(j), для определения фазового сдвига ϕ(0) между каналами АЦП выбирают ближайший к оси ординат участок линии с положительным наклоном, аппроксимируют его прямой линией и определяют точку пересечения с осью абсцисс j0, фазовый сдвиг определяют по формуле:
Figure 00000003
где ƒр - предполагаемая резонансная частота, а ƒАцп - частота дискретизации АЦП; для определения положения резонансного пика; определяют ФЧХ окрестности данного пика, при этом в окрестности предполагаемой резонансной частоты формируется сетка частот по формуле:
ƒm,np + mΔƒ1 + nΔƒ2,
где ƒp - предполагаемая резонансная частота, m=-1,0,1, n=-2,-1,0,1,2,
ă1 = aăm,
ă2 = băm.
где Δƒm - полуширина резонансного пика на полувысоте максимальной амплитуды пика, а - коэффициент размаха сканирования, равный 0,5, b - коэффициент размаха сканирования, равный 0,1,
в соответствии с этой сеткой частот проводят измерения ФЧХ по указанному алгоритму, положение резонансного пика определяют по нулю второй производной ФЧХ в окрестности резонансной частоты, для чего определяют вторую производную фазы ϕ'' (n) по формуле (фиг. 1):
ϕ''(n) = ϕ(ƒ-1,n) + ϕ(ƒ1,n)1 - 2ϕ(ƒ0,n).
Таким образом, получают зависимость ϕ''(n), которую аппроксимируют прямой (Фиг. 2):
ϕ''(n) = wn+u,
где - w - величина угла наклона аппроксимации, u - точка пересечения с нулем; и определяют точку пересечения n0 с осью абсцисс:
Figure 00000004
текущую резонансную частоту ƒрнов определяют по формуле:
ƒрнов = ƒрсс + n0Δƒ2.
где ƒpcc - резонансная частота на предыдущем шаге измерений, Δƒ 2 - полуширина резонансного пика на полувысоте максимальной амплитуды пика с учетом коэффициента размаха сканирования, равного 0,1; текущую ширину резонансного пика определяют по наклону характеристики ϕ''(n):
Figure 00000005
где Δƒ 2 - полуширина резонансного пика на полувысоте максимальной амплитуды пика с учетом коэффициента размаха сканирования, равного 0,1, w - коэффициент наклона аппроксимации.
Способ осуществляют следующим образом.
Проводят измерение резонансной частоты и ширины резонансного пика образца биологической жидкости в акустической ячейке ультразвукового спектрометра фиксированной длины. Применяемые в ультразвуковых спектрометрах фиксированной длины резонансные ячейки для исследования жидких образцов отличаются следующими характеристиками: они имеют малый объем камеры для исследуемого жидкого образца (0,1÷1 мл), они имеют малую длину камеры (4÷10 мм) и высокую рабочую частоту (1÷10МГц), в пределах которой возможна регистрация резонансных пиков АЧХ камеры. Выражение для резонансной частоты в камере имеет вид:
Figure 00000006
где V - скорость звука в исследуемом образце, ƒn - частота резонансного пика с номером n,
Figure 00000007
- длина камеры. Указанные характеристики резонансных ячеек приводят к тому, что в исследуемый частотный диапазон попадают резонансные пики с номерами n=70÷100. Резонансный пик ячейки при исследовании малопоглощающей жидкости (дистиллированной воды) имеет ширину около 700 Гц. Аппаратная часть измерителя резонансной частоты состоит из цифрового высокочастотного DDS-синтезатора гармонических колебаний с рабочим диапазоном, соответствующем рабочему диапазону измерительной ячейки, и шагом перестройки частоты менее 1 Гц, двухканального синхронного аналого-цифрового преобразователя с частотой дискретизации более чем в 10 раз большей, чем предельная рабочая частота измерительной ячейки.
Управляющая программа записывает в цифровой синтезатор значение частоты, которую необходимо подать на пластины пьезопреобразователей ячейки. Проведение измерения резонансной частоты ячейки с исследуемым образцом проводят последовательно относительно ячейки с дистиллированной водой.
С выхода синтезатора сигнал гармонических колебаний заданной частоты поступает на вход резонатора и одновременно на первый вход аналого-цифрового преобразователя. После окончания переходного процесса в резонаторе и установления в нем стационарных колебаний, на выходе резонатора появляется стабильный по амплитуде и фазе гармонический сигнал, который поступает на второй вход аналого-цифрового преобразователя. В этот момент управляющая программа запускает процесс синхронной дискретизации сигналов с обоих каналов аналого-цифрового преобразователя. Результат дискретизации сохраняется в буферной памяти аналого-цифрового преобразователя и затем передается в управляющую программу. В результате измерения получается два массива цифровых данных регистрации гармонических сигналов.
Вычислительная часть измерителя резонансной частоты реализована в виде компьютерной или микропроцессорной программы, осуществляющей следующие действия. Для построения амплитудо-частотной характеристики вычисляют значение коэффициента передачи амплитуды в резонаторе по формуле:
