RU2721584C1 - Многоволновый фотовозбуждаемый тонкопленочный органический лазер - Google Patents

Многоволновый фотовозбуждаемый тонкопленочный органический лазер Download PDF

Info

Publication number
RU2721584C1
RU2721584C1 RU2019140644A RU2019140644A RU2721584C1 RU 2721584 C1 RU2721584 C1 RU 2721584C1 RU 2019140644 A RU2019140644 A RU 2019140644A RU 2019140644 A RU2019140644 A RU 2019140644A RU 2721584 C1 RU2721584 C1 RU 2721584C1
Authority
RU
Russia
Prior art keywords
laser
wavelength
active
generation
organic
Prior art date
Application number
RU2019140644A
Other languages
English (en)
Inventor
Евгений Николаевич Тельминов
Татьяна Александровна Солодова
Елена Николаевна Никонова
Татьяна Николаевна Копылова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2019140644A priority Critical patent/RU2721584C1/ru
Application granted granted Critical
Publication of RU2721584C1 publication Critical patent/RU2721584C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/20Liquids
    • H01S3/213Liquids including an organic dye

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

Изобретение относится к лазерной технике. Многоволновый фотовозбуждаемый тонкопленочный органический лазер содержит источник оптической накачки, лазерно-активный элемент в виде подложки, на которую нанесен дополнительный слой, обеспечивающий условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды, состоящей из органического люминофора, растворенного в полимере. При этом лазерно-активный элемент состоит из нескольких подобных лазерно-активных элементов, выполненных с разными люминофорами, сложенных в стопу и разделенных между собой воздушными промежутками, равными или большими наибольшей длине волны генерации. Технический результат заключается в обеспечении возможности получения одновременного излучения на нескольких длинах волн от одного источника накачки. 4 з.п. ф-лы, 3 ил.

