RU2721156C1 - Способ определения электрофизических параметров метаматериалов - Google Patents
Способ определения электрофизических параметров метаматериалов Download PDFInfo
- Publication number
- RU2721156C1 RU2721156C1 RU2019126077A RU2019126077A RU2721156C1 RU 2721156 C1 RU2721156 C1 RU 2721156C1 RU 2019126077 A RU2019126077 A RU 2019126077A RU 2019126077 A RU2019126077 A RU 2019126077A RU 2721156 C1 RU2721156 C1 RU 2721156C1
- Authority
- RU
- Russia
- Prior art keywords
- metal substrate
- plate
- electromagnetic wave
- metamaterial
- determining
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N22/00—Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Использование: для исследования метаматериалов. Сущность изобретения заключается в том, что способ определения электрофизических параметров метаматериалов заключается в размещении пластинки исследуемого материала на металлической подложке, возбуждении вдоль металлической подложки электромагнитной волны с вертикальной поляризацией, падающей на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка - исследуемый материал», определении принадлежности исследуемой пластинки к метаматериалу по положению преломленного луча электромагнитной волны относительно нормали к границе раздела «исследуемый материал - металлическая подложка» и определении его показателя преломления, электромагнитную волну с вертикальной поляризацией, падающую на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «исследуемый материал - металлическая подложка», возбуждают последовательно на частотах, возрастающих от ƒi до ƒN с дискретным шагом по частоте Δƒ, измеряют коэффициент затухания α(ƒi), α(ƒi+1)…α(ƒN) каждой электромагнитной волны над поверхностью исследуемого материала по линии перпендикулярной к его поверхности по туже сторону нормали к границе раздела «исследуемый материал - металлическая подложка», где находится и падающая электромагнитная волна, сравнивают коэффициенты затухания с нулевым значением, если α(ƒi)>0, то принимают решение о том, что пластинка на частоте ƒi является метаматериалом, используя два значения коэффициентов затухания на двух рядом расположенных частотах α(ƒi) и α(ƒi+1), на которых пластинка является метаматериалом, при условии, что определяют ее значения эффективных диэлектрической проницаемости εэф и магнитной проницаемости μэф решая систему из двух дисперсионных уравнений. Технический результат: обеспечение возможности повышения точности определения границ диапазона частот, где исследуемый материал является метаматериалом, а также повышения точности и достоверности измерения его значений эффективных диэлектрической и магнитной проницаемостей. 3 ил.
Description
Предлагаемое изобретение относится к измерительной технике, к новому научному направлению - получению и исследованию метаматериалов, в частности к измерению их электрофизических параметров.
Метаматериалы - это композитные материалы, обладающие уникальными электрофизическими, радиофизическими и оптическими свойствами, отсутствующими в природных материалах. Поскольку метаматериалы являются искусственными материалами и получаются за счет включения в диэлектрический материал (матрицу) искусственного материала (среды), то их электрофизические параметры описываются эффективной диэлектрической εэф и магнитной μэф проницаемостями. Уникальные свойства метаматериалов обусловлены в частности тем, что, метаматериалы могут обладать одновременно отрицательными значениями эффективных диэлектрической εэф и магнитной проницаемостей μэф, вследствие чего возникают электромагнитные волны, у которых фазовая и групповая скорости имеют противоположные направления и в результате возникает отрицательное лучепреломление на границе двух сред (падающий и преломленный лучи лежат по одну и ту же сторону нормали границы раздела сред) [Гуляев Ю.В., Лагарьков А.Н., Никитов С.А. Метаматериалы: фундаментальные исследования и перспективы применения // Вестник Российской академии наук, 2008. Том. 78. №5. С. 438-457].
Заявляемый способ как раз и позволяет определять является ли исследуемый материал метаматериалом в заданном диапазоне частот и, кроме того, после установления этого факта, позволяет определить значения его эффективных диэлектрической εэф и магнитной проницаемостей μэф.
Известен способ определения оптического метаматериала и устройство для его реализации [Патент RU №2551265, МПК7 G01N 21/41, Заявл. 12.12.2013. Опубл. 20.05.2015. Бюл. №14], включающий падение коллимированного светового пучка под углом на пластинку исследуемого материала, нанесении на обе ее поверхности диэлектрического и непрозрачного для светового пучка покрытия, при этом световой пучок проходит внутрь пластинки через входное окно, соизмеримое с толщиной пластинки и выполненное по центру в одном из покрытий. По положению выходного светового пучка относительно нормали к границе раздела сред в точке падения определяют принадлежность пластинки к метаматериалу.
