RU2718292C1 - Прибор для диагностики функционального состояния головного мозга - Google Patents

Прибор для диагностики функционального состояния головного мозга Download PDF

Info

Publication number
RU2718292C1
RU2718292C1 RU2019123287A RU2019123287A RU2718292C1 RU 2718292 C1 RU2718292 C1 RU 2718292C1 RU 2019123287 A RU2019123287 A RU 2019123287A RU 2019123287 A RU2019123287 A RU 2019123287A RU 2718292 C1 RU2718292 C1 RU 2718292C1
Authority
RU
Russia
Prior art keywords
controller
antennas
digital converter
circulators
outputs
Prior art date
Application number
RU2019123287A
Other languages
English (en)
Inventor
Виталий Юрьевич Леушин
Александр Григорьевич Гудков
Сергей Владимирович Чижиков
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное предприятие "Технологические инновации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное предприятие "Технологические инновации" filed Critical Общество с ограниченной ответственностью "Научно-производственное предприятие "Технологические инновации"
Priority to RU2019123287A priority Critical patent/RU2718292C1/ru
Application granted granted Critical
Publication of RU2718292C1 publication Critical patent/RU2718292C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Abstract

Изобретение относится к медицинской технике. Прибор для диагностики функционального состояния головного мозга, содержит N групп по k антенн различных диапазонов частот, расположенных на поверхности головы, k×N+k СВЧ - выключателей, k×N датчиков температуры, находящихся в тепловом контакте с антеннами, многоканальный измеритель температуры, k циркуляторов, k термостататов, k генераторов шума, k согласованных нагрузок, k радиометрических приемников, коммутатор, аналого-цифровой преобразователь, контроллер и компьютер. Одновременно прибор содержит электроды для снятия биопотенциалов, подключенные через узлы гальванической развязки к ходам усилителей биопотенциалов, выходы которых через мультиплексор подключены к входу дополнительного аналого-цифрового преобразователя, управляющий вход мультиплексора и выход дополнительного аналого-цифрового преобразователя подключены к контроллеру, а N групп по k антенн расположены на поверхности головы по системе размещения электродов для снятия биопотенциалов «10-20%». Изобретение позволяет обеспечить существенное повышение эффективности диагностики функционального состояния головного мозга, его патологий и функциональных расстройств. 1 ил.

