RU2718631C1 - Способ определения остаточных напряжений - Google Patents

Способ определения остаточных напряжений Download PDF

Info

Publication number
RU2718631C1
RU2718631C1 RU2019126488A RU2019126488A RU2718631C1 RU 2718631 C1 RU2718631 C1 RU 2718631C1 RU 2019126488 A RU2019126488 A RU 2019126488A RU 2019126488 A RU2019126488 A RU 2019126488A RU 2718631 C1 RU2718631 C1 RU 2718631C1
Authority
RU
Russia
Prior art keywords
residual stresses
mechanical
surface layer
ost
jet
Prior art date
Application number
RU2019126488A
Other languages
English (en)
Inventor
Сергей Васильевич Бочкарев
Владимир Петрович Казанцев
Андрей Леонидович Галиновский
Александр Александрович Барзов
Николай Николаевич Сысоев
Николай Владимирович Коберник
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет"
Priority to RU2019126488A priority Critical patent/RU2718631C1/ru
Application granted granted Critical
Publication of RU2718631C1 publication Critical patent/RU2718631C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/60Investigating resistance of materials, e.g. refractory materials, to rapid heat changes

Abstract

Изобретение относится к области определения остаточных напряжений в материале конструкции изделий на различных этапах их жизненного цикла и может быть использовано в машиностроительных технологиях, в том числе после изготовления: качества отверждения полимерных композиционных материалов, получения неразъемных соединений сваркой, селективного лазерного сплавления и плазменного напыления, а также в других операционных технологиях, связанных с фазовыми превращениями и пластическим деформированием при формо- и структурообразовании изделий. Сущность: прикладывают к диагностируемому объекту механические нагрузки различного уровня, при этом на его поверхность воздействуют высокоскоростной гидроструей или слабоабразивной струей суспензии. Путем анализа результатов гидроэрозионного разрушения поверхностного слоя образца при различных уровнях нагружения рассчитывают величину остаточных напряжений по зависимости, учитывающей как минимум два уровня нагружения исследуемого материала. Технический результат: расширение функциональных возможностей физико-технологического воздействия на материал, например управляемого механического нагружения для определения уровня остаточных напряжений первого рода в локальных областях поверхностного слоя материала изделий на различных этапах жизненного цикла, в том числе за пределами гарантийных сроков эксплуатации конструкций объектов ответственного назначения при упрощении способа, снижении трудоемкости и повышении точности определения остаточных напряжений. 1 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к измерительным технологиям информационно-диагностического обеспечения процесса определения остаточных напряжений в материале изделия на различных этапах его жизненного цикла, в частности после изготовления: качества отверждения полимерных композиционных материалов, получения неразъемных соединений сваркой, селективного лазерного сплавления и плазменного напыления, а также других операционных технологий, связанных с фазовыми превращениями и пластическим деформированием при формо- и структурообразовании изделий.
Известен способ определения остаточных напряжений, по которому из изделия по двум взаимно перпендикулярным направлениям вырезают два образца заданных размеров, измеряют деформации изгиба и кручения после вырезки и после уменьшения толщины образцов путем удаления напряженных слоев материала и по полученным данным определяют остаточные напряжения в материале изделия. Согласно изобретению обеспечивают одинаковую точность измерения отдельных компонент остаточных напряжений, определяя указанные размеры обоих образцов предварительно перед вырезкой из условия, что производная от деформаций изгиба и производная от деформаций кручения по толщине удаляемого слоя были равны при условии равенства соответствующих нормальных и касательных напряжений [патент РФ №2121666, МПК G01L 1/06 (1998.11)].
Недостатком способа является то, что необходимо разрушать изделие путем вырезки образцов и при вырезании образца картина распределения остаточных напряжений в образцах будет отличаться от действительных напряжений в изделии, т.е. скажется масштабный эффект.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является экспериментально-теоретический способ определения остаточных напряжений в стержнях прямоугольного сечения [Биргер И.А., Остаточные напряжения, М., Машгиз, 1963 г., стр. 60…79], заключающийся в том, что из исследуемой детали вырезают и подготавливают образец в форме стержня прямоугольного сечения. С подготовленного образца одним из известных способов снимают слои материала, при этом после каждого снятого слоя определяют суммарную толщину снятого материала и прогиб образца, вызванный снятием этого материала. Рассчитывают остаточные напряжения в слоях по формуле
Figure 00000001
где Е - модуль упругости материала
l - длина исследуемого образца;
h - начальная толщина образца;
a - толщина снятого материала;
f(a) - функция, определяющая зависимость между толщиной снятого материала (а) и возникшим при этом прогибом образца;
Figure 00000002
- производная функции f(a);
