RU2719248C1 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- RU2719248C1 RU2719248C1 RU2018143085A RU2018143085A RU2719248C1 RU 2719248 C1 RU2719248 C1 RU 2719248C1 RU 2018143085 A RU2018143085 A RU 2018143085A RU 2018143085 A RU2018143085 A RU 2018143085A RU 2719248 C1 RU2719248 C1 RU 2719248C1
- Authority
- RU
- Russia
- Prior art keywords
- cavities
- inlet
- heat exchange
- heat exchanger
- exchange elements
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов.The invention relates to heat transfer technology and can be used to create heat exchangers.
Известен теплообменник, содержащий корпус, состоящий из наружной и внутренней стенок, установленных коаксиально с кольцевым зазором и образующих полость для рабочего тела, подводящего и отводящего коллекторов с патрубками, теплообменные элементы, выполненные в виде двухслойных цилиндрических оболочек, соединенные между собой и корпусом при помощи пилонов, установленных на концах теплообменных элементов, при этом в пилонах выполнены каналы для подвода и отвода рабочего тела (патент РФ №2569990, Заявка №: 2014149786/06 от 09.12.2014, МПК:F28D 7/10 - прототип).Known heat exchanger containing a housing consisting of an outer and inner wall mounted coaxially with an annular gap and forming a cavity for the working fluid, inlet and outlet manifolds with nozzles, heat exchange elements made in the form of two-layer cylindrical shells connected to each other and the housing using pylons installed at the ends of the heat-exchange elements, while in the pylons channels are made for the supply and removal of the working fluid (RF patent No. 2569990, Application No.: 2014149786/06 dated 12/09/2014, IPC:
Предложенный теплообменник работает следующим образом. Во внутреннюю полость теплообменника подается теплоноситель. Теплоноситель равномерно распределяется в полости теплообменника и движется в кольцевых зазорах, расположенных между теплообменными элементами и внутренней стенкой корпуса. Рабочее тело через подводящий патрубок поступает в подводящий коллектор и далее в кольцевой зазор, расположенный между наружной стенкой и внутренней стенкой корпуса. В кольцевом зазоре рабочее тело разделяется на два потока. Первый поток рабочего тела проходит в кольцевом зазоре между наружной стенкой и внутренней стенкой корпуса, нагревается и отводится в отводящий коллектор. Второй поток рабочего тела поступает по пилонам в кольцевые зазоры, расположенные между стенками теплообменных элементов. Проходя по кольцевым зазорам, рабочее тело нагревается, после чего поток по пилонам поступает в отводящий коллектор. В отводящем коллекторе два потока рабочего тела смешиваются между собой. Рабочее тело выходит из отводящего коллектора через отводящий патрубок.The proposed heat exchanger operates as follows. Heat carrier is supplied to the internal cavity of the heat exchanger. The coolant is evenly distributed in the cavity of the heat exchanger and moves in the annular gaps located between the heat exchange elements and the inner wall of the housing. The working fluid through the inlet pipe enters the inlet manifold and then into the annular gap located between the outer wall and the inner wall of the housing. In the annular gap, the working fluid is divided into two streams. The first flow of the working fluid passes in an annular gap between the outer wall and the inner wall of the housing, heats up and is diverted to the outlet manifold. The second flow of the working fluid flows through the pylons into the annular gaps located between the walls of the heat exchange elements. Passing through the annular gaps, the working fluid is heated, after which the flow through the pylons enters the outlet manifold. In the discharge manifold, two flows of the working fluid are mixed together. The working fluid exits the outlet manifold through the outlet pipe.
Основными недостатками является сложность конструкции, значительные габаритные размеры, обусловленные значительными конструктивными зазорами между кольцевыми теплообменными элементами, неравномерность нагрева оболочек, вызванная последовательностью прохождения теплоносителя от периферийной оболочки к центральной, что, в конечном итоге, снижает эффективность работы теплообменника.The main disadvantages are the complexity of the design, significant overall dimensions due to significant structural gaps between the ring heat exchange elements, uneven heating of the shells caused by the sequence of passage of the coolant from the peripheral shell to the central one, which ultimately reduces the efficiency of the heat exchanger.