Description

Изобретение относится к области радиотехники и может быть использовано для получения данных о функциональном состоянии головного мозга и о наличии его патологий.
Известны медицинские приборы для измерения температурного поля внутренних тканей человека, которые могут использоваться для диагностики функционально состояния головного мозга, например, многоканальный радиотермограф (см. RU 2310876 кл. G01R 29/08, А61В, 18.04.2006), содержащий N антенн, соединенных с N СВЧ - выключателями, дополнительный СВЧ - выключатель, N датчиков температуры, циркулятор, термостат, согласованную нагрузку, находящуюся в тепловом контакте с термостатом и подключенную к циркулятору, выход которого подключен к входу радиометрического приемника.
Недостатками указанного многоканального радиотермографа являются: недостаточная точность измерения радиояркостных температур тела человека, обусловленная тем, что в процессе измерений радиояркостных температур не учитывается рассогласование импедансов антенн и участков тела человека, отсутствие контроля термодинамических температур поверхности исследуемых участков тела человека, что не позволяет определить вклад температурного градиента в измеренное значение радиояркостной температуры, а также зондирование в одном диапазоне частот, что делает невозможным измерение радиояркостых температур, соответствующих разной глубине, и тем самым затрудняет определение истинных размеров патологий исследуемых участков тела.
Наиболее близким к данному техническому решению является многочастотный радиотермограф (см. RU 2328751 КЛ. G01R 29/08, 14.08.2006), содержащий N групп по k антенн различных диапазонов частот, k×N+k СВЧ - выключателей, k×N датчиков температуры, находящихся в тепловом контакте с антеннами и подключенных к входам многоканального измерителя температуры, k циркуляторов, k термостататов, k генераторов шума, k согласованных нагрузок, находящихся в тепловом контакте с термостатами и подключенных к циркуляторам, k радиометрических приемников, коммутатор, аналого-цифровой преобразователь, контроллер и блок регистрации и индикации, содержащий компьютер.
Недостатком прототипа являются ограниченные функциональные возможности, а именно невозможности одновременной фиксации глубинных температур головного мозга отдельных областей головного мозга и соответствующих этим областям временных зависимостей биопотенциалов, что снижает эффективность выявления патологий и функциональных расстройств.
Технический результат, на достижение которого направлено изобретение, заключается в создании прибора для диагностики функционального состояния головного мозга, позволяющего измерять радиояркостные температуры глубинных зон головного мозга с целью локализации и определения размеров топологий и одновременно регистрировать временные зависимости его биопотенциалов, что позволяет поставить пациенту более точный диагноз.
Указанный технический результат достигается тем, что прибор для диагностики функционального состояния головного мозга, содержащий N групп по k антенн различных диапазонов частот, расположенных на поверхности головы, k×N+k СВЧ - выключателей, k×N датчиков температуры, находящихся в тепловом контакте с антеннами, многоканальный измеритель температуры, k циркуляторов, k термостататов, k генераторов шума, k согласованных нагрузок, k радиометрических приемников, коммутатор, аналого-цифровой преобразователь, контроллер и компьютер, причем антенны соединены с первыми k×N СВЧ выключателями, выходы каждых N из первых k×N СВЧ-выключателей, соединенных с антеннами одного и того же диапазона частот, соединены между собой и подключены соответственно к первым входам циркуляторов, согласованные нагрузки подключены соответственно к вторым входам циркуляторов, выходы циркуляторов подключены соответственно к входам радиометрических приемников, генераторы шума подключены соответственно к вторым k СВЧ-выключателям, выходы которых соединены соответственно с вторыми входами циркуляторов, согласованные нагрузки, циркуляторы, генераторы шума и радиометрические приемники находятся в тепловом контакте с термостатами, датчики температуры подключены к многоканальному измерителю температуры, выход которого подключен к входу контроллера, управляющие входы СВЧ-выключателей подключены к выходам контроллера, выходы радиометрических приемников соединены через коммутатор с входом аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход контроллера подключен к компьютеру, отличающийся тем, прибор такжео содержит N электродов для снятия биопотенциалов, конструктивно объединенных с каждой из N групп по k антенн, электроды для снятия биопотенциалов подключены через узлы гальванической развязки к ходам усилителей биопотенциалов, выходы которых через мультиплексор подключены к входу дополнительного аналого-цифрового преобразователя, управляющий вход мультиплексора и выход дополнительного аналого-цифрового преобразователя подключены к контроллеру, а N групп по k антенн расположены на поверхности головы по системе размещения электродов для снятия биопотенциалов «10-20%».
На фигуре приведены следующие обозначения:
1 - антенна;
2 - СВЧ-выключатель;
3 - датчик температуры;
4 - многоканальный измеритель температуры;
5 - циркулятор;
6 - термостат;
7 - генератор шума;
8 - согласованная нагрузка;
9 - радиометрический приемник;
10 - коммутатор;
11 - аналого-цифровой преобразователь;
12 - контроллер;
