RU2720284C1 - Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства - Google Patents

Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства Download PDF

Info

Publication number
RU2720284C1
RU2720284C1 RU2019126123A RU2019126123A RU2720284C1 RU 2720284 C1 RU2720284 C1 RU 2720284C1 RU 2019126123 A RU2019126123 A RU 2019126123A RU 2019126123 A RU2019126123 A RU 2019126123A RU 2720284 C1 RU2720284 C1 RU 2720284C1
Authority
RU
Russia
Prior art keywords
strip
niobium
vanadium
rest
ferrite
Prior art date
Application number
RU2019126123A
Other languages
English (en)
Inventor
Михаил Валериевич Дудинов
Кирилл Алексеевич Барабошкин
Артем Викторович Митрофанов
Татьяна Сергеевна Вархалева
Original Assignee
Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Северсталь" (ПАО "Северсталь") filed Critical Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority to RU2019126123A priority Critical patent/RU2720284C1/ru
Application granted granted Critical
Publication of RU2720284C1 publication Critical patent/RU2720284C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к производству горячекатаных полос из низколегированной стали, используемых для изготовления электросварных труб магистральных трубопроводов. Сталь имеет следующий химический состав, мас.%: углерод 0,04-0,07, кремний 0,15-0,25, марганец 0,60-0,80, хром 0,13-0,26, никель не более 0,06, медь не более 0,06, алюминий 0,03-0,06, ванадий не более 0,06, ниобий 0,04-0,06, суммарное содержание ниобия, ванадия и титана не более 0,15, молибден не более 0,01, азот не более 0,006, бор не более 0,0005, кальций не более 0,006, сера не более 0,002, фосфор не более 0,012, железо и примеси остальное. Металлографическая структура полосы включает не более 10% перлита, остальное – феррит. Балл неметаллических включений составляет не более 2,5 по среднему, не более 3 - по максимальному, а балл зерна феррита не крупнее 8. Обеспечивается получение полос, имеющих предел текучести по меньшей мере 390 МПа, предел прочности по меньшей мере 480 МПа и работу удара KV при 0°С по меньшей мере 100 Дж, а также высокие показатели коррозионной стойкости, в частности, при испытании на стойкость к сульфидному растрескиванию под напряжением, равным 95% от установленного минимального предела текучести, коэффициент чувствительности к растрескиванию (CSR) составляет не более 2%, коэффициент длины трещин (CLR) составляет не более 15%, а коэффициент толщины трещин (CTR) составляет не более 5%. 2 н.п. ф-лы, 1 табл.

