RU2720050C1 - Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата - Google Patents

Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата Download PDF

Info

Publication number
RU2720050C1
RU2720050C1 RU2019100236A RU2019100236A RU2720050C1 RU 2720050 C1 RU2720050 C1 RU 2720050C1 RU 2019100236 A RU2019100236 A RU 2019100236A RU 2019100236 A RU2019100236 A RU 2019100236A RU 2720050 C1 RU2720050 C1 RU 2720050C1
Authority
RU
Russia
Prior art keywords
oil
aerial vehicle
unmanned aerial
spill
coastal
Prior art date
Application number
RU2019100236A
Other languages
English (en)
Inventor
Денис Андреевич Коровецкий
Олег Алексеевич Букин
Дмитрий Юрьевич Прощенко
Владимир Тимофеевич Матецкий
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского"
Priority to RU2019100236A priority Critical patent/RU2720050C1/ru
Application granted granted Critical
Publication of RU2720050C1 publication Critical patent/RU2720050C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к способам дистанционных экологических исследований акваторий и может быть использовано для оценки параметров разливов нефти или нефтепродуктов в прибрежных водах, для прогнозирования распространения разливов нефти или нефтепродуктов. Сущность: выполняют обследование акватории над зоной разлива нефти или нефтепродуктов с помощью тепловизора и флуориметра, установленных на беспилотном летательном аппарате. Оценивают параметры разлива нефти или нефтепродуктов. Создают прогноз распространения разлива нефти или нефтепродуктов на краткосрочный или долгосрочный период времени. Строят прогнозные карты. Прогнозные карты в виде телеметрической информации передают на экипажные или безэкипажные катера, которые осуществляют развертывание в районе обнаруженных загрязнений боновых заграждений и осуществляют последующий сбор нефти или нефтепродуктов. Технический результат: повышение информативности и надежности, расширение круга решаемых задач. 1 ил.

