RU2722909C1 - Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели - Google Patents

Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели Download PDF

Info

Publication number
RU2722909C1
RU2722909C1 RU2019139416A RU2019139416A RU2722909C1 RU 2722909 C1 RU2722909 C1 RU 2722909C1 RU 2019139416 A RU2019139416 A RU 2019139416A RU 2019139416 A RU2019139416 A RU 2019139416A RU 2722909 C1 RU2722909 C1 RU 2722909C1
Authority
RU
Russia
Prior art keywords
target
projectile
sensor
contact
command
Prior art date
Application number
RU2019139416A
Other languages
English (en)
Inventor
Николай Сергеевич Кузнецов
Original Assignee
Акционерное общество "Научно-производственное предприятие "Дельта"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное предприятие "Дельта" filed Critical Акционерное общество "Научно-производственное предприятие "Дельта"
Priority to RU2019139416A priority Critical patent/RU2722909C1/ru
Application granted granted Critical
Publication of RU2722909C1 publication Critical patent/RU2722909C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к военной технике и может быть использовано при создании взрывателей и неконтактных датчиков цели для зенитных ракет и снарядов. Техническим результатом является повышение помехозащищенности неконтактных датчиков цели ракет и снарядов от воздействия средств радиоподавления сверхзвуковых летательных аппаратов. Способ заключается в том, что определяют направление полета цели, снаряд выстреливают в направлении цели, фиксируют обнаружение цели неконтактным датчиком цели, в момент подлета снаряда к цели на заданное расстояние, определяемое неконтактным датчиком цели, подают команду на подрыв боевой части снаряда. При этом с помощью датчика динамического давления, установленного в носовой части снаряда, непрерывно измеряют полное давление Р, в вычислительный блок неконтактного датчика цели вводят максимальное значение полного давления Рм, измеренно на начальном участке полета снаряда, непрерывно сравнивают зарегистрированное значение Р со значением Рм, и при превышении зарегистрированным давлением Р величины Рм выдают команду на снятие ступени предохранения неконтактного датчика цели от воздействия помех, и по заданному алгоритму в зависимости от угла сближения снаряда с целью и скорости движения цели подают команду на подрыв боевой части снаряда. 2 ил.