Figure 00000003
- интеграл функции f(ξ), аналогичной f(a).
Данный способ принят в качестве прототипа.
Недостатком известного способа, принятого за прототип, является то, что необходимо разрушать изделие путем вырезки образцов и при вырезании образца картина распределения остаточных напряжений в образцах будет отличаться от действительных напряжений в изделии, т.е. скажется масштабный эффект. В известном способе для расчета остаточных напряжений необходимо определять для каждой исследуемой детали три функции. Вычисление функций трудоемко, их структура достаточно сложна, их неаналитическое построение вносит существенную погрешность в формулу расчета остаточных напряжений.
Признаки прототипа, совпадающие с существенными признаками заявляемого способа, - способ определения остаточных напряжений в поверхностном слое исследуемых материалов, заключающийся в воздействии на него механических нагрузок и фиксации результатов воздействия.
Задачей изобретения является расширение функциональных возможностей физико-технологического воздействия на материал, например управляемого механического нагружения для определения уровня остаточных напряжений первого рода в локальных областях поверхностного слоя материала изделий на различных этапах жизненного цикла, в том числе за пределами гарантийных сроков эксплуатации конструкций объектов ответственного назначения при упрощении способа, снижении трудоемкости и повышении точности определения остаточных напряжений.
Поставленная задача была решена за счет того, что в известном способе определения остаточных напряжений в поверхностном слое исследуемых материалов, заключающемся в воздействии на него механических нагрузок и фиксации результатов воздействия, согласно изобретению осуществляют управляемые механические воздействия высокоскоростной гидроструей, затем путем анализа результатов гидроэрозионного разрушения поверхностного слоя образца при различных уровнях нагружения рассчитывают величину остаточных напряжений по зависимости, учитывающей как минимум два уровня нагружения исследуемого материала:
Figure 00000004
где J1, J2, Jост - соответственно результаты гидроэрозионного разрушения поверхности образца, например глубина образующейся гидрокаверны при определенных уровнях механических напряжений: σ1 и σ2, создаваемых при приложении к образцу материал как минимум двух различных по величине силовых нагрузок. При этом величина остаточных напряжений σост определяет при прочих равных условиях величину уровня гидроразрушения поверхности Jост только при наличии искомых остаточных напряжений первого рода, т.е. при отсутствии внешнего силового воздействия на исследуемый материал.
В качестве высокоскоростной гидроструи может быть использована струя слабоабразивной суспензии, твердотельные мелкодисперсные частицы которой (наполнитель) имеют физико-механические характеристики ниже на 50…70% физико-механических характеристик поверхностного слоя исследуемого материала.
Признаки заявляемого технического решения, отличительные от прототипа, - осуществляют управляемые механические воздействия высокоскоростной гидроструей; затем путем анализа результатов гидроэрозионного разрушения поверхностного слоя образца при различных уровнях нагружения рассчитывают величину остаточных напряжений по зависимости (2), учитывающей как минимум два уровня нагружения исследуемого материала; при этом величина остаточных напряжений σост определяет при прочих равных условиях величину уровня гидроразрушения поверхности Jост только при наличии искомых остаточных напряжений первого рода, т.е. при отсутствии внешнего силового воздействия на исследуемый материал; в качестве высокоскоростной гидроструи используют струю слабоабразивной суспензии, твердотельные мелкодисперсные частицы которой (наполнитель) имеют физико-механические характеристики ниже на 50…70% физико-механических характеристик поверхностного слоя исследуемого материала.
Отличительные признаки позволяют расширить функциональные возможности физико-технологического воздействия на материал, например управляемого механического нагружения для определения уровня остаточных напряжений первого рода в локальных областях поверхностного слоя материала изделий на различных этапах жизненного цикла, в том числе за пределами гарантийных сроков эксплуатации конструкций объектов ответственного назначения при упрощении способа, снижении трудоемкости и повышении точности определения остаточных напряжений.
Авторы в ходе экспериментов впервые установили, что эффект влияния механических напряжений в исследуемом материале на интенсивность его гидроэрозионного разрушения может быть положен в основу достижения поставленной задачи изобретения: количественного определения уровня остаточных напряжений в материале конструкции путем анализа результатов его локального поверхностного гидроэрозионного разрушения высокоскоростной гидроструей или струей слабоабразивной суспензии.
Предлагаемый способ иллюстрируется чертежом, на котором представлена графическая иллюстрация осуществления способа в виде алгоритма получения расчетного соотношения для определения уровня остаточных напряжений в исследуемом материале.