Description

Изобретение относится к области охраны окружающей среды, а именно к сфере контроля разливов нефти или нефтепродуктов в прибрежных районах морей, заливов, бухт и территорий портов.
Известны, например, способы [MervFingas, Carl Е. Brown «А Review of Oil Spill Remote» / Carl E. Brown // j. SENSORS 12. 2017.] дистанционного мониторинга разливов нефти и нефтепродуктов (НП), основанные на применении активных и пассивных волновых методов всего диапазона длин волн электромагнитного излучения от ультрафиолетовой, видимой и инфракрасной области, до сверхвысоких частот радиоизлучения. Их недостатком является то, что наблюдения морской поверхности в видимой области спектра могут давать ложную тревогу, поскольку информационный признак - подавление капиллярных волн, - присущ и природным явлениям. Идентификация разливов НП в инфракрасной области спектра данными известными способами также может быть недостоверной при определенных физико - химических свойствах нефтяных пятен, или при наличии схожих по проявлениям признаков, связанных с естественными процессами биологической природы.
Известен также способ обнаружения загрязнений прибрежных вод с использованием флуоресцентных лидаров самолетного и судового базирования, разработанный эстонской компанией Laser Diagnostic Instruments AS (LDI) [MervFingas, Carl E. Brown «A Review of Oil Spill Remote» / Carl E. Brown // j. SENSORS 12. 2017.], позволяющий оперативно обнаруживать нефтяные загрязнения больших акваторий. В качестве носителей измерительных комплексов в данном способе широко применяют самолеты [N. Robbe «Remote sensing of marine oil spills from airbone platforms using multi-sensors systems» / N. Robbe& T. Hengstermann // WATER POLLUTION VIII Modelling, Monitoring and management WITpress] типа Do228-212LM (Германия).
Недостатком данного известного способа является низкая его экономичность и большая стоимость оборудования при мониторинге загрязнений нефтью и НП морских прибрежных районов, удаленных от берега на сравнительно небольшом расстоянии в нескольких десятков километров (т.е. акваторий портов, бухт, пляжей).
Известен, например, способ обнаружения разливов нефти или НП на поверхности водоема (патент РФ, 2622721 МПК Е02В 15/00, G01N 21/35, G01N 33/18 (2006.01)), принятый в качестве прототипа, содержащий беспилотный летательный аппарат (БПЛА), с установленным на нем тепловизором (инфракрасным радиометром), приемо-передающим устройством и видеокамерой видимого диапазона длин волн, с целью мониторинга загрязнений поверхности водоемов.
Этот известный способ обнаружения разливов нефти или НП на поверхности водоема используют следующим образом. БПЛА располагают в зависшем состоянии над предполагаемой зоной разлива. Тепловизором осуществляют съемку данной предполагаемой зоны разлива в виде ряда цифровых изображений, которые через приемо-передающее устройство, установленное на БПЛА, передаются по радиоканалу в режиме реального времени в пункт дистанционного наблюдения, расположенный на берегу.
Данный способ позволяет минимизировать интервал времени от момента обнаружения разлива нефти до момента ее сбора, повысить точность определения географических координат ее разливов, а также снизить трудозатраты на поиск данных координат.
Недостатком данного известного способа обнаружения разливов нефти или НП на поверхности водоема является слабая его техническая оснащенность, не позволяющая решать часть задач мониторинга загрязнения нефтью или НП. Например, данный способ не позволяет обнаруживать нефть на берегу и в виде водно-нефтяной эмульсии, а также не дает надежных результатов при ветровом волнении и толщине пленки нефти более 10 микрометров. Кроме того, используемые в данном изобретении методы видео - и тепловой съемки имеют высокий процент ложных тревог, из-за физических особенностей НП.
С помощью данного способа невозможно идентифицировать тип нефти или НП, что необходимо для установления виновника разлива и что также является его недостатком.
Техническая задача, на решение которой направленно заявляемое изобретение, состоит в устранении указанных недостатков, а именно: повышение информативности и надежности, получаемых способом данных, а также расширения его круга задач, связанных с мониторингом загрязнения нефтью или НП поверхности водоема.
Поставленная задача достигается тем, что в известном способе обнаружения разливов нефти или НП на поверхности прибрежных вод и береговой полосы, включающем преобразование инфракрасного (ИК)-излучения элементов ландшафта в электрические сигналы, обработку сигналов, их регистрацию на фотопленку или магнитный носитель, а также тепловизор, установленный на беспилотном летательном аппарате, который располагают в зависшем состоянии над зоной разлива; при этом тепловизором осуществляют съемку в виде ряда цифровых изображений, которые через приемопередающее устройство беспилотного летательного аппарата передают в режиме реального времени в пункт круглосуточного дистанционного наблюдения, где оцениваются параметры разлива нефти или НП, его площадь, скорость, направления распространения с использованием программно - математической обработки; и, на основании данной информации, создают прогноз на краткосрочный или долгосрочный период времени, с построением прогнозных