Figure 00000008
где i - номер измерения, x1(i) - значения, измеренные в первом канале, х2(i) - значения, измеренные во втором канале, Х1 - среднее значений x1{i), Х2 - среднее значений х1(i).
Для построения фазо-частотной характеристики, значение фазового сдвига для заданной частоты вычисляют по формулам:
Figure 00000009
ϕ(j) = arccos(R(j)).
Формула для вычисления R(j) является формулой для вычисления корреляции Пирсона с введенным виртуальным сдвигом фазы j. График зависимости ϕ(j) имеет вид пилообразной линии. Для определения фазового сдвига между каналами аналого-цифрового преобразователя выбирают ближайший к оси ординат участок линии с положительным наклоном, аппроксимируют его прямой линией и определяют точку пересечения с осью абсцисс j0. Фазовый сдвиг определяют по формуле:
Figure 00000010
Таким образом, для любой заданной частоты, подаваемой в резонатор определяют точку амплитудной и фазовой характеристики.
Для определения положения резонансного пика, определяется фазочастотная характеристика его окрестности. На рисунке 2 поясняется принцип построения сетки частот и способ приближенного вычисления второй производной фазы по частоте. Для этого в окрестности предполагаемой резонансной частоты формируется сетка частот по формуле:
Figure 00000011
где ƒр - предполагаемая резонансная частота, m=-1,0,1, n=-2,-1,0,1,2,
Figure 00000012
где Δƒ - полуширина резонансного пика на полувысоте максимальной амплитуды пика, а - коэффициент размаха сканирования, обычно равный ~0,5, b - коэффициент размаха сканирования, обычно равный ~0,1.
В соответствии с этой сеткой (матрицей) частот проводят измерения фазочастотной характеристики способом, указанным выше. Перебор частот производят следующим образом: фиксируют n=-2 и изменяют m от -1 до 1, затем увеличивают n на единицу и т.д. Такой способ исследования резонансного пика дает минимальную погрешность измерения при изменении резонансной частоты в ячейке во время измерения.
Положение резонансного пика определяют по нулю второй производной фазочастотной характеристики в окрестности резонансной частоты. Для этого приближенно определяют (см. Фиг. 1) вторую производную фазы по формуле:
Figure 00000013
Таким образом, получают зависимость ϕ''(n), которую аппроксимируют прямой (Фиг. 2):
Figure 00000014
и определяют точку пересечения с осью абсцисс:
Figure 00000015
Текущую резонансную частоту определяют по формуле:
Figure 00000016
Текущую ширину резонансного пика определяют по наклону характеристики ϕ''(n):
Figure 00000017
Описанный выше режим измерений позволяет отслеживать изменения резонансной частоты со временем при выполнении условия
n0Δƒ2 < Δƒ1,
что накладывает ограничения на скорость измерения и стабильность условий измерения резонансной частоты в резонансной ячейке с исследуемой жидкостью.
При определении общего белка сыворотки крови была выполнена проверка воспроизводимости, правильности (сравнением с контрольными сыворотками «Randox») и чувствительности предлагаемого способа. В качестве метода сравнения использовался биуретовый метод определения концентрации общего белка в сыворотке крови. Был проведен регрессионный анализ и рассчитан коэффициент корреляции для оценки связи показателей, полученных двумя методами. Получена высокая степень корреляции (r=0,98) для выборки n=100 (количество проб). Все полученные значения соответствуют нормам аналитической точности клинических лабораторных исследований. Чувствительность предлагаемого способа составила менее 10 г/л в интервале концентраций общего белка 10 - 150 г/л. Анализ полученных данный свидетельствует, что результаты вполне удовлетворяют нормам аналитической точности клинических лабораторных исследований.
Воспроизводимость определения параметров липидограммы (определение холестерина общего, холестерина ЛПВП, холестерина ЛПНП и триглицеридов) производили в сыворотке больных с различным содержанием липидов и контрольных сыворотках. Для оценки правильности определения липидных компонентов были использованы контрольные сыворотки «Serodos» и проведены сопоставительные исследования акустического метода определения липидных компонентов сыворотки крови с традиционными биохимическими методами. Результаты сопоставительных исследований имеют по всем измеренным липидным компонентам коэффициенты корреляции от 0,77 до 0,85, что соответствует высокой корреляционной связи, достаточной для правильной диагностики нарушений липидного обмена. Статистическая обработка данных показала, что средние величины смещения находятся в пределах допустимых значений для показателей липидного обмена.
Таким образом, использование предлагаемого способа позволяет увеличить точность и скорость измерения в ультразвуковых спектрометрах фиксированной длины.