На схеме обозначены: σ, J - соответственно уровень механических напряжений в исследуемом материале (н/м2, Па) и интенсивность гидроэрозионного разрушения его поверхности (кг/с).
Для простоты анализа под J - можно понимать глубину (форму) гидрокаверны, образующейся на поверхности материала за определенное время воздействия высокоскоростной гидроструи или струи абразивной суспензии; J1 и J2 - соответственно масс-геометрические результаты эрозионно-диспергирующего воздействия высокоскоростной гидроструи или струи суспензии при соответствующих уровнях механических напряжений в материале σ1 и σ2, обусловленных определенным силовым нагружением различной величины материала объекта анализа; σост - подлежащая определению величина остаточных технологических и/или эксплуатационных напряжений в анализируемом конструкционном материале, детали и/или изделии; Jост - результат гидроэрозионного локального разрушения поверхностного слоя исследуемого материала, например глубина гидрокаверны при отсутствии внешнего силового нагружения, т.е. только с учетом влияния σост; Jp - расчетное значение гидроэрозионного разрушения при отсутствии остаточных напряжений (σост=0), которое характеризует только физико-механические свойства диагностируемого материала; α - угол наклона зависимости: J=ƒ(σ), т.е. tgα=k по сути означает коэффициент влияния приращения Δσ на соответствующие изменения ΔJ; 1,2,3 - точки на зависимости J=ƒ(σ), при соответствующих парных соотношениях: 1-σ1→J1; 2-σ2→J2; 3-σост→Jост. При этом, согласно фиг.:
Figure 00000005
Способ определения остаточных напряжений осуществляют следующим образом.
На объект воздействуют несколькими, не менее двух, разных по величине механически-силовыми нагружениями, при каждом из которых осуществляется воздействие высокоскоростной гидроструи или струи суспензии и регистрируют результаты локальной гидроэрозии в месте воздействия диагностической струи. Затем, полагая в первом приближении, что интенсивность гидроэрозии пропорциональна уровню механических напряжений в месте воздействия струи вычисляют величину остаточных напряжений (σост) при отсутствии внешнего силового деформационного воздействия по зависимости (для двух уровней нагружения объекта анализа);
Figure 00000006
где: J1 и J2 - характеристики интенсивности гидроэрозионного локального разрушения диагностируемой поверхности, например глубина и форма образующихся гидрокаверн; σ1 и σ2 - механические напряжения в диагностируемом материале, которые обусловлены действием 2-х разных по величине уровней механического нагружения объекта анализа.
Процедура получения основной зависимости (2) проиллюстрирована на фиг., на которой в графическом виде представлены результаты экспериментов и векторными «стрелками» указана последовательность построения соотношения (1), которое является следствием функционально-геометрической соотносительности между анализируемыми параметрами.
Для повышения интенсивности процесса гидроэрозии предлагается использовать слабоабразивную струю суспензии, которая формируется на основе мелкодисперсных частиц материала с меньшими физико-механическими свойствами, чем физико-механические параметры диагностируемого материала. В этом случае диагностическая гидроабразивная струя будет вносить незначительные искажения в топографию распределения исходных остаточных напряжений из-за пренебрежимо малой степени пластических деформаций (наклепа) исследуемого материала в зоне их определения.
Кроме того, использование такой слабоабразивной струи позволит использовать менее мощное гидротехнологическое оборудование, что положительно скажется на технико-экономических характеристиках заявляемого способа.
Как показали установочные эксперименты, в качестве дисперсного наполнителя, в зависимости от вида диагностируемого материала результативно использовать порошок железа, в частности для диагностики изделий из сталей или алюминиевую пудру для более мягких материалов типа легких сплавов и полимерных композиционных материалов. Поэтому можно рекомендовать соотносительность между физико-механическими свойствами диагностируемого материала и свойствами дисперсного наполнителя диагностической струи суспензии в пределах 50…70%.
Пример конкретного выполнения.
Способ определения остаточных напряжений состоял из следующих основных этапов;
Исходя из геометрических соображений, основанных на прямопропорциональной зависимости между изменениями а и приращении J, что справедливо в определенном, относительно небольшом интервале их варьирования, в частности в зоне малых упругих деформаций анализируемого материала (δ<3…5%) можно записать (см. фиг.):
Figure 00000007
Figure 00000008
Figure 00000009
где: J1 и J2 - как и ранее соответствующие характеристики гидроэрозионного разрушения материала при различном уровне механических напряжений в нем: σ1 и σ2, обусловленных приложением 2-х вариантов внешнего нагружения соответствующей величины; Jp - расчетная характеристика интенсивности гидроэрозии, например глубина гидрокаверны на диагностируемой поверхности при отсутствии внешнего и внутреннего механического воздействия, в том числе при σост=0, Jост - величина гидроэрозии только с учетом влияния уровня - σост в месте гидродинамического удара высокоскоростной струи жидкости (воды) или струи слабоабразивной суспензии.