Description

Изобретение относится к прокатному производству и может быть использовано при производстве горячекатаных полос класса прочности X52MS по API 5L45 или S355J2 по EN 10025-2 преимущественно из марок стали с пониженным содержанием углерода для изготовления электросварных труб магистральных трубопроводов.
Известен способ производства рулонов горячекатаной трубной стали толщиной 4,5-10 мм с содержанием углерода 0,04-0,07%, кремния 0,15-0,25%, марганца 0,45-0,60%, ниобия 0,035-0,055%, включающий нагрев сляба под горячую прокатку, его прокатку в черновой и чистовой непрерывной группах клетей широкополосного стана с температурой конца прокатки 780-840°С, дифференцированное охлаждение поверхности полосы водой секциями душирующего устройства на отводящем рольганге с задержкой подачи воды на полосу и последующую смотку в рулон, при этом горячую прокатку в чистовой непрерывной группе клетей широкополосного стана осуществляют с суммарным относительным обжатием не менее 85%, при этом дифференцированное охлаждение поверхности полосы на отводящем рольганге производят с задержкой подачи воды на поверхность полосы не более 2 с, а температуру смотки полосы устанавливают в диапазоне 530-570°С.(Патент РФ 2373003, МПК В21В 1/26, 20.11.2009 г.).
Недостатки известного способа состоят в том, что низкая температура конца прокатки приводит к снижению производительности и увеличению нагрузок при прокатке, а содержание углерода C>0,06% приводит к снижению стойкости в H2S среде.
Известна коррозионная сталь для производства морских трубопроводов, имеющая следующий химический состав: углерод 0,02-0,05%, кремний 0,10-030%, марганец 0,50-1,10%, фосфор не более 0,012%, сера не более 0,0015%, медь не более 0,20%, хром не более 0,30%, никель не более 0,20%, молибден не более 0,25%, ниобий 0,030-0,055%, ванадий 0,020-0,050%, титан 0,010-0,025%, алюминий 0,010-0,050%, азот не более 0,008%, при этом содержание остаточных элементов должно составлять As≤0,01%, Sb≤0,01%; Sn≤0,02%, Pb≤0,01%, Bi≤0,01%, Fe и неизбежные примеси - остальное, предел текучести Rt0.5≥485 МПа, предел прочности при растяжении Rm≥570 МПа, -20°С KV2≥250 Дж, -15°С DWTT SA≥85% (Патент CN 105132807, МПК С22С 38/14, С22С 38/28, С22С 38/50, C21D 8/02, C21D 8/10, 12.04.2017 г.).
Способ производства горячекатаных полос согласно патенту CN 105132807 включает нагрев непрерывнолитой заготовки до температуры 1120÷1136°С, черновую прокату с температурой конца прокатки температуру в конце черновой прокатки контролируют на уровне 980÷993°С и коэффициентом обжатия не менее 70%, чистовую прокатку с температурой конца прокатки 780÷970°С с коэффициентом обжатия не менее 70%, при этом в двух последних проходах коэффициент обжатия составляет не менее 15%, чистовую прокатку ведут с постоянным ускорением 0,0004÷0,01 м/с2, охлаждение, охлаждение полос со скоростью 39,6÷70°С/с до температуры 530÷650°С, последующую смотку в рулон при температуре 480÷600°С.
Недостатки известного способа состоят в том, что низкая температура конца прокатки приводит к снижению производительности и увеличению нагрузок при прокатке, а содержание Ti=0,010-0,025% приводит к снижению стойкости в H2S среде.
Технический результат - обеспечение в горячекатаной полосе толщиной 3-18 мм из низколегированной стали, имеющей пониженное содержание углерода и микролегированной ниобием и хромом механических свойств, соответствующих классу X52S по API 5L45 или S355J2 по EN 10025-2, высокого сопротивления ударным нагрузкам при низких температурах, а также повышение показателей коррозионной стойкости.
Технический результат достигается тем, что горячекатаная полоса высокой коррозионной стойкости из низколегированной стали имеет следующий химический состав: углерод 0,04-0,06%, кремний 0,15-0,25, марганец 0,60-0,80%, хром 0,13-0,26%, никель не более 0,06%, медь не более 0,06%, алюминий 0,03-0,06%, ванадий не более 0,06%, ниобий 0,04-0,06%, суммарное содержание ниобия, ванадия и титана не более 0,15%, молибден не более 0,01%, азот не более 0,006%, бор не более 0,0005%, кальций не более 0,006%, сера не более 0,002%, фосфор не более 0,012%, железо и примеси остальное, при этом металлографическая структура готовой полосы включает не более 10% перлита, остальное феррит, балл неметаллических включений составляет не более 2,5 по среднему, не более 3 по максимальному, балл зерна не крупнее 8, причем полоса имеет предел текучести по меньшей мере 390 МПа, предел прочности по меньшей мере 480 МПа и работу удара KV при минус 0°С по меньшей мере 100 Дж, при этом при испытании стойкости к сульфидному растрескиванию под напряжением, равным 95% от установленного минимального предела текучести, полоса имеет следующие показатели: коэффициент чувствительности к растрескиванию (CSR) не более 2%, коэффициент длины трещин (CLR) не более 15%, коэффициент толщины трещин (CTR) не более 5%.
