RU2722961C1 - Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур - Google Patents

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур Download PDF

Info

Publication number
RU2722961C1
RU2722961C1 RU2019143000A RU2019143000A RU2722961C1 RU 2722961 C1 RU2722961 C1 RU 2722961C1 RU 2019143000 A RU2019143000 A RU 2019143000A RU 2019143000 A RU2019143000 A RU 2019143000A RU 2722961 C1 RU2722961 C1 RU 2722961C1
Authority
RU
Russia
Prior art keywords
nanoparticles
optimization
unit
nanoparticle
transport gas
Prior art date
Application number
RU2019143000A
Other languages
English (en)
Inventor
Виктор Владимирович Иванов
Алексей Анатольевич Ефимов
Кирилл Михайлович Хабаров
Дмитрий Николаевич Тужилин
Дмитрий Леонидович Сапрыкин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)"
Priority to RU2019143000A priority Critical patent/RU2722961C1/ru
Application granted granted Critical
Publication of RU2722961C1 publication Critical patent/RU2722961C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами. Выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6. Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами. Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации. Над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц. Обеспечивается упрощение получения оптимального размера наночастиц в автоматическом режиме для их спекания на подложке. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к аддитивной 3D-технологии для производства преимущественно объемных микроразмерных структур из наночастиц.
Известно устройство для получения частиц при аддитивном изготовлении объемных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, содержащий устройство нагрева потока транспортного газа с частицами, при этом вход блока оптимизации сообщен с блоком получения потока аэрозоля с частицами [1].
Однако данное устройство не позволяет получать наночастицы сферической формы нужного диаметра для эффективного спекания на подложке при аддитивном изготовлении объемных микроразмерных структур.
Известно устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, блок оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом вход блока оптимизации сообщен с блоком получения потока аэрозоля с наночастицами, а выход - с печатающей головкой [2].
Однако при применении указанного технического решения возникают трудности в изменении температуры при нагреве аэрозоля с наночастицами в потоке транспортного газа для получения наночастиц сферической формы требуемого размера, так как применяемые нагревательные элементы являются инерционными и требуется сравнительно большой промежуток времени, например, для уменьшения температуры нагрева. При применении данного устройства приходится вручную поддерживать оптимальный режим получения наночастиц сферической формы нужного размера.
Результат, для достижения которого направлено данное техническое решение, заключается в упрощении получения наночастиц оптимального размера и сферической формы для их спекания в автоматическом режиме.
Указанный результат достигается за счет того, что в устройстве для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащем сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, блок оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом выход блока получения потока аэрозоля сообщен с блоком оптимизации, выход которого соединен с печатающей головкой, его блок оптимизации наночастиц выполнен в виде рабочей камеры с входным и выходным оптически прозрачными окнами, причем устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства с регулятором мощности и установлено перед входным окном блока оптимизации, над и под оптически прозрачными окнами блока оптимизации наночастиц установлены измерители мощности лазерного излучения соответственно до и после оптимизации, а на входе и выходе потока транспортного газа с наночастицами блока оптимизации - анализаторы размеров наночастиц до и после оптимизации.
Указанный результат достигается также за счет того, что устройство снабжено блоком управления процессом оптимизации, входы которого подключены к измерителям мощности лазерного излучения и анализаторам размеров наночастиц до и после оптимизации, а выходы соответственно с регуляторами потока транспортного газа и мощности лазерно-оптического устройства.
Пример выполнения заявляемого технического решения поясняется чертежами, где на фиг. 1 представлено заявляемое устройство, на фиг. 2, 3 - гистограмма распределения наночастиц до и после их оптимизации в блоке оптимизации.
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6.
Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами.
Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации, над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения соответственно до и после оптимизации, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц до и после оптимизации.
Устройство получения наночастиц снабжено также блоком 17 управления процессом оптимизации, входы 18-21 которого подключены к измерителям 11, 12 мощности лазерного излучения и анализаторам 15, 16 размеров наночастиц до и после оптимизации, а выходы 22, 23 соответственно с регуляторами 24, 10 потока транспортного газа и мощности лазерно-оптического устройства.
Работа устройства поясняется примером получения наночастиц требуемого размера для их спекания на подложке при аддитивном изготовлении объемных микроразмерных структур в автоматическом режиме. Управление размером наночастиц осуществляют на основании гистограммы распределения частиц по размерам путем подстройки параметров транспортного газа и лазерно-оптического устройства с использованием обратной связи в виде измерителей мощности лазерного излучения и анализаторов размеров наночастиц до и после оптимизации (фиг. 2, 3). Для подстройки параметров системы используют в качестве управляющих величин получаемые при анализе гистограммы распределения частиц по размерам, используя их медианное значение и изменение медианного размера наночастиц до и после их оптимизации.
Таким образом данное техническое решение позволит упростить получение оптимального размера наночастиц в автоматическом режиме для их спекания на подложке при аддитивном изготовлении объемных микроразмерных структур.
Источники информации
1. Патент US №10022789, МПК - B22D 23/00, 07.2018
2. Патент RU №2704358, МПК - B22F 3/105, 2018