Недостатком способа является то, что, способ эффективно работает только в оптическом диапазоне длин волн. При применении в диапазоне СВЧ - обладает низкой точностью определения диапазона частот, где исследуемый материал является метаматериалом, а также низкой точностью и достоверностью определения значений его эффективных диэлектрической и магнитной проницаемостей.
Известен способ измерения значений эффективных диэлектрической и магнитной проницаемостей метаматериалов [Кухаренко А.С. Методика измерения эффективных значений диэлектрической и магнитной проницаемости метаматериалов // Наукоемкие технологии в космических исследованиях земли. 2016. Т. 8, №3. С. 78-87], заключающийся в облучении исследуемого материала электромагнитными волнами с вертикальной или горизонтальной поляризацией, измерении его комплексных коэффициентов передачи и отражения и определении по ним его значений эффективных диэлектрической и магнитной проницаемостей.
Недостатками способа являются: не позволяет определять, что исследуемый материал является метаматериалом, низкая точность и достоверность измерения его значений эффективных диэлектрической и магнитной проницаемостей.
Наиболее близким по технической сущности к предлагаемому изобретению (прототипом) является способ определения электрофизических параметров метаматериалов [с. 254-255 [L. Ran, J. Huangfu, Н. Chen, X. Zhang, K. Chen, Т. Grzegorczyk, and J. Kong, Experimental Study on Several Left-Handed Matamaterials, Progress In Electromagnetics Research, 2005, Vol. 51, pp. 249-279, http://www.jpier.org/PIER/pier.php?paper=0404052, DOI: 10.2528/PIER04040502], заключающийся в размещении пластинки исследуемого материала на металлической подложке, возбуждении вдоль металлической подложки электромагнитной волны с вертикальной поляризацией, падающей на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка-исследуемый материал», определении принадлежности исследуемой пластинки к метаматериалу по положению преломленного луча электромагнитной волны относительно нормали к границе раздела «металлическая подложка-исследуемый материал» и определении его показателя преломления.
Недостаткам данного способа являются низкая точность определения границ диапазона частот, где исследуемый материал является метаматериалом, а также низкая точность и достоверность измерения его значений эффективных диэлектрической и магнитной проницаемостей.
Техническим результатом предлагаемого изобретения является повышение точности определения границ диапазона частот, где исследуемый материал является метаматериалом, а также повышение точности и достоверность измерения его значений эффективных диэлектрической и магнитной проницаемостей.
Указанный технический результат достигается тем, что в известном способе определения электрофизических параметров метаматериалов, заключающемся в размещении пластинки исследуемого материала на металлической подложке, возбуждении вдоль металлической подложки электромагнитной волны с вертикальной поляризацией, падающей на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка-исследуемый материал», определении принадлежности исследуемой пластинки к метаматериалу по положению преломленного луча электромагнитной волны относительно нормали к границе раздела «исследуемый материал - металлическая подложка» и определении его показателя преломления, электромагнитную волну с вертикальной поляризацией, падающую на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «исследуемый материал - металлическая подложка», возбуждают последовательно на частотах, возрастающих от ƒi до ƒN с дискретным шагом по частоте Δƒ,
измеряют коэффициент затухания α(ƒi), α(ƒi+1)…α(ƒN) каждой электромагнитной волны над поверхностью исследуемого материала по линии перпендикулярной к его поверхности по туже сторону нормали к границе раздела «исследуемый материал - металлическая подложка», где находится и падающая электромагнитная волна,
сравнивают коэффициенты затухания с нулевым значением,
если α(ƒi)>0, то принимают решение о том, что пластинка на частоте ƒi является метаматериалом,
используя два значения коэффициентов затухания на двух рядом расположенных частотах α(ƒi) и α(ƒi+1), на которых пластинка является метаматериалом, при условии, что определяют ее значения эффективных диэлектрической проницаемости εэф и магнитной проницаемости μэф, решая систему из двух дисперсионных уравнений.