Технический результат достигается также тем, что в способе производства горячекатаной полосы высокой коррозионной стойкости из низколегированной стали, включающий выплавку стали, непрерывную разливку в слябы, нагрев слябов, черновую и чистовую горячую прокатку, последующее ускоренное охлаждение, смотку полосы в рулон, согласно изобретению, выплавляют сталь следующего химического состава, мас. %: углерод 0,04-0,07, кремний 0,15-0,25, марганец 0,60-0,80, хром 0,13-0,26, никель не более 0,06, медь не более 0,06, алюминий 0,03-0,06, ванадий не более 0,06, ниобий 0,04-0,06%, при этом суммарное содержание ниобия, ванадия и титана не более 0,15, молибден не более 0,01, азот не более 0,006, бор не более 0,0005, кальций не более 0,006, сера не более 0,002, фосфор не более 0,012, железо и примеси - остальное, температуру конца чистовой прокатки устанавливают 850-950°С, суммарное относительное обжатие составляет не менее 85%, ускоренное охлаждение полосы ведут со скоростью 6-20°С/сек, а температуру смотки полосы устанавливают 480-580°С в зависимости от толщины полосы с получением в готовой полосе структуры, включающей не более 10% перлита, остальное феррит, балл неметаллических включений не более 2,5 по среднему, не более 3 по максимальному, балл зерна не крупнее 8.
Сущность изобретения заключается в следующем.
В целом приведенное содержание химических элементов обеспечивает необходимые механические свойства готовых горячекатаных полос.
Содержание углерода в стали в первую очередь определяет ее прочность. Содержание углерода менее 0,04% не позволяет достигнуть требуемой прочности, а содержание свыше 0,07% обеспечивает неудовлетворительные показатели коррозионной стойкости и приводит к появлению неравномерности свойств по толщине горячекатаных полос в результате зональной ликвации.
Кремний обеспечивает чистоту стали по кислороду и неметаллическим включениям, а также увеличивает прочность за счет упрочнения твердого раствора. Содержание кремния менее 0,15% ухудшает раскисленность стали и снижает прочность. Содержание кремния свыше 0,25% обуславливает возрастание содержания силикатных включений, снижение ударной вязкости.
Марганец обеспечивает твердорастворное упрочнение и повышает хладостойкость. При содержании марганца менее 0,60% не обеспечивается требуемая прочность и хладностойкость. Содержание марганца свыше 0,80% ухудшает коррозионную стойкость.
Хром повышает прочность стали. При содержании свыше 0,26% оказывает негативное влияние на свариваемость.
Эмпирически установлено, что в рамках данной легирующей композиции минимальное содержание хрома, при котором он оказывает влияние на коррозионную стойкость готовой горячекатаной полосы, составляет 0,13%.
Увеличение содержания никеля, меди, ванадия, молибдена приведет к удорожанию процесса производства стали и себестоимости готовых горячекатаных полос.
При этом производственный опыт показывает, что в рамках данной легирующей композиции суммарное содержание ниобия, ванадия и титана не должно превышать не более 0,15%.
Алюминий раскисляет и модифицирует сталь. Связывая азот в нитриды, он подавляет его негативное воздействие на свойства горячекатаных полос. Однако при этом он склонен к образованию коррозионно-активных неметаллических включений на основе алюмо-магниевой шпинели, во многом определяющих уровень коррозионной стойкости трубного проката. Это обуславливает необходимость ограничивать содержание алюминия не менее 0,03% для получения требуемого комплекса механических свойств. При содержании алюминия более 0,06% происходит снижение вязких свойств.
Ниобий необходим для образования карбидов. Карбиды ниобия тормозят рост зерна при нагреве, способствуют формированию в горячекатаных полосах мелкодисперсной структуры. Содержание ниобия менее 0,04% не обеспечивает достаточного дисперсионного и зернограничного упрочнения. Содержание ниобия свыше 0,06% ухудшает свариваемость и экономически нецелесообразно.
Азот и бор являются вредными примесями, снижающими сопротивление сульфидному растрескиванию. Поэтому предпочтительно, чтобы их содержание было как можно более низким. Согласно настоящему изобретению содержание азота и бора ограничили 0,006% и 0,0005% соответственно.
Согласно изобретению, максимальное содержание кальция ограничено 0,006%, т.к. при увеличении содержания кальция в горячекатаной полосе образуются коррозионно-активные неметаллические включения первого рода, что отрицательно сказывается на механических свойствах горячекатаной полосы и коррозионной стойкости стали.
Сталь предложенного состава содержит в виде примесей не более 0,003% серы и не более 0,012% фосфора. При указанных предельных концентрациях эти элементы в горячекатаных полосах из стали предложенного состава не оказывают заметного негативного воздействия на механические свойства полос, тогда как их удаление из расплава существенно повышает затраты на производство и усложняет технологический процесс. Увеличение концентрации этих вредных примесей, особенно серы, выше предложенных значений существенно ухудшает показатели коррозионной стойкости полос.