карт распространения разливов нефти или НП, которые в виде телеметрической информации передаются на экипажные или безэкипажные катера, которые осуществляют развертывание в районе обнаруженных загрязнений боновых заграждений и осуществляют последующий сбор нефти или НП, отличающийся тем, что в заявляемом способе на беспилотном летательном аппарате для расширения функциональных возможностей способа, повышения достоверности получаемых видео и тепловой съемкой данных, обеспечения возможности обнаружения нефти или НП в прибойной зоне и на береговой полосе, а также ее идентификации, дополнительно устанавливают флуориметр, при этом возбуждение флуоресценции производят в ультрафиолетовой области оптического излучения. А при оценке толщины нефтяной пленки до 100 мкм анализ сигнала флуоресценции от поверхности воды производят при нормальном угле падения возбуждаемого лазером DTL-382QT излучения на ее поверхность.
Благодаря тому, что анализ сигнала флуоресценции от поверхности воды производится при нормальном угле падения возбуждаемого лазером DTL-382QT излучения на ее поверхность, обеспечиваются более точные измерения за счет увеличения коэффициента приема флуоресцирующего сигнала. При этом дополнительным преимуществом заявляемого изобретения является то, что число требуемых измерений снижается, и, соответственно, сокращается время облетов беспилотного летательного аппарата над предполагаемой зоной разлива, и, тем самым, увеличивается его быстродействие.
За счет того, что в предложенном способе обнаружения загрязнений прибрежных вод и береговой полосы дополнительно используют флуориметр, обеспечивается снижение процента ложных тревог, получение более надежных результатов при ветровом волнении и толщине пленки более 10 мкм.
Благодаря тому, что используется флуориметр, возбуждаемый в ультрафиолетовой области оптического излучения, обеспечивается уменьшение влияния солнечного света на результат измерений, так как атмосфера земли пропускает не более 1% ультрафиолетовых (УФ) лучей.
Кроме того, с помощью данного флуориметра имеется возможность проводить идентификацию нефти, определять класс ее принадлежности (тяжелая, легкая, НП и их тип), оценивать толщину нефтяной пленки до 100 мкм, обнаруживать загрязненные нефтью водоросли, определять ее наличие в прибрежной воде в виде водно-нефтяной эмульсии и на береговой полосе. Таким образом, флуориметр повышает достоверность получаемых с помощью видео и инфракрасной съемки данных за счет устранения ложных тревог, присущих известным способам.
Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или НП с использованием БПЛА, иллюстрируется: фиг. 1 - Блок-схема измерительного комплекса на примере компоновки с БПЛА.
Заявляемый способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или НП с использованием БПЛА (фиг. 1) содержит ок-токоптер Foxtech D130 Х8 (1) (БПЛА) с жестко установленной на нем посредством обычных винтовых соединений (не показано) установочной рамой (не показано), на которой устанавливают посредством крепежных винтов: лазер DTL-382QT (2) с длиной волны 266 нм; спектрометр Maya 2000 Pro (3); блок коммутации HR4-BREAKOUT (4); коллиматор 84-UV-25 (5); светофильтр SEMROCK Ff01-272/LP-25 (6); отдельно скомпонованный герметичный пластмассовый корпус (не показан) со встроенными светофильтрами (7) с фотодиодом UPD-500-UD (8), узкополосным светофильтром SEMROCK LL01-266-12.5 и нейтральным светофильтром (9), конструктивно изготовленными единым блоком внутри него. Кроме того, на октокоптере Foxtech D130 Х8 (1) (БПЛА) жестко закреплена с помощью специальных переходных клипс (не показано) трехосевая гиростабилизированная платформа (не показано), на которой установлен бортовой одноплатный микрокомпьютер Raspberry PI (10), малогабаритная цифровая видеокамера высокого разрешения (11) и инфракрасный радиометр (12) а так же приемо-передающее устройство (13). При этом корпуса всех перечисленных выше устройств отвечают международному стандарту IP68, что позволяет производить работу при 100% влажности окружающей среды.
Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или НП с использованием БПЛА осуществляют следующим образом. Проводят патрулирование акватории при помощи октокоптера (1), оснащенным комплексом оборудования ((2)-(9)), называемом флуориметром, в автоматическом режиме, либо под управлением оператора. В процессе патрулирования осуществляют видеосъемку цифровой видеокамерой высокого разрешения (11) и инфракрасную (ИК)-съемку инфракрасным радиометром (12) для предварительного обнаружения нефтесодержащего пятна на поверхности воды или береговой полосы с последующей передачей по приемопередающему устройству (13) полученных данных в расположенный на берегу пункт экологического контроля (не показано). Высоту полета октокоптера (1) определяют в соответствии с требуемым масштабом пространственного разрешения и разрешающей способностью камер видео - и ИК-диапазонов ((11)-(12)). Разлив нефти или НП обнаруживают по информативным признакам - изменению структуры волнения и отражательной способности поверхности воды в видимом диапазоне, или наличии градиента температуры поверхности воды в ИК-диапазоне. Обработку изображений проводят бортовым микрокомпьютером (10), либо в пункте экологического контроля (не