Задачей изобретения является устранение указанных недостатков, улучшение технических характеристик и расширение функциональных возможностей теплообменника.The objective of the invention is to remedy these disadvantages, improve technical characteristics and expand the functionality of the heat exchanger.
Решение указанной задачи достигается тем, что в предложенном теплообменнике, содержащем корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде нескольких коаксиально установленных обечаек, расположенных друг по отношению к другу с кольцевыми зазорами, образующими кольцевые полости, причем кольцевые полости горячего и холодного потоков равномерно чередуются между собой, согласно изобретению, на торцах обечаек установлены торцевые профилированные днища, скрепленные между собой и с корпусом, и образующие последовательно расположенные торцевые кольцевые полости, причем осевой размер полостей монотонно уменьшается от входного патрубка к входной части теплообменных элементов, при этом в указанных днищах выполнены изолированные каналы, соединяющие упомянутые торцевые полости через одну между собой, а указанные кольцевые полости теплообменных элементов соединены с полостями входного и выходного патрубков холодного и горячего потоков через упомянутые торцевые полости, образованные профилированными днищами.The solution to this problem is achieved by the fact that in the proposed heat exchanger containing a housing with inlet and outlet nozzles for input and output of hot and cold flows, heat exchange elements made in the form of several coaxially mounted shells located relative to each other with annular gaps forming annular cavities moreover, the annular cavity of hot and cold flows uniformly alternate between themselves, according to the invention, at the ends of the shells are installed end profiled bottoms, fastened interconnected and with the housing, and forming successively located end annular cavities, the axial dimension of the cavities being monotonously decreasing from the inlet pipe to the inlet part of the heat exchange elements, the insulated channels connecting the said end cavities through one to another are made in said bottoms the annular cavities of the heat exchange elements are connected to the cavities of the inlet and outlet nozzles of the cold and hot flows through the said end cavities formed by the profiling GOVERNMENTAL bottoms.
Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показан общий вид теплообменника, продольный разрез, на фиг. 2 - входная часть теплообменника в увеличенном масштабе, на фиг. 3 - выходная часть теплообменника в увеличенном масштабе.The invention is illustrated by drawings, where in FIG. 1 shows a general view of a heat exchanger, a longitudinal section, in FIG. 2 - enlarged scale inlet of the heat exchanger; FIG. 3 - the output of the heat exchanger on an enlarged scale.
Теплообменник содержит корпус 1 с входными 2,3 и выходными 4,5 патрубками ввода и вывода горячего и холодного потоков соответственно. Теплообменные элементы 6 выполнены в виде нескольких коаксиально установленных обечаек 7, расположенных друг по отношению к другу с кольцевыми зазорами 8, образующими кольцевые полости 9 и 10 горячего и холодного потоков соответственно. Кольцевые полости горячего 9 и холодного 10 потоков равномерно чередуются между собой. На торцах обечаек 7 установлены торцевые профилированные днища 11, скрепленные между собой и с корпусом 1, и образующие последовательно расположенные торцевые кольцевые полости 12 и 13, причем осевой размер полостей монотонно уменьшается от входного патрубка к входной части теплообменных элементов. В указанных днищах 11 выполнены изолированные каналы 14 и 15, соединяющие упомянутые торцевые полости через одну между собой. Кольцевые полости 9 и 10 теплообменных элементов соединены с полостями входных 1,3 и выходных 4,5 патрубков горячего и холодного потоков соответственно через упомянутые торцевые полости 12 и 13, образованные профилированными днищами 11.The heat exchanger comprises a
Предложенный теплообменник работает следующим образом.The proposed heat exchanger operates as follows.