Claims (2)

1. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля наночастиц, блок оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами, при этом выход блока получения потока аэрозоля сообщен с блоком оптимизации, выход которого соединен с печатающей головкой для аддитивного изготовления объемных микроразмерных структур, отличающееся тем, что блок оптимизации наночастиц выполнен в виде рабочей камеры с входным и выходным оптически прозрачными окнами, причем устройство для нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства с регулятором мощности и установлено перед входным окном блока оптимизации, над и под оптически прозрачными окнами блока оптимизации наночастиц установлены измерители мощности лазерного излучения соответственно до и после оптимизации, а на входе и выходе потока транспортного газа с наночастицами блока оптимизации - анализаторы размеров наночастиц до и после оптимизации.
2. Устройство по п. 1, отличающееся тем, что оно снабжено блоком управления процессом оптимизации, входы которого подключены к измерителям мощности лазерного излучения и анализаторам размеров наночастиц до и после оптимизации, а выходы соответственно с регуляторами потока транспортного газа и мощности лазерно-оптического устройства.
RU2019143000A 2019-12-23 2019-12-23 Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур RU2722961C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019143000A RU2722961C1 (ru) 2019-12-23 2019-12-23 Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019143000A RU2722961C1 (ru) 2019-12-23 2019-12-23 Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Publications (1)

Publication Number Publication Date
RU2722961C1 true RU2722961C1 (ru) 2020-06-05

Family

ID=71067433

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019143000A RU2722961C1 (ru) 2019-12-23 2019-12-23 Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Country Status (1)

Country Link
RU (1) RU2722961C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149072A (en) * 1998-04-23 2000-11-21 Arizona State University Droplet selection systems and methods for freeform fabrication of three-dimensional objects
RU2627527C2 (ru) * 2015-09-25 2017-08-08 Анатолий Евгеньевич Волков Способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле
US10022789B2 (en) * 2011-06-30 2018-07-17 Persimmon Technologies Corporation System and method for making a structured magnetic material with integrated particle insulation
RU2704358C1 (ru) * 2018-12-26 2019-10-28 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149072A (en) * 1998-04-23 2000-11-21 Arizona State University Droplet selection systems and methods for freeform fabrication of three-dimensional objects
US10022789B2 (en) * 2011-06-30 2018-07-17 Persimmon Technologies Corporation System and method for making a structured magnetic material with integrated particle insulation
RU2627527C2 (ru) * 2015-09-25 2017-08-08 Анатолий Евгеньевич Волков Способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле
RU2704358C1 (ru) * 2018-12-26 2019-10-28 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Similar Documents

Publication Publication Date Title
CN105026076B (zh) 用于生产具有定制微观结构的工件的装置和方法
RU2722961C1 (ru) Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
TW201711763A (zh) 用於清潔光學元件之受控流體流動
CN109297940A (zh) 一种在微米尺度下激光离焦量自动调节装置及其调节方法
EA202090366A1 (ru) Способ рентабельного производства ультрамелких сферических порошков в большом масштабе с использованием плазменной атомизации при помощи ускорителя
CN106569332B (zh) 连续型螺旋相位板设计方法
CN110472294B (zh) 一种嫁接涡旋光束的掩模板的设计方法
CN104191089A (zh) 基于激光器输出光束的三维动态聚焦标刻系统及方法
CN104142226A (zh) 一种ccd器件量子效率测量装置及方法
CN104064957A (zh) 一种基于电流变效应的可调控光流控染料激光器
CN109910294A (zh) 一种基于机器视觉的3d打印成型精度检测方法
RU2704358C1 (ru) Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления
CN205613609U (zh) 一种高粘度荧光粉的雾化设备
US11076476B2 (en) Process for controlling, under void, a jet of particles with an aerodynamic lens and associated aerodynamic lens
CN104316184A (zh) 一种光谱定标方法及装置
RU2532784C2 (ru) Стеклометаллические микрошарики и их способ получения
CN110380335A (zh) 一种基于单点探测器的中远红外外腔激光调试装置及方法
CN208628432U (zh) 一种金属增材制造设备
KR100695122B1 (ko) 에어로졸의 밀도를 안정화하기 위한 장치 및 방법
US20220297233A1 (en) Variable beam geometry energy beam-based powder bed fusion
CN110052606A (zh) 激光送粉增材制造装置及粉流控制方法
RU2729254C1 (ru) Устройство для аддитивного изготовления объемных микроразмерных структур из наночастиц
CN108169920B (zh) 可传输吞吐微粒的椭圆光学传送带光束掩模板的设计方法
RU2730008C1 (ru) Способ изготовления объемных микроразмерных структур из наночастиц
CN111474708B (zh) 一种反常环形连接的涡旋阵列掩模板的设计方法

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20201110