показан). Для подтверждения результатов производимой видео и ИК-съемки, а также получения данных для идентификации нефти или НП, а также оценки толщины ее пленки, высоту октокоптера (1) снижают до необходимой, для обеспечения надежной работы устройств флуориметра ((2)-(9)). Идентификацию нефти или НП проводят путем сопоставления получаемых с помощью флуориметра ((2)-(9)) спектров флуоресценции с эталонными спектрами различных типов нефти или НП из базы данных, которая хранится в бортовом микрокомпьютере (10) либо в пункте экологического контроля (не показан). Источник загрязнения, его площадь, направление и скорость дрейфа определяют облетами октокоптера (1), используя при этом стандартную навигационную систему GPS/GLONASS, для дальнейшего составления карты контура загрязнения и определения параметров его динамики.
Видеоконтроль в процессе патрулирования акватории осуществляют малогабаритной цифровой видеокамерой высокого разрешения (11), штатно входящей в комплект оборудования октокоптера (1), ИК-съемку проводят инфракрасным радиометром (12), в свою очередь малогабаритная цифровая видеокамера высокого разрешения (11) обладает объективом (не показан), позволяющим увеличивать масштабирование и настраивать фокус, получаемого с данной штатной видеокамеры (11) изображения. Вес такой видеокамеры (11) вместе с двухосевой гиростабилизированной платформой (не показана), которая поддерживает ее в автоматическом режиме в нужном положении, может быть до 0.3 килограммов, что практически не влияет на эксплуатационные свойства октокоптера (1).
Для повышения точности идентификации нефтяных пленок на поверхности прибрежных вод одновременно используют инфракрасный радиометр (12) и канал регистрации лазерно-индуцированной флуоресценции (ЛИФ) морской поверхности. Канал ЛИФ может быть реализован следующим образом: лазер DTL-382QT (2) генерирует излучение на длине волны 266 нм., направленное на предполагаемую область разлива нефти или НП. При наличии следов углеводородов в объеме пленки и в верхнем слое морской воды происходит формирование индуцированного сигнала флуоресценции, регистрируемого с помощью спектрометра Maya 2000 Pro (3). Для повышения качества приема от флуоресцирующего вещества сигнала данным спектрометром (3) применяют коллиматор 84-UV-25 (5), который позволяет принять сигнал с необходимой области предполагаемого нефтяного загрязнения. Подавление исходного излучения от лазера DTL-382QT (2) на длине волны 266 нм. в приемнике спектрометра Maya 2000 pro (3), выделение сигнала комбинационного рассеяния морской воды и сигнала флуоресценции нефти или НП в ближнем ультрафиолетовом и видимом диапазонах осуществляют с помощью светофильтра SEMROCK Ff01-272/LP-25 (6). Путем сличения полученных от нефтепродуктов либо чистой воды спектров со спектрами, хранящимися в базе данных бортового микрокомпьютера (10), осуществляют идентификацию нефти или НП. Определение толщины нефтяных пленок проводят по относительному уровню комбинационного рассеяния чистой воды и воды с нефтяной пленкой, до толщины около 10 мкм. Для больших толщин (до 100 мкм), информативным параметром является мощность сигнала флуоресценции. Поэтому при измерении флуоресценции с малого расстояния в проекции апертуры лазерного луча на поверхности воды укладываются доли периода волнения, при этом сигнал флуоресценции подвержен большим флуктуациям, что влечет также большую дисперсию в оценке энергии сигнала, что ведет к недостаточной точности измерения. Поэтому оценку толщины нефтяной пленки проводят на основе анализа сигнала флуоресценции от поверхности воды при нормальном угле падения возбуждаемого лазером DTL-382QT (2) излучения на ее поверхность. Для уменьшения влияния волнения поверхности воды на результат осреднения сигнала флуоресценции и уменьшения его динамического диапазона, выборки сигнала флуоресценции синхронизируют с помощью бортового микрокомпьютера (10) с моментом квазиортогонального падения возбуждающего излучения от лазера DTL-382QT (2) на поверхность воды. При этом квазиортогональное положение определяют по зеркальной компоненте сигнала лазера DTL-382QT (2), отраженного от поверхности воды. Для этой цели в флуориметре ((2)-(9)) предусмотрен канал синхронизации, стробирующий спектрометр Maya 2000 Pro (3) импульсом, сформированным в блоке коммутации HR4-BREAKOUT (4), при появлении сигнала на фотодиоде UPD-500-UD (8). Для выделения на фотодиоде (8) исходного лазерного сигнала на длине волны 266 нм используют узкополосный светофильтр SEMROCK LL01-266-12.5 (9). Во избежание повреждения фотодиода (8) мощным сигналом лазера (2) применен нейтральный светофильтр (9). Управление параметрами лазера (2), спектрометра (3), блока коммутации (4), видеокамеры (11) и инфракрасного радиометра (12) осуществляют с помощью одноплатного микрокомпьютера Raspberry PI (10).
Таким образом, заявляемый способ обнаружения разливов нефти или НП на поверхности прибрежных вод и береговой полосы по сравнению с прототипом позволяет решать более широкий круг задач, имеет минимальный коэффициент ложных тревог, и обеспечивает получение надежных результатов измерения при ветровом волнении и толщине пленки более 10 мкм, благодаря применению ЛИФ с длиной волны возбуждения в ультрафиолетовой области оптического излучения.