Горячий поток подается внутрь корпуса 1 теплообменника через патрубок ввода 2 горячего потока и через торцевые полости 12 и каналы 14 поступает в кольцевые полости 9 горячего компонента. Горячий поток проходит через кольцевые полости 9 и отдает тепло стенкам теплообменных элементов 6, выполненным в виде нескольких коаксиально установленных обечаек 7. На выходе из теплообменника, горячий поток собирается в аналогичных торцевых полостях 12 и через аналогичные каналы 14 поступает в выходной патрубок 4 вывода горячего потока.The hot stream is fed into the
Холодный поток подается внутрь корпуса 1 теплообменника через патрубок ввода 3 холодного потока и через торцевые полости 13 и каналы 15 поступает в кольцевые полости 10 холодного компонента. Холодный поток проходит через кольцевые полости 10 и, за счет теплопередачи, снимает тепло со стенок теплообменных элементов 6, выполненных в виде нескольких коаксиально установленных обечаек 7. На выходе из теплообменника, горячий поток собирается в аналогичных торцевых полостях 13 и через аналогичные каналы 15 поступает в выходной патрубок 5 вывода горячего потока.The cold stream is fed into the
Выполнение полостей с монотонно убывающим осевым размером от входного патрубка к входной части теплообменных элементов при уменьшении расхода потоков, позволяет сохранить скорости течения и оптимизировать массово-габаритные характеристики теплобменника.The execution of cavities with a monotonously decreasing axial size from the inlet to the inlet of the heat exchange elements while reducing the flow rate, allows you to save the flow velocity and optimize the mass-dimensional characteristics of the heat exchanger.
Использование предложенного технического решения позволит улучшить технические характеристики и расширить функциональные возможности теплообменника.Using the proposed technical solution will improve the technical characteristics and expand the functionality of the heat exchanger.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018143085A RU2719248C1 (en) | 2018-12-06 | 2018-12-06 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018143085A RU2719248C1 (en) | 2018-12-06 | 2018-12-06 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2719248C1 true RU2719248C1 (en) | 2020-04-17 |
Family
ID=70277766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018143085A RU2719248C1 (en) | 2018-12-06 | 2018-12-06 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2719248C1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA52799C2 (en) * | 2000-06-20 | 2003-01-15 | Євген Олександрович Коломицев | Heat exchange element |
RU2206850C2 (en) * | 2001-07-20 | 2003-06-20 | Буглаев Владимир Тихонович | Tube heat exchanger |
RU2486425C1 (en) * | 2012-01-23 | 2013-06-27 | Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" | Heat exchange unit |
RU2569990C1 (en) * | 2014-12-09 | 2015-12-10 | Владислав Юрьевич Климов | Heat exchanger |
-
2018
- 2018-12-06 RU RU2018143085A patent/RU2719248C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA52799C2 (en) * | 2000-06-20 | 2003-01-15 | Євген Олександрович Коломицев | Heat exchange element |
RU2206850C2 (en) * | 2001-07-20 | 2003-06-20 | Буглаев Владимир Тихонович | Tube heat exchanger |
RU2486425C1 (en) * | 2012-01-23 | 2013-06-27 | Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" | Heat exchange unit |
RU2569990C1 (en) * | 2014-12-09 | 2015-12-10 | Владислав Юрьевич Климов | Heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2569990C1 (en) | Heat exchanger | |
RU2703791C1 (en) | Heat exchanger | |
RU2719248C1 (en) | Heat exchanger | |
RU2699768C1 (en) | Heat exchanger | |
RU2719246C1 (en) | Heat exchanger | |
RU2719262C1 (en) | Heat exchanger | |
RU2720531C1 (en) | Heat exchanger | |
RU2719244C1 (en) | Heat exchanger | |
RU2705173C1 (en) | Heat exchanger | |
RU2719260C1 (en) | Heat exchanger | |
RU2705150C1 (en) | Heat exchanger | |
RU2718864C1 (en) | Heat exchanger | |
RU2705149C1 (en) | Heat exchanger | |
RU2699903C1 (en) | Heat exchanger | |
RU2715810C1 (en) | Heat exchanger | |
RU2705167C1 (en) | Heat exchanger | |
RU2719251C1 (en) | Heat exchanger | |
RU2715809C1 (en) | Heat exchanger | |
RU2720817C1 (en) | Heat exchanger | |
RU2724372C1 (en) | Heat exchanger | |
RU2705164C1 (en) | Heat exchanger | |
RU2703793C1 (en) | Heat exchanger | |
RU2699902C1 (en) | Heat exchanger | |
RU2718150C1 (en) | Heat exchanger | |
RU2705168C1 (en) | Heat exchanger |