В целом заявленное содержание элементов обеспечивает необходимый фазовый состав, а также требуемый уровень механических свойств и коррозионной стойкости рулонных полос при реализации предлагаемых технологических режимов
Экспериментально установлено, что для предотвращения появления блистеринговой коррозии, балл неметаллических включений должен составлять не более 2,5 по среднему, не более 3 по максимальному, балл зерна феррита не крупнее 8. При увеличении размера неметаллических включений возрастает размер и количество дефектов в H2S среде.
Феррито-перлитная структура проката с содержанием перлита не более 10% положительно влияет на стойкость стали против общей и локальной коррозии, так как имеет низкую плотность дислокаций на поверхности проката, низкий уровень внутренних напряжений.
Для полного использования ресурса свойств, заложенных в низколегированной стали, применен режим термомеханической обработки с суммарным обжатием не менее 85%, контролируемой температурой конца прокатки и ускоренного охлаждения, который обеспечивает оптимальный фазовый состав, измельчение зерен и формирование развитой субструктуры, содержащей до 10% перлита, остальное - феррит. Балл неметаллических включений при этом составляет не более 2,5 по среднему и не более 3 по максимальному. Балл зерна феррита обеспечивают не крупнее 8, а предел текучести по меньшей мере 390 МПа, предел прочности по меньшей мере 480 МПа, работу удара KV при минус 0°С по меньшей мере 100 Дж, при испытании стойкости к сульфидному растрескиванию под напряжением, равным 95% от установленного минимального предела текучести, прокат имеет коэффициент чувствительности к растрескиванию (CSR) не более 2%, коэффициент длины трещин (CLR) не более 15%, коэффициент толщины трещин (CTR) не более 5%.
Все эти характеристики обеспечиваются способом производства горячекатаной полосы, при котором выплавляют низколегированную сталь предлагаемого состава, производят горячую прокатку с суммарным относительным обжатием не менее 85%, с последующим ускоренным охлаждением полосы со скоростью 6-20°С/сек и температурой смотки 480-580°С в зависимости от толщины полосы.
Величина суммарного относительного обжатия при чистовой прокатке не менее 85% достаточна для полной проработки структуры, при этом обеспечивается измельчение зерен и повышение коррозионной стойкости и уровня механических свойств готовой полосы.
Температура конца чистовой прокатки 850-950°С, скорость охлаждения горячекатаной полосы 6-20°С/сек позволяют получать размер зерна феррита, который обеспечивает требуемый уровень механических свойств. Температура смотки 480-580°С в зависимости от толщины полосы обеспечивает целевую структуру, коррозионную стойкость и механические свойства готовой горячекатаной полосы.
Применение способа поясняется примером его реализации на стане 2000 горячей прокатки ПАО «Северсталь» при производстве горячекатаной полосы размером 11,1×1270 мм из стали марки X52MS для электросварных труб в соответствии с требованиями стандарта API 5L, имеющей следующий химический состав, мас. %: С=0,06%; Si=0,20%; Mn=0,62%; Cr=0,17%; Ni=0,01%; Cu=0,02%; Al=0,04%, V=0,003%; Nb=0,044%; Ti=0,003%; Мо=0,003%; N=0,005%; В=0,0002%; S=0,002%; Р=0,01%; N=0,005%; остальное железо и примеси. Содержание легирующих элементов полностью соответствует заявленному химическому составу. При этом содержание ванадия, ниобия и титана составляет V+Nb+Ti=0,003+0,044+0,003=0,05%, т.е. соответствует приведенному соотношению не более 0,15%.
Непрерывнолитые слябы размером толщиной 250×1320×7600 мм загружают в методическую печь и нагревают до температуры аустенитизации 1260°С, после чего прокатывают на непрерывном широкополосном стане. После выравнивания температуры слябов по сечению, сляб подают к непрерывному широкополосному стану 2000 и подвергают черновой прокатке за 5 проходов в раскат с промежуточной толщины. Далее промежуточный раскат прокатывают за 7 проходов в непрерывной чистовой группе клетей в полосы толщиной 11,1 мм, при этом температура конца чистовой прокатки составляет 911°С, а суммарное относительное обжатие 95%. После окончания чистовой прокатки полосы охлаждают водой со скоростью не менее 8,7°С/с и сматывают в рулон при температуре 553°С.
В таблице представлены показатели механических и эксплуатационных свойств, а также параметры микроструктуры горячекатаных полос, произведенных по приведенной выше технологии.
Из данных, приведенных в таблице, следует, что при реализации предложенного способа достигается требуемое сочетание высокого предела прочности, требуемого предела текучести и коррозионных свойств.
В результате полученный металл полностью соответствует требованиям, предъявляемым к сталям для магистральных нефтепроводных труб группы прочности X52MS, эксплуатируемых в H2S среде. Представленная технология позволила сформировать феррито-перлитную структуру с содержанием феррита 98%, в которой отсутствуют элементы структуры закалочного типа, что гарантирует равномерное распределение свойств как по площади проката, так и по его толщине.
Figure 00000001