Claims (1)

  1. Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата, включающий преобразование инфракрасного излучения элементов ландшафта в электрические сигналы, обработку сигналов, их регистрацию на фотопленку или магнитный носитель с помощью тепловизора, установленного на беспилотном летательном аппарате, который располагают в зависшем состоянии над зоной разлива, при этом тепловизором осуществляют съемку в виде ряда цифровых изображений, которые через приемо-передающее устройство беспилотного летательного аппарата передают в режиме реального времени на пункт круглосуточного дистанционного наблюдения, где оценивают параметры разлива нефти или нефтепродуктов, его площадь, скорость, направления распространения с использованием программно-математической обработки, на основании данной информации создают прогноз на краткосрочный или долгосрочный период времени с построением прогнозных карт распространения разливов нефти или нефтепродуктов, которые в виде телеметрической информации передают на экипажные или безэкипажные катера, которые осуществляют развертывание в районе обнаруженных загрязнений боновых заграждений и осуществляют последующий сбор нефти или нефтепродуктов, отличающийся тем, что на беспилотном летательном аппарате дополнительно устанавливают флуориметр, при этом при оценке толщины нефтяной пленки до 100 мкм анализ сигнала флуоресценции от поверхности воды производят при нормальном угле падения возбуждаемого лазером DTL-382QT излучения на ее поверхность.
RU2019100236A 2019-01-09 2019-01-09 Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата RU2720050C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019100236A RU2720050C1 (ru) 2019-01-09 2019-01-09 Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019100236A RU2720050C1 (ru) 2019-01-09 2019-01-09 Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата

Publications (1)

Publication Number Publication Date
RU2720050C1 true RU2720050C1 (ru) 2020-04-23

Family

ID=70415679

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019100236A RU2720050C1 (ru) 2019-01-09 2019-01-09 Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата

Country Status (1)

Country Link
RU (1) RU2720050C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199541U1 (ru) * 2020-05-08 2020-09-07 Дмитрий Евгеньевич Соколов Детектор нефтяной пленки на водной поверхности
CN117147545A (zh) * 2023-08-29 2023-12-01 广东技术师范大学 一种基于双阶段式海面污染物数据采集方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498275C2 (ru) * 2011-12-29 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Дистанционный способ классификации нефтяных загрязнений на поверхности воды
RU2622721C1 (ru) * 2016-02-25 2017-06-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" (ФГБОУ ВО СПГУ) Способ обнаружения разливов нефти или нефтепродуктов на поверхности водоема