Description

Уровень техники
Типичные лазеры генерируют излучение с одной определенной длиной волны. Однако в некоторых случаях требуются многолучевые источники когерентного излучения с набором различных длин волн излучающихся одновременно.
Известно устройство [1], представляющее собой твердотельный многоволновой лазерный излучатель (длины волн генерации 1064, 532 и 355 нм), интегрированный в едином исполнении с телескопом, для применения в аэрозольных лидарах. Основой излучателя является задающий лазер и усилитель на основе кристалла YAG:Nd3+, который возбуждается лазерными диодными матрицами. В режиме модуляции добротности энергия выходных импульсов YAG:Nd3+ лазерного излучателя достигает 400 мДж (1064 нм). При одновременной генерации трех длин волн излучатель формирует импульсы излучения на длинах волн 1064, 532 и 355 нм с энергиями 170, 150 и 80 мДж соответственно. Длительность импульсов составляет 8-11 нс при частоте следования 10 Гц.
Для аналога характерны следующие недостатки: невозможность варьирования длины волны излучения; генерирование излучения на строго определенных длинах волн; эффективность генерации гармоник существенно зависит от параметров генерации основной частоты (1064 нм). Кроме того, необходимо обеспечить высокое качество выходного излучения для накачки каждого последующего каскада. Такие лазерные системы сложны в настройке нелинейных кристаллов для получения наибольшей эффективности. Также известна работа [2], в которой предложен новый тип газовых импульснопериодических лазеров, позволяющих генерировать мощное лазерное излучение на отдельных линиях в различных диапазонах спектра (от 0,2 до 10,6 мкм), а также одновременно в ИК и УФ областях. При этом возможно получать генерацию на разных длинах волн не только при смене активной молекулы, но и при одновременном использовании двух или более активных молекул в газовой смеси. Также в работе [3] при исследовании генерации эксимерного XeCl лазера отмечался еще один возможный случай двухволновой генерации- на молекулах эксимера ХеС1 и атомарном ксеноне, а в работе [4] одновременная генерация на HF и DF.
Для приведенных аналогов характерен ряд недостатков. Известно, что обеспечение условий накачки эксимерных смесей в газовом разряде ограничено узким интервалом давления и состава газовой смеси, а в эксимерных лазерах источником накачки является однородный поперечный газовый разряд. Кроме того, необходимо обеспечить ряд требований к источнику электрической накачки, т.е. к импульсному генератору наносекундного диапазона. Все это ограничивает спектральный диапазон линий генерации и их эффективности излучения. Все лучи сосредоточены по одной оптической оси.
Наиболее близкий аналог (прототип) это устройство описанное в [5]. Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакриалата содержит оптический источник накачки, органическую лазерно-активную среду из полиметилметакрилата и органического люминофора, растворенного в нем и нанесенного на стеклянную подложку. В лазере присутствует дополнительный слой между активной средой и стеклянной подложкой, обеспечивающий условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды. Несмотря на то, что он позволяет получить эффективную генерацию с использованием различных лазерно-активных сред излучающих различные длины волн, прототип обладает существенным недостатком – генерация излучения в нем осуществляется на одной длине волны.
Технический результат, на достижение которого направлено предлагаемое решение:
– получение одновременного излучения нескольких спектральных длин волн лазерного излучения от одного источника накачки;
– оперативное изменение спектра длин волн генерации.
Сущность изобретения
Решение поставленной задачи достигается тем, что в предлагаемом устройстве многоволнового фотовозбуждаемого тонкопленочного органического лазера, состоящего из источника накачки, лазерно-активного элемента в виде подложки, на которую нанесена плёнка из органического люминофора, растворенного в полимере. Под пленкой находится дополнительный слой, который обеспечивает условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды. В отличие от прототипа предлагаемый излучающий лазерно-активный элемент состоит из нескольких отдельных лазерно-активных элементов, каждый из которых состоит из тонкопленочной лазерно-активной среды на основе люминофора в полимере и нанесенной на свою прозрачную для длины волны накачки подложку с дополнительным слоем. Отдельные лазерно-активные элементы сложены в стопу и разделены между собой воздушными промежутками, равными или больше наибольшей длине волны генерации. Источник накачки выбирается из ряда лазерных и не лазерных источников излучения, способных накачать лазерно-активную среду выше порога генерации.
Технический результат заключается в получении генерации нескольких спектральных длин волн лазерного излучения от одного источника накачки и в возможности оперативного изменения спектра генерации.
Для пояснения предполагаемого изобретения предложен чертеж Фигура 1. – Схематическое изображение многоволнового фотовозбуждаемого тонкопленочного органического лазера, где 1 – прозрачная подложка; 2 – адгезионный слой; 3– тонкопленочная лазерно-активная среда; 4-прокладка, 5, 6, 7- выходное излучение, 8-источник накачки.