Очевидно, что более полноценный результат определения σост будет получен путем осреднения значений, вычисленных по (3) и (5) с учетом (1), т.е. по зависимости вида (2), которая и является основным отличительным признаком заявляемого способа.
Сделаем несколько замечаний.
1. Для повышения точности определения σост необходимо увеличение количества числа испытаний n>2. При этом, полученную зависимость J=ƒ(σ) необходимо аппроксимировать не прямой вида (см. фиг. 1):
Figure 00000010
а более сложным степенным полиномом, например квадратичным. Однако это приведет к увеличению трудоемкости и затратности способа, который следует рассматривать как экспрессно-оперативную контрольно-диагностическую процедуру ускоренного определения уровня σост в поверхностном слое объекта анализа.
2. Используя для исследований образец с переменной формой сечения, например клиновидный, путем его нагружения одним значением растягивающей или сжимающей силы осуществляется физически обусловленная реализация плавного изменения напряжений а по его длине. Затем, проведя несколько гидроструйных воздействий в перпендикулярном действию растягивающей (сжимающей) силы направлениях, а также при ее отсутствии возможно формирование весьма представительного массива соотношений вида:
Figure 00000011
где i=1, 2, …, n - число каверн на поверхности образца с переменной площадью поперечного сечения.
Причем этот конструктивно-вариативный образец результативно использовать для отработки инженерной методики определения σост.
Для верификации предлагаемого способа осуществлялась аргонодуговая сварка листовых образцов из стали Х18Н10Т с последующей зашлифовкой шва. Затем, путем реализации предлагаемого способа было получено значение: σост (растяжения) в переделах:
Figure 00000012
; σmax~50 Н/мм2. После операции вакуумного отжига на режимах: температура нагрева - θ~720°С, продолжительность - τ ~ 3 часа, уровень остаточных напряжений снизился до величины σ=10…20 Н/мм2. Это обстоятельство весьма положительно сказалось на усталостных характеристиках образов, которые также оценивались путем гидроструйного воздействия на установке фирмы FLOW к фрикционных испытаниях на машине трения Шкода-Славин. В таблице в обобщенном виде представлены результаты реализации способа.
Figure 00000013
Данный пример наглядно иллюстрирует достижение заявляемого технического результата способа определения уровня остаточных напряжений в материале путем кратковременного воздействия на него высокоскоростной гидроструи или струи слабоабразивной суспензии и алгоритмизированного анализа масс-геометрических результатов гидроэрозии поверхности материала по зависимости (2).
Предлагаемый способ может быть полезен при экспресс-оценке эффективности физико-технологических мероприятий, направленных на целенаправленное управление величиной и знаком σост, например режимов термообработки, нивелирующих σост.→0. И наоборот, например, при оценке результативности процесса алмазного выглаживания, обеспечивающего наведение в поверхностном слое пластичного материала эксплуатационно-ценных технологических сжимающих остаточных напряжений, увеличивающих предел усталостной прочности ряда деталей, например различных силовых торсионов или прецизионных пар трения.
Помимо этапа технологической подготовки производства, а также при выборочном или 100%-м контроле уровня остаточных напряжений в различных изделиях, в первую очередь высокоответственного назначения, способ может быть легко адаптирован к анализу степени деформационного старения материала и возникновению в нем остаточных напряжений, вариативная топография которых формируется под действием значительных эксплуатационных нагрузок. Это обстоятельство, в первую очередь, крайне важно для объектов, испытывающих при эксплуатации в первую очередь длительные, знакопеременные высокодинамичные вибрационно-ударные воздействия, характерные, например для изделий авиамоторостроения и некоторых образцов ракетно-космической техники.
В целом, использование заявляемого способа дополнит арсенал достоверной экспресс-оценки уровня остаточных механических напряжений (напряжений 1-го рода), что повысит прогностическую точность самых различных моделей расчета остаточного ресурса конструкций изделий, в первую очередь особого ответственного назначения, в том числе за пределами гарантийных сроков их безусловно надежной эксплуатации. Заметим, что помимо координатно-локального определения уровня остаточных напряжений 1-го рода предлагаемая контрольно-диагностическая технология может оказаться эффективной при анализе особенностей формирования и проявления остаточных напряжений второго рода, связанных с микроструктурными изменениями материала деталей при их изготовлении и эксплуатации.
Таким образом, заявляемый способ может использоваться для выбора оптимальных технологий изготовления изделий из них материалов. Преимущества способа состоят в том, что он позволяет снизить трудоемкость испытаний, повысить точность определения остаточных напряжений, расширить возможности воздействия высокоэнергетической струи для процедуры диагностики материалов за счет изменения параметров струи при сохранении достоверности диагностической информации о свойствах материалов.