Сущность изобретения состоит в следующем. В прототипе определение принадлежности исследуемой пластинки к метаматериалу на заданной частоте осуществляется по смещению луча электромагнитной волны с вертикальной поляризацией, возбуждаемой вдоль металлической подложки, падающей на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка - исследуемый материал», после прохождения им плоскопараллельной пластинки исследуемого материала. Луч на выходе пластинки регистрируется приемным детектором. Способ основан на методах геометрической оптики и при измерениях не учитывается конечная ширина диаграммы направленности приемного детектора, что приводит к снижению точности и достоверности определения смещения выходного луча относительно нормали к границе раздела «металлическая подложка - исследуемый материал».
Кроме того, способ-прототип позволяет определить только значение безразмерного показателя преломления где εэф - эффективная диэлектрическая проницаемость, μэф - эффективная магнитная проницаемость метаматериала. Для раздельного определения значений эффективных диэлектрической и магнитной проницаемостей требуются измерения смещения луча как минимум для двух различных частот электромагнитной волны. Поскольку метаматериал обладает сильной частотной дисперсией диэлектрической и магнитной проницаемостей, измерения необходимо проводить на двух близко расположенных частотах, чтобы ей можно было пренебречь. Так как малые изменения частоты, приводят к небольшим смещениям выходного луча, из-за конечности ширины диаграммы направленности приемного детектора, точность и достоверность определения его смещения значительно снижается.
Предлагаемый способ позволяет повысить точность определения границ диапазона частот, где исследуемый материал является метаматериалом, а также повысить точность и достоверность измерения его значений эффективных диэлектрической и магнитной проницаемостей.
В предлагаемом способе учитывается, что в области частот, где исследуемый материал является метаматериалом (т.е. эффективная диэлектрическая проницаемость εэф и эффективная магнитная проницаемость μэф одновременно принимают отрицательные значения) электромагнитная волна с вертикальной поляризацией на границе раздела «металлическая подложка - исследуемый материал» переходит в поверхностную электромагнитную волну. Основным свойством поверхностной волны является то, что направление ее распространения ортогонально направлению недиссипативного затухания [Федюнин П.А., Казьмин А.И. Способы радиоволнового контроля параметров защитных покрытий авиационной техники. М.: Физматлит. 2013. стр. 69]. В предлагаемом способе детектирование появления электромагнитной волны по туже сторону нормали, что и падающая электромагнитная волна осуществляется путем измерения коэффициента затухания поля поверхностной волны перпендикулярно поверхности исследуемого материала. Для поверхностной волны коэффициент затухания всегда имеет положительное значение. В предлагаемом способе основными критериями определения принадлежности исследуемого материала к метаматериалу являются: появление поверхностной электромагнитной волны с той же стороны нормали, что и падающая электромагнитная волна и положительное значение ее коэффициента затухания. Таким образом, в предлагаемом способе не производится оценка смещения выходного луча с помощью детектора, а вместо этого измеряются значения коэффициента затухания поля поверхностной волны с той же стороны нормали, что и падающая электромагнитная волна. При этом измерения коэффициента затухания, в отличие от измерения смещения выходного луча, можно произвести при любых значениях частоты с точностью достаточной для определения эффективных диэлектрической и магнитной проницаемостей. Это позволяет для двух значений коэффициентов затухания на двух рядом расположенных частотах составить систему из двух дисперсионных уравнений и определить эффективную диэлектрическую проницаемость εэф и эффективную магнитную проницаемость метаматериала μэф путем решения этой системы.
На фиг. 1 представлен один из возможных вариантов реализации предлагаемого способа определения электрофизических параметров метаматериалов, где цифрами обозначено 1 - исследуемый материал, 2 - радиопоглощающее покрытие, 3 - металлическая поверхность, 4 - нормаль к границе раздела «металлическая поверхность-исследуемый материал», 5 - падающая электромагнитная волна с вертикальной поляризацией, 6 - преломленная электромагнитная волна, 7 - область над исследуемым материалом для измерения коэффициента затухания поверхностной волны, 8 - блок измерения коэффициентов затухания поля поверхностной электромагнитной волны, 9 - блок пороговой обработки и определения значений эффективных диэлектрической и магнитной проницаемостей метаматериала, 10 - приемная антенна, 11 - антенна возбуждения электромагнитной волны с вертикальной поляризацией, 12 - генератор СВЧ.