Многоволновый фотовозбуждаемый тонкопленочный органический лазер состоит из источника накачки (8), который может быть лазерным и не лазерным, излучающим в видимом диапазоне и способный накачать лазерно-активную среду выше порога генерации. Оптический лазерный элемент представляет собой набор состоящий из отдельных лазерно-активных элементов выполненных с использованием разных люминофоров сложенных в стопу и разделенных между собой воздушными промежутками посредством прокладок (4) толщиной не меньше длины волны генерируемого средой лазерного излучения для предотвращения явления оптического контакта. Каждый отдельный лазерно-активный элемент состоит из прозрачной подложки (1), которая может быть выполнена из стекла и не требует прецизионной оптической обработки благодаря адгезионному слою (2), выполненному из гидрализованного тетраэтоксисилана. Сверху нанесен тонкопленочный лазерно-активный слой люминофора в полимере полиметилакрилата (ПMMA) (3). Такая конструкция отдельного лазерно-активного элемента при поперечном фото-возбуждении представляет собой планарный волновод, по которому распространяется излучение генерации. Концентрация люминофоров и уровень мощности накачки подбираются таким образом, чтобы при накачке выполнялись условия генерации не только для первого отдельного лазерно-активного элемента, но и для каждого последующего находящегося в стопе. Излучение генерации выходит из торцов планарных волноводов.
Устройство работает следующим образом: при фотовозбуждении тонкопленочной лазерно-активной среды (3) от источника накачки (8) возникает генерация и распространяется в планарном волноводе, образованном дополнительным слоем (2), активной средой и воздушным промежутком; т. к. активная среда представляет собой тонкую пленку люминофора в полимере, то часть не поглощенной энергии накачки проходит сквозь прозрачную, для длины волны накачки подложку (1) первого отдельного лазерно-активного элемента, попадает на второй, затем на третий и т. д., накачивая их выше пороговой генерации. Вывод полезного сигнала (5,6,7) осуществляется с торцов планарных волноводов лазерно-активных элементов.
Авторами изготовлены четыре отдельных лазерно-активных элемента для демонстрации многолучевого тонкопленочного фотовозбуждаемого органического лазера на основе пиррометена 567, пиррометена 597, хромена-3 и дистирилбензола. Каждая из лазерно-активных сред наносилась на адгезивный слой, который в свою очередь был нанесен на стеклянную подложку 2×2 см. Отдельные лазерно-активные элементы сложены в стопу и разделены между собой воздушным промежутком посредством размещения прокладок из тефлоновой пленки толщиной 0,25 мм, фигура 1. Оперативное изменение длины волны генерации производится заменой отдельного лазерно-активного элемента в стопе. Накачка многолучевого тонкопленочного фотовозбуждаемого органического лазера осуществлялась на установке, приведенной на фигуре 2. Авторы использовали два варианта стоп оптических лазерно-активных элементов состоящих из двух различных наборов отдельных лазерно-активных элементов на основе пиррометена 567, пиррометена 597, хромена-3 и дистирилбензола. Накачка осуществляется в поперечном варианте третьей гармоникой АИГ-Nd3+ лазера с энергией в импульсе до 10 мДж, длительностью импульса 10 нс, частотой повторения до 10 Гц. Спектр излучения регистрировался лазерным спектрометром 3 AvaSpec-2048ULS (Avantes), энергия излучения измерителями Gentec EO ED-100A-UV и Ophir NOVA II.
Фигура 2 – Схема экспериментальной установки: 1 –АИГ-Nd3+-лазер, 2 – система неселективных светофильтров, 3 – Gentec EO ED-100A-UV, 4 – светоделительная пластина, 5 – система цилиндрических линз, 6 – диафрагма, 7 – многоволновый фотовозбуждаемый тонкопленочный органический лазер, 8 – оптоволокно, 9 – спектрометр, 10 – Ophir NOVA II, 11 – персональный компьютер
На Фигуре 3 представлены спектры генерации многолучевого органического лазера:
а) 1 – длина волны генерации (556 нм) лазерной среды на основе пиррометена 567 (PM 567), 2 – длина волны генерации (576 нм) лазерной среды на основе пиррометена 597 (PM 597), 3 – длина волны генерации (607 нм) лазерной среды на основе хромена-3.
б) 1 – длина волны генерации (410 нм) лазерной среды на основе дистирилбензола, 2 – длина волны генерации (576 нм) лазерной среды на основе пиррометена 597 (PM 597), 3 – длина волны генерации (607 нм) лазерной среды на основе хромена-3.
Проведенные испытания показали, что при создании многолучевого тонкопленочного фотовозбуждаемых органического лазера возможно получение нескольких спектральных длин волн лазерного излучения от одного источника накачки и оперативное изменение спектрального состава излучения многолучевого фото-возбуждаемого органического лазера. Таким образом, поставленная цель достигнута.
Список использованной литературы:
1. Рябцев Г.И., Богданович М.В., Григорьев А.В., Кабанов В.В., Костик О.Е., Лебедок Е.В., Лепченков К.В., Осипенко Ф.П., Рябцев А.Г., Чайковский А.П., Щемелев М.А., Титовец В.С. Мощный полностью твердотельный многоволновой лазер для аэрозольных лидаров // Оптический журнал. – 2014. – Т. 81. – № 10. – С. 20-25.
2. Атежев В.В., Букреев B.C., Вартапетов СК., Жуков А.Н., Конов В.И., Прохоров A.M., Савельев А.Д. Многоволновой импульсно-периодический электроразрядный лазер // Краткие сообщения по физике. – 1987. – №. 9. – С. 19-21.
3. Лосев В.Ф. Квантовая электроника В. 6. № 7,1561 – 1979 г
4. Brandelik JE J Appl Phys 51 № 3 1321 – 1980 г
5. Патент РФ № 2666181, МПК H01S 3/213 (2006.01), опубл. 06.09.2018