13 - компьютер;
14 - электрод для снятия биопотенциалов;
15 - узел гальванической развязки;
16 - усилитель биопотенциалов;
17 - мультиплексор;
18 - дополнительный аналого-цифровой преобразователь.
Прибор для диагностики функционального состояния головного мозга работает следующим образом. Перед началом обследования N групп по k антенн 1 и электроды 14 для снятия биопотенциалов располагаются по международной системе «10-20%» (см. http://ru.wikipedia.org/wiki/Международная_система_размещения_электродов_«10-20»). Антенны 1 сгруппированы в пространстве таким образом, что в каждой группе присутствуют k антенн, соответствующих k диапазонам частот, например с длиной волны 40 см, 20 см и 10 см. Под воздействием управляющего сигнала контроллера 12 включается первый СВЧ-выключатель 2, подключенный к первой антенне первой группы, при этом остальные СВЧ - выключатели 2 находятся в выключенном состоянии. Излучение из глубины тела человека в радиочастотном диапазоне достигает раздела сред «тело человека-первая антенна» и, частично отражаясь, принимается первой антенной 1. Мощность принятого излучения пропорциональна так называемой радиояркостной температуре, по которой можно судить о глубинной термодинамической температуре.
Принятый шумовой сигнал из антенны 1 (первого диапазона частот) первой группы антенн через первый выключатель 2 и первый циркулятор 5 поступает на вход первого радиометрического приемника 9 первого диапазона частот. Одновременно, мощность шума от согласованной нагрузки 8 через первый циркулятор 5 и первый СВЧ - выключатель 2 через первую антенну 1 попадает на раздел сред «первая антенна - тело человека», где частично отражаясь, через первый СВЧ - выключатель 2 и циркулятор 5 добавляется к мощности шумового сигнала от тела человека и вместе с ней поступает на вход первого радиометрического приемника 9. Усиленный и продетектированный сигнал с выхода первого радиометрического приемника 9 подается через коммутатор 10 на аналого-цифровой преобразователь 11, с выхода которого цифровые отсчеты сигнала поступают на контроллер 12. Контроллер 12 усредняет значения цифровых отсчетов и в результате получает число, пропорциональное суммарной мощности входных шумовых сигналов:
Figure 00000001
где КТР - обобщенный коэффициент передачи тракта усиления и обработки сигнала,
ТЧЕЛ - радиояркостная температура тела человека,
ТТЕРМ - температура термостата,
γ - коэффициент отражения мощности на границе раздела сред «тело человека-антенна 1»,
U0 - константа, определяемая собственными шумами радиометрического приемника и параметрами детектора.
Через определенный промежуток времени, например через одну миллисекунду, под воздействием управляющего сигнала контроллера 12 дополнительно к первому СВЧ - выключателю 2, подключенному к первой антенне первой группы включается СВЧ-выключатель 2, подключенный к первому генератору шума. При этом остальные СВЧ - выключатели находятся в выключенном состоянии. Излучение из глубины тела человека в радиочастотном диапазоне достигает раздела сред «тело человека-первая антенна» и, частично отражаясь, принимается первой антенной 1. Мощность принятого шумового сигнала из первой антенны 1 через первый СВЧ-выключатель 2 и первый циркулятор 5 поступает на вход первого радиометрического приемника 9. Одновременно мощность шума от первого генератора шума 7 суммируется с мощностью шума первой согласованной нагрузки 8 и через циркулятор 5 и первый СВЧ-выключатель 2 попадает на раздел сред «первая антенна 1 - тело человека», где частично отражаясь, через первый СВЧ-выключатель и первый циркулятор попадает на вход первого радиометрического приемника 9 и добавляется к шумовому сигналу от тела человека. Усиленный и продетектированный сигнал с выхода радиометрического приемника 9 подается через коммутатор 10 на аналого-цифровой преобразователь 11, с выхода которого цифровые отсчеты сигнала поступают на контроллер 12. Контроллер 12 усредняет значения цифровых отсчетов и в результате получает число, пропорциональное суммарной мощности входных шумовых сигналов мощности, которое может быть описано формулой:
Figure 00000002
где ТГШ - шумовая температура генератора шума.
Через определенный промежуток времени, например через одну миллисекунду, под воздействием управляющего сигнала контроллера выключаются первый СВЧ - выключатель 2 и СВЧ - выключатель 2, подключенный к первому генератору шума. Остальные СВЧ - выключатели находятся в также выключенном состоянии. При этом, шумовой сигнал от первой согласованной нагрузки 8 через циркулятор 5, попадает на вход первого радиометрического приемника 9. Усиленный и продетектированный сигнал с выхода радиометрического приемника 9 подается через коммутатор 10 на аналого-цифровой преобразователь 11, с выхода которого цифровые отсчеты сигнала поступают на контроллер 12. Контроллер 12 усредняет значения цифровых отсчетов и в результате получает число, пропорциональное суммарной мощности входных шумовых сигналов мощности, которое может быть описано формулой:
Figure 00000003