Назначение элементов схемы
Образец исследуемого материала 1 может быть изготовлен как [с. 254 [L. Ran, J. Huangfu, Н. Chen, X. Zhang, K. Chen, Т. Grzegorczyk, and J. Kong, Experimental Study on Several Left-Handed Matamaterials, Progress In Electromagnetics Research, 2005, Vol. 51, pp. 249-279, http://www.jpier.org/PIER/pier.php?paper=0404052, DOI: 10.2528/PIER04040502], например, в форме параллелограмма. Это позволяет повысить точность позиционирования антенны возбуждения электромагнитной волны с вертикальной поляризацией относительно нормали 4 к границе раздела «металлическая поверхность-исследуемый материал».
Радиопоглощающее покрытие 2 совместно с металлической подложкой 3 образуют параллельный пластинчатый волновод. Он позволяет эффективно возбуждать вдоль металлической подложки электромагнитную волну и устранять внешние мешающие излучения. Радиопоглощающее покрытие может быть, например, типа РАН-28М.
Назначение блока измерения коэффициентов затухания поля поверхностной электромагнитной волны 8 следует из названия самого блока. Измерение коэффициентов затухания может быть осуществлено по результатам косвенных измерений напряженности поля поверхностной волны по нормали к поверхности покрытия [Федюнин П.А., Казьмин А.И. Способы радиоволнового контроля параметров защитных покрытий авиационной техники. М.: Физматлит.2013. стр. 122].
Блок измерения коэффициентов затухания поля поверхностной волны 8 может быть реализован, например, на основе детекторных СВЧ-диодов, аналогово-цифрового преобразователя, микроконтроллера и персональной электронной вычислительной машины (ПЭВМ) [Branislav Korenko и Marek . Автономный цифровой вольтметр на многоканальном АЦП. Электронный журнал Радиолоцман, 2012, ноябрь. С. 67-70. URL: http://www.rlocman.ru /book/book.html?di=144227 (Дата обращения: 26.07.2019)].
Блок пороговой обработки и определения значений эффективных диэлектрической и магнитной проницаемостей метаматериала 9 предназначен для сравнения измеренных коэффициентов затухания с нулевым значением, выдачи информации о принадлежности исследуемого материала к метаматериалу и определения его значений эффективной диэлектрической и магнитной проницаемостей.
Блок пороговой обработки и определения значений эффективных диэлектрической и магнитной проницаемостей метаматериала 9 может быть реализован путем решения системы из двух дисперсионных уравнений для поверхностной волны.
С учетом того, что вдоль металлической подложки возбуждается электромагнитная волна с вертикальной поляризацией на границе раздела «металлическая подложка-исследуемый материал» она переходит преимущественно в поверхностную электромагнитную волну Е-типа. При этом дисперсионные уравнения имеют следующий вид [формула (17), р. 1434 [Р. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto Fundamental modal properties of surface waves on metamaterial ground-ed slabs, IEEE Transactions on microwave theory and techniques, 2005, vol. 53, N 4, pp. 1431-1442, DOI: 10.1109/TMTT.2005.847880]:
где qi - поперечное волновое число в слое метаматериала на частоте ƒi, qi+1 - поперечное волновое число в слое метаматериала на частоте ƒi+1, c=3⋅108 м/с - величина скорости электромагнитных волн в вакууме; b - толщина метаматериала, εэф - эффективная диэлектрическая проницаемость, μэф - эффективная магнитная проницаемость.
Блок пороговой обработки и определения значений эффективных диэлектрической и магнитной проницаемостей метаматериала 9 может быть реализован на основе микроконтроллера ATmega2560 [ATmega2560. Datasheet [Электронный ресурс] URL: http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf. (Дата обращения: 26.07.2019)]. Система (1) решается с помощью подпрограммы, которая загружается в микроконтроллер блока 9.
Антенна возбуждения электромагнитной волны с вертикальной поляризацией 11 предназначена для возбуждения вдоль металлической подложки 1 электромагнитной волны с вертикальной поляризацией, которая дойдя до границы раздела «металлическая подложка-исследуемый материал» переходит в поверхностную электромагнитную волну Е-типа. Антенна возбуждения электромагнитной волны с вертикальной поляризацией может быть реализована на основе открытого конца прямоугольного волновода, например в виде коаксиально-волноводного перехода [Баскаков С.И. Электродинамика и распространение радиоволн. М.: Высшая школа. 1992. С. 174].