Description

Изобретение относится к военной технике и может быть использовано при создании взрывателей и неконтактных датчиков цели для зенитных ракет и снарядов.
С целью обеспечения боевых характеристик современные боевые самолеты и ракеты перемещаются в пространстве, как правило, на сверхзвуковых скоростях. Кроме того, для защиты от средств поражения противника (снарядов, ракет) они снабжаются целым комплексом систем противодействия. В том числе, системами предупреждения об облучении и пуске управляемых ракет. И в случае обнаружения приближения к ним таких средств поражения, системы защиты создают различные помехи, затрудняющие ракете определить ее точное положение относительно цели, и провести подрыв боевой части в нужной точке. Так, например, на тактических истребителях F-15 в настоящее время установлена система индивидуальной защиты TEWS, имеющая федеративную структуру и включающая в свой состав системы предупреждения об облучении AN/ALR-56С и AN/ALQ-128, станцию радиоэлектронного подавления (РЭП) AN/ALQ-135(V), автомат отстрела дипольных отражателей и ложных тепловых целей AN/ALE-45. Станция РЭП AN/ALQ-135(V) может одновременно, и в соответствие с приоритетом, осуществлять постановку активных помех непрерывным, импульсным и импульсно-доплеровским РЛС. Она способна генерировать шумовые и имитирующие помехи в диапазоне от 2 до 20 ГГц. Оконечным излучающим устройством станции являются рупорные антенны.
В связи с этим разработчики ракет и снарядов ведут поиск технических решений для защиты датчиков цели, в том числе неконтактных, от средств противодействия таких летательных аппаратов.
Ярким примером в реализации различных алгоритмов противодействия средствам РЭП являются технические решения, реализованные в американской ракете с активной радиолокационной головкой самонаведения (AIM-120 AMRAAM). Наведение AIM-120 включат в себя три участка: командно-инерциальный, автономный инерциальный и активный радиолокационный. Перед пуском РЛС самолета задает координаты цели и при необходимости корректирует полет AMRAAM. На конечном участке полета ракета наводится на цель самостоятельно, без помощи самолета-носителя. Ракета имеет неконтактный радиолокационный взрыватель. При подлете к цели происходит подрыв боевой части ракеты (https://yandex.ru/aeronavtika.com>news...rakety-klassa-vozduh-vozduh).
Однако, даже такая современная ракета, не выдерживает воздействия на не нее средств радиоэлектронного подавления, установленных на современных летательных аппаратах.
Настоящее изобретение позволяет существенно повысить помехозащищенность неконтактных датчиков цели ракет и снарядов от воздействия средств радиоподавления сверхзвуковых летательных аппаратов. Предлагаемое техническое решение автора заключается в ведении в радиолокационные неконтактные датчики цели зенитных ракет и снарядов дополнительной защиты от воздействия средств радиоэлектронного подавления, установленных на сверхзвуковых летательных аппаратах.
В основу предложения положены исследования автора по изучению физических процессов, сопровождающих сверхзвуковое движение летательных аппаратов в атмосфере Земли, а именно, процессов, которые всегда присутствуют при сверхзвуковом движении тел в воздухе. Речь идет об ударных волнах, сопровождающих такое сверхзвуковое движение самолетов и ракет. Обнаружение зон действия ударных волн с помощью устройств, установленных на ракете или снаряде, в том числе в неконтактном датчике цели, позволяет идентифицировать такую зону пространства, как содержащую тело, двигающееся со сверхзвуковой скоростью, либо как зону, в которой произведен взрыв, какой-либо боевой части. Это обстоятельство позволяет создать в неконтактном датчике цели дополнительную ступень предохранения от воздействия электронных систем противодействия самолета. Ниже приведены обоснования работоспособности таких технических устройств.
Как известно, при сверхзвуковом движении летательного аппарата в воздухе вокруг него возникают ударные волны. На сегодняшний день в технической литературе приведено множество примеров, позволяющих оценить, как минимум, качественно процессы образования таких волн. Установлено, что ударные волны возникают в среде, в том случае, когда скорость движения тела в этой среде превышает скорость распространения в ней упругих волн. Причем фронт ударных волн, вокруг летательного аппарата, представляет собой конус с вершиной в носовой части аппарата (конус Маха), а угол этого конуса зависит от отношения этих скоростей.
На поверхности конуса Маха будет происходить наложение волн возмущения, находящихся в фазе уплотнения. Поверхность конуса Маха разделяет пространство вокруг летящего самолета на две области: возмущенную внутри конуса, и невозмущенную вне его. Образование этих областей обусловлено динамическим изменением плотности воздуха в зоне полета самолета. В этой зоне после возникновения области сжатия воздуха за счет действия ударной волны начинается ее разряжение, которое, как известно, приводит к охлаждению этой разряженной зоны. И при наличии в воздухе влаги, такое охлаждение будет приводить к возникновению конденсата в виде тумана, облако от которого неоднократно наблюдалось исследователями. В различных источниках технической информации приведено множество фотографий, иллюстрирующих это явление. Общим для этих наблюдений является то, что на фронте ударной волны наблюдается резкое увеличение плотности, и, как следствие, давление воздуха. Высокая скорость полета сверхзвуковых летательных аппаратов приводит к тому, что возникающие зоны уплотнения (повышенного давления) от каждого скачка уплотнения накладываются друг на друга и создают в зоне фронта ударных волн области повышенного давления.