Claims (4)

1. Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали, имеющая следующий химический состав, мас.%:
углерод 0,04-0,07 кремний 0,15-0,25 марганец 0,60-0,80 хром 0,13-0,26 никель не более 0,06 медь не более 0,06 алюминий 0,03-0,06 ванадий не более 0,06 ниобий 0,04-0,06 суммарное содержание ниобия, ванадия и титана не более 0,15 молибден не более 0,01 азот не более 0,006 бор не более 0,0005 кальций не более 0,006 сера не более 0,002 фосфор не более 0,012 железо и примеси остальное,
при этом металлографическая структура полосы включает не более 10% перлита, остальное феррит, балл неметаллических включений составляет не более 2,5 по среднему, не более 3 по максимальному, балл зерна феррита не крупнее 8, причем полоса имеет предел текучести по меньшей мере 390 МПа, предел прочности по меньшей мере 480 МПа и работу удара KV при 0°С по меньшей мере 100 Дж, при этом при испытании стойкости к сульфидному растрескиванию под напряжением, равным 95% от установленного минимального предела текучести, полоса имеет коэффициент чувствительности к растрескиванию (CSR) не более 2%, коэффициент длины трещин (CLR) не более 15% и коэффициент толщины трещин (CTR) не более 5%.
2. Способ производства горячекатаной полосы высокой коррозионной стойкости из низколегированной стали, включающий выплавку стали, непрерывную разливку в слябы, нагрев слябов, черновую и чистовую горячую прокатку, последующее ускоренное охлаждение и смотку полосы в рулон, отличающийся тем, что выплавляют сталь следующего химического состава, мас.%: углерод 0,04-0,07, кремний 0,15-0,25, марганец 0,60-0,80, хром 0,13-0,26, никель не более 0,06, медь не более 0,06, алюминий 0,03-0,06, ванадий не более 0,06, ниобий 0,04-0,06%, при этом суммарное содержание ниобия, ванадия и титана не более 0,15, молибден не более 0,01, азот не более 0,006, бор не более 0,0005, кальций не более 0,006, сера не более 0,002, фосфор не более 0,012, железо и примеси - остальное, температуру конца чистовой прокатки устанавливают 850-950°С, суммарное относительное обжатие составляет не менее 85%, ускоренное охлаждение полосы ведут со скоростью 6-20°С/сек, а температуру смотки полосы устанавливают 480-580°С с получением в полосе структуры, включающей не более 10% перлита, остальное феррит, балл неметаллических включений не более 2,5 по среднему, не более 3 по максимальному, балл зерна феррита не крупнее 8.
RU2019126123A 2019-08-16 2019-08-16 Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства RU2720284C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019126123A RU2720284C1 (ru) 2019-08-16 2019-08-16 Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019126123A RU2720284C1 (ru) 2019-08-16 2019-08-16 Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства

Publications (1)

Publication Number Publication Date
RU2720284C1 true RU2720284C1 (ru) 2020-04-28

Family

ID=70553050

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019126123A RU2720284C1 (ru) 2019-08-16 2019-08-16 Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства

Country Status (1)

Country Link
RU (1) RU2720284C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846268A (zh) * 2021-09-26 2021-12-28 江苏省沙钢钢铁研究院有限公司 一种x70ms抗酸管线钢板及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (ja) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd 耐食性の優れた高強度鋼材及びその製造方法
CN101855378A (zh) * 2007-11-07 2010-10-06 杰富意钢铁株式会社 管道钢管用钢板及钢管
RU2495942C1 (ru) * 2012-09-11 2013-10-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства горячекатаного проката повышенной прочности
RU2547087C1 (ru) * 2014-01-09 2015-04-10 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаного проката повышенной прочности
RU2569619C1 (ru) * 2014-05-22 2015-11-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости
RU2578618C1 (ru) * 2014-11-18 2016-03-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства полос из низколегированной свариваемой стали
RU2638479C1 (ru) * 2016-12-20 2017-12-13 Публичное акционерное общество "Северсталь" Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения
KR20190065040A (ko) * 2017-12-01 2019-06-11 주식회사 포스코 수소 유기 균열 저항성 및 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
KR101999027B1 (ko) * 2017-12-26 2019-07-10 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (ja) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd 耐食性の優れた高強度鋼材及びその製造方法
CN101855378A (zh) * 2007-11-07 2010-10-06 杰富意钢铁株式会社 管道钢管用钢板及钢管
RU2495942C1 (ru) * 2012-09-11 2013-10-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства горячекатаного проката повышенной прочности
RU2547087C1 (ru) * 2014-01-09 2015-04-10 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаного проката повышенной прочности
RU2569619C1 (ru) * 2014-05-22 2015-11-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости
RU2578618C1 (ru) * 2014-11-18 2016-03-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства полос из низколегированной свариваемой стали
RU2638479C1 (ru) * 2016-12-20 2017-12-13 Публичное акционерное общество "Северсталь" Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения
KR20190065040A (ko) * 2017-12-01 2019-06-11 주식회사 포스코 수소 유기 균열 저항성 및 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
KR101999027B1 (ko) * 2017-12-26 2019-07-10 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846268A (zh) * 2021-09-26 2021-12-28 江苏省沙钢钢铁研究院有限公司 一种x70ms抗酸管线钢板及其制备方法

Similar Documents

Publication Publication Date Title
JP7150066B2 (ja) 500MPaグレードの降伏強度を有する厚いゲージの熱間圧延されるH字型鋼及びその製造方法
CA2941202C (en) Method for producing a high-strength flat steel product
KR101892839B1 (ko) 후강판 및 그 제조 방법
KR101988144B1 (ko) 재질 균일성이 우수한 후육 고인성 고장력 강판 및 그 제조 방법
RU2393239C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2414515C1 (ru) Способ производства толстолистового низколегированного проката
RU2390568C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2463359C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2675307C1 (ru) Способ производства низколегированных рулонных полос с повышенной коррозионной стойкостью
RU2466193C1 (ru) Способ производства толстолистового низколегированного проката
RU2613265C1 (ru) Способ производства горячекатаных листов из низколегированной стали класса прочности к60 для электросварных прямошовных труб
US20200340073A1 (en) Steel section having a thickness of at least 100mm and method of manufacturing the same
RU2393238C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2583973C1 (ru) Способ производства толстолистовой трубной стали
RU2638479C1 (ru) Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения
RU2549807C1 (ru) Способ производства рулонного проката из высокопрочной хладостойкой стали
CA3094517C (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
RU2463360C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2720284C1 (ru) Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства
CN113692456B (zh) 剪切加工性优异的超高强度钢板及其制造方法
JP3578435B2 (ja) プレス成形性と表面性状に優れた構造用熱延鋼板およびその 製造方法
JP2023504150A (ja) 耐久性に優れた厚物複合組織鋼及びその製造方法
RU2615667C1 (ru) Способ производства горячекатаных листов из низколегированной стали класса прочности к65 для электросварных прямошовных труб
RU2697301C1 (ru) Способ производства трубного проката повышенной коррозионной стойкости на реверсивном стане
CN109207851B (zh) 一种超高强钢板及其制造方法