Генератор СВЧ 12 присущ аналогу и реализует формирование СВЧ сигнала на заданной длине волны для антенны возбуждения электромагнитной волны с вертикальной поляризацией 11. Генератор СВЧ может быть построен на основе микросхем типа HMC586LC4B и ADF4158 [Direct Modulation / Generating. 6,1 GHz Fractional-N Frequency Synthesizer. [Электронный ресурс] URL: http:/www.analog.com/media/en/technical-documentation/data-sheets/ADF4158.pdf (Дата обращения: 26.07.2019)].
Устройство работает следующим образом.
Перед началом проведения измерений в блок пороговой обработки и определения значений эффективных диэлектрической и магнитной проницаемостей метаматериала 9 вводят толщину исследуемого материала b.
С помощью генератора СВЧ 12 и антенны возбуждения электромагнитной волны с вертикальной поляризацией 11 вдоль металлической поверхности 3 возбуждают электромагнитную волну с вертикальной поляризацией, последовательно, на частотах, возрастающих от ƒi до ƒN с дискретным шагом по частоте Δƒ. За счет того, что исследуемый материал изготовлен в виде параллелограмма, электромагнитная волна, дойдя до исследуемого материала, падает под углом θ1 к нормали 4 границы раздела «металлическая подложка-исследуемый материал».
С помощью приемной антенны 10 и блока измерения коэффициентов затухания 8 для каждой частоты производят измерение значений коэффициентов затухания α(ƒi), α(ƒi+1)…α(ƒN) в области 7 над исследуемым покрытием, т.е. со стороны нормали 4, где расположена и падающая электромагнитная волна с вертикальной поляризацией 5.
Измеренные коэффициенты затухания α(ƒi), α(ƒi+1)…α(ƒN) поступают в блок пороговой обработки и определения значений эффективных диэлектрической и магнитной проницаемостей метаматериала 9. В блоке 9 сравнивают коэффициенты затухания с нулевым значением и если α(ƒi)>0, то принимают решение о том, что пластинка на частоте ƒi является метаматериалом.
Используя два значения коэффициентов затухания на двух рядом расположенных частотах α(ƒi) и α(ƒi-1), на которых пластинка является метаматериалом, при условии, что определяют ее значения эффективных диэлектрической проницаемости εэф и магнитной проницаемости μэф, решая систему из двух дисперсионных уравнений (1).
Для проверки работоспособности способа проведено электродинамическое моделирование в системе CST Studio suit и экспериментальное исследование.
В качестве тестового материала использовался метаматериал на основе SRR-элементов виде узких полосок металла и кольцевых щелевых резонаторов квадратного типа [р. 11 [B.-I. Wu, W. Wang, J. Pacheco, X. Chen, Т. Grzegorczyk and J. A. Kong A study of using metamaterials as antenna substrate to enhance gain, Progress In Electromagnetics Research, 2005, vol. 51, pp. 295-328, http://www.jpier.org/PIER/pier.php?paper=0407071, DOI:10.2528/PIER04070701]. Геометрические параметры метаматериала были подобраны таким образом, что в области частот от 8,9 ГГц до 9,4 ГГц обеспечивались одновременно отрицательные значения эффективных диэлектрической и магнитной проницаемостей.
Пластина исследуемого метаматериала состояла из 2400 SRR-элементов. Исследуемая пластина метаматериал показана на фиг. 2. Проведенное моделирование в системе CST Studio suit и экспериментальное исследование показало, что в области частот, где эффективные диэлектрическая и магнитная проницаемости одновременно принимают отрицательные значения, наблюдается возникновение поверхностной электромагнитной волны Е-типа. Это следует из характерного поведения поля - поле экспоненциально затухает перпендикулярно поверхности. Характер поведения напряженности поля поверхностной волны Е-типа над метаматериалом показан на фиг. 3. Значение коэффициента затухания поля на частоте 9,01 ГГц составляет 201,7 м-1.
Проведено определение эффективных значений диэлектрической и магнитной проницаемостей по коэффициентам затухания на двух близко расположенных частотах ƒ1=9,01 ГГц и ƒ2=9,02 ГГц. Соответствующие им коэффициенты затухания равны: α(ƒl)=201,7 м-1 и α(ƒ2)=194,92 м-1. Значения эффективных диэлектрической и магнитной проницаемостей, полученные путем решения системы (1), имеют отрицательные значения εэф=-0,9 и μэф=-2,8 соответственно. Проницаемости вычислены без учета потерь в метаматериале.