Математически величину полного давления Р потока воздуха, движущегося со скоростью V, можно выразить с помощью известного соотношения:
Р=Рс+(pV2)/2,
где PC - статическое давление, ρ - плотность воздуха, V- скорость потока.
С учетом этого соотношения, следует ожидать, что давление воздуха в отдельных областях летательного аппарата, двигающегося со сверхзвуковой скоростью, будет выше атмосферного в этой области (плотность ρ выше).
Это обстоятельство позволяет создать на зенитных ракетах и снарядах устройства, которые будут регистрировать возрастание давления в носовой части боеприпаса при его входе в зону полета сверхзвукового летательного аппарата. Т.е., если снабдить неконтактный датчик цели зенитного боеприпаса устройством измерения давления в его носовой части, то можно повысить надежность защиты такого боеприпаса от работы средств противодействия летательного аппарата.
Практически для этого необходимо в носовую часть головного неконтактного датчика цели установить трубку из радиопрозрачного прочного материала, входной конец которой должен быть открытым, а выходной конец присоединен к быстродействующему датчику давления.
Предлагаемое техническое решение поясняется рисунками, приведенными на фиг. 1 и фиг. 2.
Фиг. 1. Схема построения неконтактного датчика цели (НДЦ) с устройством для измерения давления в носовой части ракеты (снаряда): 1 - НДЦ; 2 - радиопрозрачный головной обтекатель; 3 - антенное устройство; 4 - воздухозаборная трубка; 5 - датчик давления.
Фиг. 2. Схема подлета зенитной ракеты к самолету, летящему со сверхзвуковой скоростью: 6 - самолет; 7 - ракета; 8 - планируемая точка подрыва ракеты; 9 - участок пролета ракетой в зоне действия ударных волн; 10 - фронт ударной волны; 11 - направления действия системы РЭП самолета; μ - угол Маха; α - угол между направлениями сближения ракеты с самолетом; V - скорость полета самолета; W - скорость полета ракеты; А - зона пересечения ракетой ударно-волнового фронта, создаваемого самолетом.
На фиг. 1 показана схема такого неконтактного датчика цели.
Применение радиопрозрачного материала для изготовления воздухозаборной трубки (поз. 4, фиг. 1) обусловлено обеспечением минимального воздействия конструктивных элементов на радиолокационное антенное устройство НДЦ (поз. , фиг. ).
В качестве датчиков давления могут быть использованы тензорезистивные датчики давления, подробно, описанные автором в работе (Кузнецов Н.С. редложения по созданию дистанционных взрывателей //Боеприпасы, 2018, с. 10-20).
Такой радиоэлектронный НДЦ будет устойчив к действию средств РЭП сверхзвукового летательного аппарата на дальних дистанциях от этого аппарата, и будет включаться на срабатывание только при его входе в область действия ударных волн, создаваемых этим аппаратом, т.е. в непосредственной близости от цели (точка А на фиг. ). При действии по цели, летящей со скоростью, менее звуковой, защита НДЦ от средств РЭП по давлению отключается по команде с пусковой установки. На фиг. 2 приведена схема подлета зенитной ракеты с радиолокационным неконтактным датчиком цели к самолету, летящему со сверхзвуковой скоростью, и создающему вокруг себя ударно-волновой фронт.
На фиг. 2 показано, что при воздействии на самолет радиоимпульсами НДЦ ракеты, последний с помощью станции РЭП создает условия (направляет в сторону ракеты поток радиоимпульсов 6, способный привести к боевому срабатыванию НДЦ) для подрыва боевой части ракеты на значительном расстоянии от самолета, обеспечивая при этом безопасность самолета. При установке в носовую часть НДЦ ракеты датчика давления, будет обеспечена возможность перевода НДЦ в боевое состояние на более коротком расстоянии от цели (поз. 9 на фиг. 2), а именно, в зоне действия ударно-волнового фронта самолета. Фактическое же расстояние подрыва боевой части от цели, при наличии датчика давления уточняется на основании расчетов, выполняемых вычислителем НДЦ, в который перед пуском ракеты (снаряда) вводится информация о скорости цели V, высоте полета цели, скорости ракеты W и угле подхода к цели α.
Предлагаемый способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели, заключающийся в том, что определяют направление полета, скорость и высоту цели. Производят вычисления точки подрыва снаряда у цели. Снаряд выстреливают в направлении цели, фиксируют обнаружение цели радиолокационным неконтактным датчиком цели, в момент подлета снаряда к цели на заданное расстояние, определяемое неконтактным датчиком цели, подают команду на подрыв боевой части снаряда. Кроме того, с помощью быстродействующего датчика динамического давления, установленного в носовой части снаряда (ракеты) непрерывно измеряют полное давление Р. В вычислительный блок неконтактного датчика цели вводят максимальное значение полного давления Рм, измеренного на начальном участке полета снаряда. Непрерывно сравнивают, зарегистрированное значение Р со значением Рм, и при превышении зарегистрированным давлением Р величины Рм, выдают команду на снятие ступени предохранения неконтактного датчика цели от воздействия помех. По заданному алгоритму в зависимости от угла сближения снаряда с целью и скорости движения цели подают команду на подрыв боевой части снаряда.
Применение такой схемы подрыва боевого части снаряда позволяет повысить эффективность боеприпаса, защитив его от ложного срабатывания на значительных расстояниях до цели.
Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.