Claims (24)

  1. Способ ультразвуковой спектрометрии при исследовании биологических жидкостей, заключающийся в проведении измерения резонансной частоты и ширины резонансного пика образца биологической жидкости в акустической ячейке ультразвукового спектрометра фиксированной длины, а именно подаче на пластины пьезопреобразователей ячейки высокочастотного сигнала, частотном сканировании исследуемого образца, при этом проведение измерения резонансной частоты ячейки с исследуемым образцом проводят последовательно относительно ячейки с дистиллированной водой, непосредственно оцифровывают опорный сигнал и сигнал на выходе из акустических ячеек, полученную информацию в виде массива акустических параметров и коэффициентов поглощения передают в персональный компьютер и обрабатывают с помощью программного обеспечения, отличающийся тем, что процесс измерения одной точки частотной характеристики осуществляют в следующей последовательности: с помощью управляющей программы записывают в цифровой синтезатор значение частоты, которую необходимо подать на резонатор, с выхода синтезатора сигнал гармонических колебаний заданной частоты подают на вход резонатора и одновременно на первый вход аналого-цифрового преобразователя (АЦП), после окончания переходного процесса в резонаторе и установления в нем стационарных колебаний полученный на выходе резонатора стабильный по амплитуде и фазе гармонический сигнал направляют на второй вход аналого-цифрового преобразователя, одномоментно с помощью управляющей программы запускают процесс синхронной дискретизации сигналов с обоих каналов аналого-цифрового преобразователя, при этом результат дискретизации сохраняют в буферной памяти аналого-цифрового преобразователя и затем передают в управляющую программу, при этом из ячейки с образцом получают два массива цифровых данных регистрации гармонических сигналов, для построения амплитудно-частотной характеристики (АЧХ) вычисляют значение коэффициента передачи амплитуды в резонаторе по формуле
  2. Figure 00000018
  3. где i - номер измерения, х1(i) - значения, измеренные в первом канале, x2(i) - значения, измеренные во втором канале, Х1 - среднее значений x1(i), Х2 - среднее значений x1(i),
  4. для построения фазочастотной характеристики (ФЧХ) R(j) значение фазового сдвига для заданной частоты вычисляют по формулам
  5. Figure 00000019
  6. получают график зависимости ϕ(j), для определения фазового сдвига ϕ(0) между каналами АЦП выбирают ближайший к оси ординат участок линии с положительным наклоном, аппроксимируют его прямой линией и определяют точку пересечения с осью абсцисс j0, фазовый сдвиг определяют по формуле
  7. Figure 00000020
  8. где ƒр - предполагаемая резонансная частота, а ƒАцп - частота дискретизации АЦП, для определения положения резонансного пика определяют ФЧХ окрестности данного пика, при этом в окрестности предполагаемой резонансной частоты формируется сетка частот по формуле
  9. ƒm,np + mΔƒ1 + nΔƒ2,
  10. где ƒp - предполагаемая резонансная частота, m=-1, 0, 1, n=-2, -1, 0, 1, 2,
  11. ă1 = aăm,
  12. ă2 = băm,
  13. где Δƒm - полуширина резонансного пика на полувысоте максимальной амплитуды пика, а - коэффициент размаха сканирования, равный 0,5, b - коэффициент размаха сканирования, равный 0,1,
  14. в соответствии с этой сеткой частот проводят измерения ФЧХ по указанному алгоритму, положение резонансного пика определяют по нулю второй производной ФЧХ в окрестности резонансной частоты, для чего определяют вторую производную фазы ϕ'' (n) по формуле
  15. ϕ''(n) = ϕ(ƒ-1,n) + ϕ(ƒ1,n)1 - 2ϕ(ƒ0,n),
  16. получают зависимость ϕ''(n), которую аппроксимируют прямой
  17. ϕ''(n) = wn + u,
  18. где w - коэффициент наклона аппроксимации, u - точка пересечения с нулем; и определяют точку пересечения n0 с осью абсцисс
  19. Figure 00000021
  20. текущую резонансную частоту ƒрнов определяют по формуле
  21. ƒрнов = ƒрсс + n0Δƒ2,
  22. где ƒpcc - резонансная частота на предыдущем шаге измерений, Δƒ2 - полуширина резонансного пика на полувысоте максимальной амплитуды пика с учетом коэффициента размаха сканирования, равного 0,1; текущую ширину резонансного пика определяют по наклону характеристики ϕ''(n)
  23. Figure 00000022
  24. где Δƒ 2 - полуширина резонансного пика на полувысоте максимальной амплитуды пика с учетом коэффициента размаха сканирования, равного 0,1, w - коэффициент наклона аппроксимации.
RU2019134163A 2019-10-24 2019-10-24 Способ ультразвуковой спектрометрии при исследовании биологических жидкостей RU2723152C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019134163A RU2723152C1 (ru) 2019-10-24 2019-10-24 Способ ультразвуковой спектрометрии при исследовании биологических жидкостей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019134163A RU2723152C1 (ru) 2019-10-24 2019-10-24 Способ ультразвуковой спектрометрии при исследовании биологических жидкостей