Приведенное электродинамическое моделирование и экспериментальные исследования метаматериала показали принципиальную возможность надежной идентификации того, что исследуемый материал, является метаматериалом, а также возможность одновременного измерения его эффективных диэлектрической и магнитной проницаемостей на основе разработанного способа.
Таким образом, предлагаемый способ позволяет повысить точность определения границ диапазона частот, где исследуемый материал является метаматериалом, а также повысить точность и достоверность измерения его значений эффективных диэлектрической и магнитной проницаемостей.
Claims (5)
- Способ определения электрофизических параметров метаматериалов, заключающийся в размещении пластинки исследуемого материала на металлической подложке, возбуждении вдоль металлической подложки электромагнитной волны с вертикальной поляризацией, падающей на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка - исследуемый материал», определении принадлежности исследуемой пластинки к метаматериалу по положению преломленного луча электромагнитной волны относительно нормали к границе раздела «исследуемый материал - металлическая подложка» и определении его показателя преломления, отличающийся тем, что электромагнитную волну с вертикальной поляризацией, падающую на пластинку исследуемого материала под углом к нормали, проведенной вдоль металлической подложки к границе раздела «металлическая подложка-исследуемый материал», возбуждают последовательно на частотах, возрастающих от ƒi до ƒN с дискретным шагом по частоте Δƒ,
- измеряют коэффициент затухания α(ƒi), α(ƒi+1)…α(ƒN) каждой электромагнитной волны над поверхностью исследуемого материала по линии перпендикулярной к его поверхности по туже сторону нормали к границе раздела «исследуемый материал - металлическая подложка», где находится и падающая электромагнитная волна,
- сравнивают коэффициенты затухания с нулевым значением,
- если α(ƒi)>0, то принимают решение о том, что пластинка на частоте ƒi является метаматериалом,
- используя два значения коэффициентов затухания на двух рядом расположенных частотах α(ƒi) и α(ƒi+1), на которых пластинка является метаматериалом, при условии, что определяют ее значения эффективных диэлектрической проницаемости εэф и магнитной проницаемости μэф, решая систему из двух дисперсионных уравнений.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019126077A RU2721156C1 (ru) | 2019-08-16 | 2019-08-16 | Способ определения электрофизических параметров метаматериалов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019126077A RU2721156C1 (ru) | 2019-08-16 | 2019-08-16 | Способ определения электрофизических параметров метаматериалов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2721156C1 true RU2721156C1 (ru) | 2020-05-18 |
Family
ID=70735291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019126077A RU2721156C1 (ru) | 2019-08-16 | 2019-08-16 | Способ определения электрофизических параметров метаматериалов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2721156C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2758390C1 (ru) * | 2020-12-29 | 2021-10-28 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ определения электрофизических параметров диэлектрических и магнитодиэлектрических покрытий с частотной дисперсией в диапазоне свч |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2258214C1 (ru) * | 2004-03-17 | 2005-08-10 | Тамбовский военный авиационный инженерный институт | Свч-способ измерения длины, толщины и диэлектрической проницаемости диэлектрического покрытия на металлической поверхности |
RU2326368C1 (ru) * | 2006-12-14 | 2008-06-10 | ГОУ ВПО "Саратовский государственный университет имени Н.Г. Чернышевского" | Способ измерения параметров структуры "металлическая пленка - полупроводниковая или диэлектрическая подложка" |
RU2338179C1 (ru) * | 2006-12-27 | 2008-11-10 | Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) | Свч-способ определения поверхностной влажности диэлектрических покрытий на металле и устройство, реализующее способ |
RU2552106C1 (ru) * | 2014-04-29 | 2015-06-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Свч-способ определения диэлектрической проницаемости и толщины покрытий на металле |
-
2019
- 2019-08-16 RU RU2019126077A patent/RU2721156C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2258214C1 (ru) * | 2004-03-17 | 2005-08-10 | Тамбовский военный авиационный инженерный институт | Свч-способ измерения длины, толщины и диэлектрической проницаемости диэлектрического покрытия на металлической поверхности |