Claims (1)

  1. Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели, заключающийся в том, что определяют направление полета цели, снаряд выстреливают в направлении цели, фиксируют обнаружение цели неконтактным датчиком цели, в момент подлета снаряда к цели на заданное расстояние, определяемое неконтактным датчиком цели, подают команду на подрыв боевой части снаряда, отличающийся тем, что с помощью датчика динамического давления, установленного в носовой части снаряда, непрерывно измеряют полное давление Р, в вычислительный блок неконтактного датчика цели вводят максимальное значение полного давления Рм, измеренного на начальном участке полета снаряда, непрерывно сравнивают зарегистрированное значение Р со значением Рм, и при превышении зарегистрированным давлением Р величины Рм выдают команду на снятие ступени предохранения неконтактного датчика цели от воздействия помех, и по заданному алгоритму в зависимости от угла сближения снаряда с целью и скорости движения цели подают команду на подрыв боевой части снаряда.
RU2019139416A 2019-12-04 2019-12-04 Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели RU2722909C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019139416A RU2722909C1 (ru) 2019-12-04 2019-12-04 Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019139416A RU2722909C1 (ru) 2019-12-04 2019-12-04 Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели

Publications (1)

Publication Number Publication Date
RU2722909C1 true RU2722909C1 (ru) 2020-06-04

Family

ID=71067874

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019139416A RU2722909C1 (ru) 2019-12-04 2019-12-04 Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели

Country Status (1)

Country Link
RU (1) RU2722909C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2825905C2 (ru) * 2022-07-13 2024-09-02 Александр Александрович Горшков Способ наведения противоракеты на сверхзвуковую цель

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281675A2 (de) * 1987-03-12 1988-09-14 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Sensor zur Bekämpfung von Hubschraubern
RU2674037C1 (ru) * 2018-03-16 2018-12-04 Акционерное общество "Научно-производственное предприятие "Дельта" Способ стрельбы зенитными снарядами по воздушным целям
RU2676301C1 (ru) * 2018-03-20 2018-12-27 Акционерное общество "Научно-производственное предприятие "Дельта" Способ стрельбы зенитными снарядами
RU2688712C1 (ru) * 2018-07-06 2019-05-22 Акционерное общество "Научно-производственное предприятие "Дельта" Способ поражения воздушной цели боеприпасом с неконтактным датчиком цели
RU2707637C1 (ru) * 2019-02-14 2019-11-28 Акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" Способ поражения воздушной цели управляемой ракетой

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281675A2 (de) * 1987-03-12 1988-09-14 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Sensor zur Bekämpfung von Hubschraubern
RU2674037C1 (ru) * 2018-03-16 2018-12-04 Акционерное общество "Научно-производственное предприятие "Дельта" Способ стрельбы зенитными снарядами по воздушным целям
RU2676301C1 (ru) * 2018-03-20 2018-12-27 Акционерное общество "Научно-производственное предприятие "Дельта" Способ стрельбы зенитными снарядами
RU2688712C1 (ru) * 2018-07-06 2019-05-22 Акционерное общество "Научно-производственное предприятие "Дельта" Способ поражения воздушной цели боеприпасом с неконтактным датчиком цели
RU2707637C1 (ru) * 2019-02-14 2019-11-28 Акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" Способ поражения воздушной цели управляемой ракетой

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2825905C2 (ru) * 2022-07-13 2024-09-02 Александр Александрович Горшков Способ наведения противоракеты на сверхзвуковую цель

Similar Documents

Publication Publication Date Title
RU2695015C1 (ru) Способ обнаружения и поражения малозаметных боевых мини- и микро беспилотных летательных аппаратов
US3877376A (en) Directed warhead
JP2007525637A (ja) アクティブな防御デバイスならびに関連する装置、システム、および方法
EP3899412B1 (en) Munitions and projectiles
CN113959268B (zh) 一种顺轨拦截毁伤高超声速目标的后侧向引战配合方法
KR102376867B1 (ko) 레이더 유도 추적 헤드로부터 차량 및/또는 물체를 보호하기 위해 더미 표적을 제공하는 방법 및 장치
US8740071B1 (en) Method and apparatus for shockwave attenuation via cavitation
GB2583394A (en) Munitions and projectiles
RU2527610C2 (ru) Двухступенчатая противотанковая управляемая ракета
RU2722909C1 (ru) Способ поражения сверхзвуковой воздушной цели зенитным снарядом с неконтактным датчиком цели
RU2601241C2 (ru) Способ активной защиты летательного аппарата и система для его осуществления (варианты)
EP2942597B1 (en) An active protection system
RU2336486C2 (ru) Комплекс самозащиты летательных аппаратов от зенитных управляемых ракет
RU2680558C1 (ru) Способ увеличения вероятности преодоления зон противоракетной обороны
RU2625506C1 (ru) Способ борьбы с беспилотными летательными аппаратами
RU2730277C1 (ru) Способ поражения цели управляемой ракетой
RU2377493C2 (ru) Способ поражения легкоуязвимых наземных целей сверхзвуковой ракетой и устройство для его осуществления
KR101948572B1 (ko) 절개형 전면 감지 장치를 이용한 전면 대응 장치 및 그 방법
RU2725662C2 (ru) Способ противодействия беспилотным летательным аппаратам
RU2477832C2 (ru) Противокорабельная ракета
RU2629464C1 (ru) Способ защиты летательных аппаратов от ракет, оснащенных головками самонаведения с матричным фотоприемным устройством
WO2016114743A1 (ru) Способ гиперзвуковой защиты танка
RU2568826C2 (ru) Система самоподрыва
RU157566U1 (ru) Комбинированный защитный боеприпас цилиндрической формы для комплексов активной защиты
RU2280836C1 (ru) Способ защиты летательных аппаратов от управляемых ракет и система для его реализации