Через определенный промежуток времени, например через одну миллисекунду, под воздействием управляющего сигнала контроллера 12 включается СВЧ выключатель 2, подключенный к первому генератору шума 7. При этом, шумовой сигнал от согласованной нагрузки 8 суммируется с шумовым сигналом от первого генератора шума 7 и через первый циркулятор 5 поступает на вход первого радиометрического приемника 9. Усиленный и продетектированный сигнал с выхода радиометрического приемника 9 подается через коммутатор 10 на аналого-цифровой преобразователь 11, с выхода которого цифровые отсчеты сигнала поступают на контроллер 12. Контроллер усредняет значения цифровых отсчетов и в результате получает число, пропорциональное суммарной мощности входных шумовых сигналов, которое может быть описано формулой:
Figure 00000004
Из формул (1)-(4) при известных параметрах Uизм1, Uизм2, Uизм3, Uизм4, КТР, ТТЕРМ, ТГШ, U0 следует, что
Figure 00000005
Это означает, что коэффициент отражения мощности на границе раздела сред «тело человека - первая антенна 1» полностью определяется по результатам четырех измерений, при этом автоматически учитывается степень рассогласования антенны с телом человека, за счет чего повышается точность измерения радиояркостной температуры.
Данные о значениях коэффициентов отражения антенн γ, вычисленные контроллером 12 по формуле (5), подаются на компьютер, дополнительно обрабатываются и отображаются на экране монитора. По величине измеренных коэффициентов отражения можно контролировать исправность антенн и правильность их установки на теле человека.
Используя формулы (1)-(5), получаем:
Figure 00000006
Таким образом, радиояркостная температура тела человека вычисляется контроллером 12 по формуле (6) при подстановке в нее четырех результатов измерений Uизм1, Uизм2, Uизм3, Uизм4 и известных параметров: ТТЕРМ, ТГШ.
Аналогичным образом последовательно во времени определяются радиояркостные температуры в других местах установки остальных антенн одного и того же диапазона частот теле человека.
Затем, аналогичным образом последовательно во времени определяются радиояркостные температуры в местах установки антенн остальных k-1 диапазонов частот на теле человека.
Поскольку измеренное значение температуры тела в радиочастотном диапазоне определяется вкладом температуры поверхности тела, вкладом температурного градиента и вкладом температурной аномалии (при ее наличии), то для однозначного определения внутренней температуры тела необходимы данные о температуре поверхности тела в зоне измерения. Эти данные получают с помощью датчиков температуры 3. Антенны 1 имеют небольшие габариты и массу и располагаются непосредственно на голове человека. Поэтому датчики температуры, находящиеся в тепловом контакте с k×N антеннами 1, фактически измеряют термодинамические температуры поверхности головы человека в месте установки антенн. Контроллер 12 посредством порта, подключенного к многоканальному измерителю температуры 4 периодически опрашивает k×N датчиков температуры и вместе с вычисленными значениями глубинных температур передает эти значения на компьютер 13, имеющий в своем составе монитор.
Значения глубинных и поверхностных температур различных участков тела в k диапазонах частот индицируются на экране монитора псевдоцветами и в разных системах координат (по площади и по глубине). Компьютерная графическая обработка полученных данных в k диапазонах частот позволяет строить также трехмерные тепловые карты исследуемой области, которые позволяют выявить зоны повышенных глубинных температуры и тем самым локализовать патологии.
Одновременно с измерением глубинных температур головного мозга в тех же областях измеряются временные зависимости его биопотенциалов. Процесс измерения биопотенциалов осуществляется следующим образом. Электрические потенциалы с электродов для съема биопотенциалов 14 через узлы гальванической развязки 15 передаются на входы усилителей биопотенциалов 16, с выходов которых они подаются на мультиплексор 17, с выхода мультиплексора 17 биопотенциалы поступают на вход дополнительного аналого-цифрового преобразователя 18. После оцифровки данные о биопотенциалах поступают на вход контроллера 12. В контроллере 12 осуществляется первичная обработка информации о временных зависимостях биопотенциалов.
С выхода контроллера 12 данные об измеренных глубинных температурах головного мозга в и временных зависимостях биопотенциалов, снятых с этих же областей поступают в компьютер 13, где осуществляется обработка информации с одновременной их визуализацией их на экране монитора (построение тепловых карт и наблюдение биопотенциалов головного мозга в реальном масштабе времени), а также протоколирование результатов обследования в памяти компьютера.
Важным фактором при исследовании функционального состояния головного мозга является использование различных тестов (ритмическое световое раздражение, гипервентиляция, проведение арифметических вычислений и т.д.). Эти тесты позволяют в динамике контролировать влияние внешних воздействий как на глубинные температуры, так и на характер временных зависимостей биопотенциалов.
Интерпретация данных, полученных в результате проведения одновременных измерений собственных радиотепловых полей головного мозга и биоэлектрической активности отделов и структур головного мозга обеспечивает существенное повышение эффективности диагностики его патологий и функциональных расстройств.
В качестве контроллера в приборе для функциональной диагностики головного мозга может быть использован микроконтроллер типа AT89S8252 фирмы ATMEL, аналого-цифровой преобразователь AD 7818 фирмы ANALOG DEVICE или микроконтроллер семейства MCS-51. В качестве многоканального измерителя температуры использовано устройство контроля температуры УКТ38-Щ4 фирмы «Овен», Россия.