Claims (5)

1. Способ определения остаточных напряжений в поверхностном слое исследуемых материалов, заключающийся в воздействии на него механических нагрузок, фиксации результатов воздействия, отличающийся тем, что осуществляют управляемые механические воздействия высокоскоростной гидроструёй, затем путем анализа результатов гидроэрозионного разрушения поверхностного слоя образца при различных уровнях нагружения рассчитывают величину остаточных напряжений по зависимости, учитывающей как минимум два уровня нагружения исследуемого материала:
Figure 00000014
где J1, J2, Jост - соответственно результаты гидроэрозионного разрушения поверхности образца, например глубина образующейся гидрокаверны при определенных уровнях механических напряжений σ1 и σ2, создаваемых при приложении к образцу материала как минимум двух различных по величине силовых нагрузок;
при этом величина остаточных напряжений σост определяет при прочих равных условиях величину уровня гидроразрушения поверхности Jост только при наличии искомых остаточных напряжений первого рода, т.е. при отсутствии внешнего силового воздействия на исследуемый материал.
2. Способ по п. 1, отличающийся тем, что в качестве высокоскоростной гидроструи используют струю слабоабразивной суспензии, твердотельные мелкодисперсные частицы которой имеют физико-механические характеристики ниже на 50…70% физико-механических характеристик поверхностного слоя исследуемого материала.
RU2019126488A 2019-08-20 2019-08-20 Способ определения остаточных напряжений RU2718631C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019126488A RU2718631C1 (ru) 2019-08-20 2019-08-20 Способ определения остаточных напряжений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019126488A RU2718631C1 (ru) 2019-08-20 2019-08-20 Способ определения остаточных напряжений

Publications (1)

Publication Number Publication Date
RU2718631C1 true RU2718631C1 (ru) 2020-04-10

Family

ID=70156520

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019126488A RU2718631C1 (ru) 2019-08-20 2019-08-20 Способ определения остаточных напряжений

Country Status (1)