RU2326368C1 (ru) * | 2006-12-14 | 2008-06-10 | ГОУ ВПО "Саратовский государственный университет имени Н.Г. Чернышевского" | Способ измерения параметров структуры "металлическая пленка - полупроводниковая или диэлектрическая подложка" |
RU2338179C1 (ru) * | 2006-12-27 | 2008-11-10 | Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) | Свч-способ определения поверхностной влажности диэлектрических покрытий на металле и устройство, реализующее способ |
RU2552106C1 (ru) * | 2014-04-29 | 2015-06-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Свч-способ определения диэлектрической проницаемости и толщины покрытий на металле |
Non-Patent Citations (3)
Title |
---|
D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, PHYSICAL REVIEW B, VOLUME 65, 19 April 2002. * |
D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, PHYSICAL REVIEW B, VOLUME 65, 19 April 2002. Кухаренко Александр Сергеевич, МЕТОДИКА ИЗМЕРЕНИЯ ЭФФЕКТИВНЫХ ЗНАЧЕНИЙ ДИЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ ПРОНИЦАЕМОСТИ МЕТАМАТЕРИАЛОВ, НАУКОЕМКИЕ ТЕХНОЛОГИИ В КОСМИЧЕСКИХ ИССЛЕДОВАНИЯХ ЗЕМЛИ, cтр. 78-87, T. 8. N 3, 2016. * |
Кухаренко Александр Сергеевич, МЕТОДИКА ИЗМЕРЕНИЯЭФФЕКТИВНЫХ ЗНАЧЕНИЙ ДИЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ ПРОНИЦАЕМОСТИ МЕТАМАТЕРИАЛОВ, НАУКОЕМКИЕТЕХНОЛОГИИ В КОСМИЧЕСКИХ ИССЛЕДОВАНИЯХ ЗЕМЛИ, cтр. 78-87, T. 8. N 3, 2016. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2758390C1 (ru) * | 2020-12-29 | 2021-10-28 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ определения электрофизических параметров диэлектрических и магнитодиэлектрических покрытий с частотной дисперсией в диапазоне свч |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hasar et al. | Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials | |
CN103645154A (zh) | 一种利用太赫兹光谱信号提取材料光学常数的方法 | |
RU2721156C1 (ru) | Способ определения электрофизических параметров метаматериалов | |
RU2604094C1 (ru) | Свч способ обнаружения неоднородностей в диэлектрических покрытиях на металлической подложке | |
RU2522775C1 (ru) | Способ пассивной локализации ребер прямоугольного металлического параллелепипеда в инфракрасном излучении | |
Zhang et al. | High sensitivity refractive index sensor based on frequency selective surfaces absorber | |
Benson et al. | Permittivity and permeability tensor extraction technique for arbitrary anisotropic materials | |
Saillard et al. | Electromagnetic scattering from bounded or infinite subsurface bodies | |
Goray et al. | Boundary integral equation methods for conical diffraction and short waves | |
Hasar et al. | Method for electromagnetic property extraction of sublayers in metal-backed inhomogeneous metamaterials | |
VanderGaast et al. | Design and validation of inert homemade explosive simulants for ground penetrating radar | |
Skobelev et al. | Analysis of 1D periodic dielectric structures using a hybrid projection method | |
RU2713162C1 (ru) | Способ определения диэлектрической проницаемости материала | |
Nikitin et al. | Control of the conducting surface by terahertz surface electromagnetic waves | |
Jin et al. | Extraction of material parameters of a bi-layer structure using Terahertz time-domain spectroscopy | |
Baghdasaryan et al. | Enhancement of air-ground matching by means of a chirped multilayer structure: Electromagnetic modeling with the method of single expression | |
Khalaj-Amirhosseini | Analysis of lossy inhomogeneous planar layers using equivalent sources method | |
Datta et al. | Microwave imaging sensor system using metamaterial lens for subwavelength resolution | |
Aristov et al. | Determination of the electrophysical parameters of dielectric objects via the processing of ultra-wideband pulse radar signals | |
Kaz’min et al. | Testing electrophysical parameters of metamaterials by the method of surface electromagnetic waves | |
Hong et al. | Simulation of surface plasmon resonance sensor | |
Nazarov et al. | Thin and thick dielectric films for THz surface plasmon control | |
Vologdin et al. | Fluctuations of the wave amplitude level in a plane-layered medium with random irregularities | |
Gerasimov et al. | A diagnostic complex for studying terahertz surface plasmon polaritons generated by the Novosibirsk free electron laser | |
Kaliberda et al. | Singular Integral Equations in THz Waves Scattering by Finite Number of Graphene Strips with Dielectric Substrate |