Claims (1)

  1. Прибор для диагностики функционального состояния головного мозга, содержащий N групп по k антенн различных диапазонов частот, расположенных на поверхности головы, k×N+k СВЧ - выключателей, k×N датчиков температуры, находящихся в тепловом контакте с антеннами, многоканальный измеритель температуры, k циркуляторов, k термостататов, k генераторов шума, k согласованных нагрузок, k радиометрических приемников, коммутатор, аналого-цифровой преобразователь, контроллер и компьютер, причем антенны соединены с первыми k×N СВЧ выключателями, выходы каждых N из первых k×N СВЧ-выключателей, соединенных с антеннами одного и того же диапазона частот, соединены между собой и подключены соответственно к первым входам циркуляторов, согласованные нагрузки подключены соответственно к вторым входам циркуляторов, выходы циркуляторов подключены соответственно к входам радиометрических приемников, генераторы шума подключены соответственно к вторым k СВЧ-выключателям, выходы которых соединены соответственно с вторыми входами циркуляторов, СВЧ-выключатели, циркуляторы, генераторы шума, согласованные нагрузки и радиометрические приемники находятся в тепловом контакте с термостатами, датчики температуры подключены к многоканальному измерителю температуры, выход которого подключен к входу контроллера, управляющие входы СВЧ-выключателей подключены к выходам контроллера, выходы радиометрических приемников соединены через коммутатор с входом аналого-цифрового преобразователя, выход которого подключен к входу контроллера, выход контроллера подключен к компьютеру, отличающийся тем, что содержит N электродов для снятия биопотенциалов, конструктивно объединенных с каждой из N групп по k антенн, электроды для снятия биопотенциалов подключены через узлы гальванической развязки к входам усилителей биопотенциалов, выходы которых через мультиплексор подключены к входу дополнительного аналого-цифрового преобразователя, управляющий вход мультиплексора и выход дополнительного аналого-цифрового преобразователя подключены к контроллеру, а N групп по k антенн расположены на поверхности головы по системе размещения электродов для снятия биопотенциалов «10-20%».
RU2019123287A 2019-07-24 2019-07-24 Прибор для диагностики функционального состояния головного мозга RU2718292C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019123287A RU2718292C1 (ru) 2019-07-24 2019-07-24 Прибор для диагностики функционального состояния головного мозга