Publications (1)

Publication Number Publication Date
RU2723152C1 true RU2723152C1 (ru) 2020-06-09

Family

ID=71067644

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019134163A RU2723152C1 (ru) 2019-10-24 2019-10-24 Способ ультразвуковой спектрометрии при исследовании биологических жидкостей

Country Status (1)

Country Link
RU (1) RU2723152C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2112231C1 (ru) * 1997-02-19 1998-05-27 Научно-технический внедренческий центр ЦНИИ "Комета" Способ измерения вязкости жидкости
US20060079775A1 (en) * 2002-06-07 2006-04-13 Mcmorrow Gerald Systems and methods for quantification and classification of fluids in human cavities in ultrasound images
US20110178402A1 (en) * 2008-08-04 2011-07-21 Mcgill University ULTRASONIC MEASUREMENT OF pH IN FLUIDS
RU2653143C1 (ru) * 2016-12-14 2018-05-07 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2112231C1 (ru) * 1997-02-19 1998-05-27 Научно-технический внедренческий центр ЦНИИ "Комета" Способ измерения вязкости жидкости
US20060079775A1 (en) * 2002-06-07 2006-04-13 Mcmorrow Gerald Systems and methods for quantification and classification of fluids in human cavities in ultrasound images
US20110178402A1 (en) * 2008-08-04 2011-07-21 Mcgill University ULTRASONIC MEASUREMENT OF pH IN FLUIDS
RU2653143C1 (ru) * 2016-12-14 2018-05-07 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Клемин В.А. Безреагентная диагностика: акустические технологии, Н. Новгород, 2014 г. *

Similar Documents

Publication Publication Date Title
Sarvazyan Development of methods of precise ultrasonic measurements in small volumes of liquids
Bochud et al. Towards real-time assessment of anisotropic plate properties using elastic guided waves
ES2804799T3 (es) Aparato y método para medir la cinética de unión y concentración con un sensor resonador
US8323193B2 (en) Implantable biosensor and sensor arrangement
Zhang et al. State of charge and temperature joint estimation based on ultrasonic reflection waves for lithium-ion battery applications
EP4092402A1 (en) Device and method for rapidly detecting blood viscosity based on ultrasonic guided waves of micro-fine metal pipe
RU2723152C1 (ru) Способ ультразвуковой спектрометрии при исследовании биологических жидкостей
US7936106B2 (en) Surface acoustic wave sensor device
Jeng et al. A Surface Acoustic Wave Sensor with a Microfluidic Channel for Detecting C-Reactive Protein
US20220378338A1 (en) Metering device for blood glucose concentration based on microwave signals
CN108181242A (zh) 一种血糖光声无损检测装置及方法
RU2722870C1 (ru) Ультразвуковой спектрометр
JP2006275999A (ja) 弾性表面波素子とその使用方法
Buckin et al. High-resolution ultrasonic spectroscopy for material analysis
US20220404313A1 (en) Sensor system and method for estimating amounts of different molecules in biological liquid
CN115736989A (zh) 双向导波测量装置、方法及存储介质
Ren et al. Quantitative measurement of blood glucose influenced by multiple factors via photoacoustic technique combined with optimized wavelet neural networks
Grybauskas et al. Ultrasonic digital interferometer for investigation of blood clotting
EP2012117A1 (en) Method and device for acoustically measuring an adiabatic compressibility of a fluid
Adamowski et al. Ultrasonic material characterization using large-aperture PVDF receivers
Csete et al. Potential of surface acoustic wave biosensors for early sepsis diagnosis
KR100876158B1 (ko) 압전 센서를 이용한 생체물질 검출 장치 및 검출 방법
Zhang et al. A surface acoustic wave ICP sensor with good temperature stability
US20110306152A1 (en) System and Method for Determining Concentration of a Predetermined Osteoarthritis Biomarker in a Urine Sample
RU2649217C1 (ru) Гибридный акустический сенсор системы электронный нос и электронный язык