Country Link
RU (1) RU2718631C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792600C1 (ru) * 2022-05-19 2023-03-22 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ определения остаточных напряжений в изделиях из полимерных композиционных материалов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032162C1 (ru) * 1991-10-11 1995-03-27 Бякова Александра Викторовна Способ определения остаточных напряжений
RU2366912C1 (ru) * 2008-03-24 2009-09-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ определения остаточных напряжений
RU2611078C1 (ru) * 2013-01-31 2017-02-21 Фронтикс, Инк. Способ определения остаточного напряжения с применением инструментального индентирования, носитель информации с соответствующей компьютерной программой и устройство для инструментального индентирования, предназначенное для реализации инструментального индентирования с использованием носителя информации
EP1836473B1 (en) * 2004-12-16 2018-10-17 Jung, Won Seok Evaluating method of the residual stress determining method using the continuous indentation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032162C1 (ru) * 1991-10-11 1995-03-27 Бякова Александра Викторовна Способ определения остаточных напряжений
EP1836473B1 (en) * 2004-12-16 2018-10-17 Jung, Won Seok Evaluating method of the residual stress determining method using the continuous indentation method
RU2366912C1 (ru) * 2008-03-24 2009-09-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Способ определения остаточных напряжений
RU2611078C1 (ru) * 2013-01-31 2017-02-21 Фронтикс, Инк. Способ определения остаточного напряжения с применением инструментального индентирования, носитель информации с соответствующей компьютерной программой и устройство для инструментального индентирования, предназначенное для реализации инструментального индентирования с использованием носителя информации

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792600C1 (ru) * 2022-05-19 2023-03-22 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ определения остаточных напряжений в изделиях из полимерных композиционных материалов
RU2797941C1 (ru) * 2022-07-19 2023-06-13 Сысоев Николай Николаевич Способ диагностики и контроля качества контролируемого объекта

Similar Documents

Publication Publication Date Title
Jiménez-Peña et al. Investigations on the fretting fatigue failure mechanism of bolted joints in high strength steel subjected to different levels of pre-tension
Majzoobi et al. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6
KR100517857B1 (ko) 연속압입시험법을 이용한 잔류응력 측정방법
Hörrmann et al. The effect of fiber waviness on the fatigue life of CFRP materials
Lee et al. Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification
US9897523B2 (en) Contact mechanic tests using stylus alignment to probe material properties
Corigliano et al. DIC-based structural strain approach for low-cycle fatigue assessment of AA 5083 welded joints
Chakherlou et al. Effect of cold expansion and bolt clamping on fretting fatigue behavior of Al 2024-T3 in double shear lap joints
Nejad et al. Fatigue fracture and fatigue life assessment of railway wheel using non‐linear model for fatigue crack growth
Julien et al. Taylor’s test technique for dynamic characterization of materials: application to brass
Liao et al. Low-cycle fatigue behavior for stainless-clad 304+ Q235B bimetallic steel
Shen et al. Determination of gradient residual stress for elastoplastic materials by nanoindentation
Binwen et al. Study on impact fatigue test and life prediction method of TC18 titanium alloy
RU2718631C1 (ru) Способ определения остаточных напряжений
Bereczki et al. Different Applications of the Gleeble® Thermal–Mechanical Simulator in Material Testing, Technology Optimization, and Process Modeling
CA2916042A1 (en) Contact mechanic tests using stylus alignment to probe material properties
Ghahremani Predicting the effectiveness of post-weld treatments applied under load
Kulawinski et al. Improvement of the inverse finite element analysis approach for tensile and toughness predictions by means of small punch technique
Kudrya et al. Possibility of Predicting the Fracture of Metallic Materials with a Heterogeneous Structure
Sivaram et al. Prediction of Residual Strain of Steel Using Brinell Hardness Number: Development and Application to Old Bridge Structures in SriLanka
CN114492122B (zh) 一种数值表征喷丸处理材料表层应变硬化梯度的方法
Jurčius et al. Influence of vibratory stress relief on residual stresses in bridge structural members weldments
Akay et al. Experimental study and finite element analysis of dovetail attachments
Szymczyk et al. Analysis of residual stress fields in the riveted joint
RU2797941C1 (ru) Способ диагностики и контроля качества контролируемого объекта