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019123287A RU2718292C1 (ru) 2019-07-24 2019-07-24 Прибор для диагностики функционального состояния головного мозга

Publications (1)

Publication Number Publication Date
RU2718292C1 true RU2718292C1 (ru) 2020-04-01

Family

ID=70156506

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019123287A RU2718292C1 (ru) 2019-07-24 2019-07-24 Прибор для диагностики функционального состояния головного мозга

Country Status (1)

Country Link
RU (1) RU2718292C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2049424C1 (ru) * 1992-09-01 1995-12-10 Конструкторское бюро "Экологическая и медицинская аппаратура" Устройство для приема собственного радиотеплового излучения тела человека
US6421550B1 (en) * 1994-07-01 2002-07-16 Interstitial, L.L.C. Microwave discrimination between malignant and benign breast tumors
RU2328751C2 (ru) * 2006-08-14 2008-07-10 Открытое акционерное общество "Концерн радиостроения "Вега" Многочастотный радиотермограф

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2049424C1 (ru) * 1992-09-01 1995-12-10 Конструкторское бюро "Экологическая и медицинская аппаратура" Устройство для приема собственного радиотеплового излучения тела человека
US6421550B1 (en) * 1994-07-01 2002-07-16 Interstitial, L.L.C. Microwave discrimination between malignant and benign breast tumors
RU2328751C2 (ru) * 2006-08-14 2008-07-10 Открытое акционерное общество "Концерн радиостроения "Вега" Многочастотный радиотермограф

Similar Documents

Publication Publication Date Title
US10335054B2 (en) Method for detecting fluid in cranuim via time varying magnetic field phase shifts
US20110263969A1 (en) Sar estimation in nuclear magnetic resonance examination using microwave thermometry
RU2328751C2 (ru) Многочастотный радиотермограф
EP2502557B1 (en) System and method for soft-field tomography data acquisition
Jeger-Madiot et al. Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography
Vela et al. Standalone IoT bioimpedance device supporting real-time online data access
RU2718292C1 (ru) Прибор для диагностики функционального состояния головного мозга
US20180374244A1 (en) Process and Measuring System for Data Acquisition and Processing in Soft-Tomography Studies
RU2636880C1 (ru) Устройство для неинвазивного измерения потока микроциркуляции крови
Vinci et al. 24 GHz six-port medical radar for contactless respiration detection and heartbeat monitoring
RU2310876C1 (ru) Многоканальный радиотермограф
KR100688355B1 (ko) 신체내의 병소를 검출하는 장치 및 방법
Korolyuk et al. Improved system for identifying biological tissue temperature using electrical impedance tomography
Widianto et al. The effect of moving load on remote weight monitoring system for simple infant incubator
RU2145483C1 (ru) Способ и устройство для диагностирования клинического состояния пациента
US3604411A (en) Electroencephalograph having meter probe movable in a calvarium-shaped liquid filled tank and method of use
RU2814809C1 (ru) Многоканальный многочастотный радиотермограф
Kanti Bera et al. Common ground method of current injection in electrical impedance tomography
RU2095020C1 (ru) Устройство диагностики желудочно-кишечного тракта "гастроскан" (варианты)
Shankaranarayanan et al. Developing a multichannel temperature probe for interventional MRI
Yastrebov et al. Portable home use mammograph for detection breast tumors
Sarkawi et al. Non–invasive Fetal Scalp pH Measurement Utilizing Magnetic Induction Spectroscopy Technique
US20230165479A1 (en) System for detection of rf induced heating of a patient undergoing a mri examination
RU2209033C1 (ru) Устройство для оценки биоэлектрической активности точек акупунктуры
CN107126231A (zh) 一种体内深层大中动脉局域脉搏波波速检测探头