Claims (5)

1. Многоволновый фотовозбуждаемый тонкопленочный органический лазер, содержащий источник оптической накачки, лазерно-активный элемент в виде подложки, на которую нанесен дополнительный слой, обеспечивающий условия полного внутреннего отражения для длины волны генерации и одновременную адгезию к подложке органической лазерно-активной среды, состоящей из органического люминофора, растворенного в полимере, и отличающийся тем, что лазерно-активный элемент состоит из нескольких подобных лазерно-активных элементов, выполненных с разными люминофорами, сложенных в стопу и разделенных между собой воздушными промежутками, равными или большими наибольшей длине волны генерации.
2. Лазер по п. 1, отличающийся тем, что отдельные тонкопленочные лазерно-активные элементы изготовлены с использованием разных люминофоров, излучающих различные спектральные длины волн.
3. Лазер по пп. 1 и 2, отличающийся тем, что люминофоры нанесены на прозрачные для длины волны накачки подложки.
4. Лазер по пп. 1 и 2, отличающийся тем, что концентрации люминофоров выбираются из условий обеспечения порога генерации каждого.
5. Лазер по пп. 1 и 2, отличающийся тем, что каждый люминофор имеет спектральную полосу поглощения длины волны накачки.
RU2019140644A 2019-12-10 2019-12-10 Многоволновый фотовозбуждаемый тонкопленочный органический лазер RU2721584C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019140644A RU2721584C1 (ru) 2019-12-10 2019-12-10 Многоволновый фотовозбуждаемый тонкопленочный органический лазер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019140644A RU2721584C1 (ru) 2019-12-10 2019-12-10 Многоволновый фотовозбуждаемый тонкопленочный органический лазер

Publications (1)

Publication Number Publication Date
RU2721584C1 true RU2721584C1 (ru) 2020-05-20

Family

ID=70735436

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019140644A RU2721584C1 (ru) 2019-12-10 2019-12-10 Многоволновый фотовозбуждаемый тонкопленочный органический лазер

Country Status (1)

Country Link
RU (1) RU2721584C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064760A1 (en) * 2003-06-12 2007-03-22 Soren Kragh Optical amplification in miniaturized polymer cavity resonators
US8330348B2 (en) * 2005-10-31 2012-12-11 Osram Opto Semiconductors Gmbh Structured luminescence conversion layer
US20130039029A1 (en) * 2011-08-10 2013-02-14 Osram Sylvania Inc. Light Engine Having Distributed Remote Phosphors
RU2666181C2 (ru) * 2016-12-21 2018-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064760A1 (en) * 2003-06-12 2007-03-22 Soren Kragh Optical amplification in miniaturized polymer cavity resonators
US8330348B2 (en) * 2005-10-31 2012-12-11 Osram Opto Semiconductors Gmbh Structured luminescence conversion layer
US20130039029A1 (en) * 2011-08-10 2013-02-14 Osram Sylvania Inc. Light Engine Having Distributed Remote Phosphors
RU2666181C2 (ru) * 2016-12-21 2018-09-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Тонкопленочный фотовозбуждаемый органический лазер на основе полиметилметакрилата

Similar Documents

Publication Publication Date Title
Kogelnik et al. Stimulated emission in a periodic structure
US7733922B1 (en) Method and apparatus for fast pulse harmonic fiber laser
US5121398A (en) Broadly tunable, high repetition rate solid state lasers and uses thereof
Salour Powerful dye laser oscillator-amplifier system for high resolution and coherent pulse spectroscopy
RU2721584C1 (ru) Многоволновый фотовозбуждаемый тонкопленочный органический лазер
Rubinov et al. Holographic DFB dye lasers
Morris et al. A wavelength tunable 2-ps pulse VECSEL
RU2144722C1 (ru) Лазерная система и двухимпульсный лазер
Hänsch Applications of dye lasers
CN113794093A (zh) 一种多波长拉曼激光器
RU122208U1 (ru) Субпикосекундный гольмиевый волоконный лазер с накачкой полупроводниковым дисковым лазером
RU2607815C1 (ru) Составной резонатор эксимерного лазера
RU147366U1 (ru) Твердотельный перестраиваемый лазер на основе органических соединений
Tcheremiskine et al. Amplification of femtosecond optical pulses in a photolytically driven XeF (CA) laser amplifier
Hoa et al. Direct generation of a tunable nearly transform-limited picosecond pulse in the ultraviolet region using a distributed-feedback dye laser
Basheer Ahamed et al. Tunable energy transfer distributed feedback dye laser using pyronin B and crystal violet dye mixture
Basting et al. Historical review of excimer laser development
Woodward et al. Versatile Mid-Infrared Mode-Locked Fiber Laser, Electronically Tunable from 2.97 to 3.30 μm
RU165729U1 (ru) Твердотельный лазер на основе органических соединений со светодиодной накачкой
Hoogland et al. Compact ultrashort pulsed 2.05 µm all-PM fiber laser for dielectric laser acceleration of non-relativistic electrons
Ei 8.1 Physical Principles
RU165706U1 (ru) Твердотельный лазер на основе аксиконового отражателя
US4137509A (en) Tunable laser based upon S2, Te2 and other selected dimers
RU2054772C1 (ru) Импульсный твердотельный лазер
Silfvast Fundamentals of Photonics