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498275C2 (ru) * 2011-12-29 2013-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Дистанционный способ классификации нефтяных загрязнений на поверхности воды
RU2622721C1 (ru) * 2016-02-25 2017-06-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" (ФГБОУ ВО СПГУ) Способ обнаружения разливов нефти или нефтепродуктов на поверхности водоема

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
М.Л.Белов и др. Сравнительный анализ длин волн возбуждения флуоресценции 0,266 и 0,355 мкм для лазерного флуоресцентного метода контроля нефтяных загрязнений / Наука и образование: научное издание МГТУ им. Н.Э.Баумана, 2017, N7, стр.206-221. *
М.Л.Белов и др. Сравнительный анализ длин волн возбуждения флуоресценции 0,266 и 0,355 мкм для лазерного флуоресцентного метода контроля нефтяных загрязнений / Наука и образование: научное издание МГТУ им. Н.Э.Баумана, 2017, N7, стр.206-221. Ю.В.Федотов и др. Лазерный метод обнаружения утечек из нефтепроводов / Вестник МГТУ им. Н.Э.Баумана. Серия "Приборостроение", 2013, N3, стр.108-119. *
Ю.В.Федотов и др. Лазерный дистанционный метод обнаружения и классификации разливов нефтепродуктов на земной поверхности / Автоматизация. Современные технологии, 2015, N7, стр.7-12. *
Ю.В.Федотов и др. Лазерный метод обнаружения утечек из нефтепроводов / Вестник МГТУ им. Н.Э.Баумана. Серия "Приборостроение", 2013, N3, стр.108-119. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199541U1 (ru) * 2020-05-08 2020-09-07 Дмитрий Евгеньевич Соколов Детектор нефтяной пленки на водной поверхности
CN117147545A (zh) * 2023-08-29 2023-12-01 广东技术师范大学 一种基于双阶段式海面污染物数据采集方法和装置

Similar Documents

Publication Publication Date Title
Asadzadeh et al. UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives
EP3690418B1 (en) Optical sensor for trace-gas measurement
US20180188129A1 (en) Remote leak detection system
US7728291B2 (en) Detection of heavy oil using fluorescence polarization
JP2017502258A (ja) 海洋環境を監視するためのシステム
Grüner et al. A new sensor system for airborne measurements of maritime pollution and of hydrographic parameters
RU2499248C1 (ru) Комплекс экологического мониторинга водных объектов
CN108257119A (zh) 一种基于近紫外图像处理的近岸海域漂浮危化品检测预警方法
RU2720050C1 (ru) Способ обнаружения загрязнений прибрежных вод и береговой полосы нефтью или нефтепродуктами с использованием беспилотного летательного аппарата
Eisele et al. FESTER: a propagation experiment, overview and first results
RU2587109C1 (ru) Система обнаружения и мониторинга загрязнений морского нефтегазового промысла
Liu et al. An USV-based laser fluorosensor for oil spill detection
EP3642576B1 (en) Hazardous gas detector with 1d array camera
Van Binsbergen et al. Low-altitude laser propagation link over a marine surface
RU2521246C1 (ru) Погружной комплекс экологического мониторинга водных объектов
Zielinski et al. Detection of oil spills by airborne sensors
Geraci et al. Laser and infrared techniques for water pollution control
Vasilijevic et al. AUV based mobile fluorometers: System for underwater oil-spill detection and quantification
Fantoni et al. Integration of two lidar fluorosensor payloads in submarine ROV and flying UAV platforms
Babichenko et al. Monitoring of marine environment with HLIF lidar
Urbahs et al. Oil spill remote monitoring by using remotely piloted aircraft
RU2815392C1 (ru) Устройство для дистанционного зондирования земли в инфракрасной области спектра
US20230280270A1 (en) Spectroscopy Combining Base Stations and Unmanned Aerial Vehicles
Zielinski et al. Past and future of airborne pollution control
Mys Laser Locator for Underwater Object Detection

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210110