RU2716793C1 - Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов - Google Patents

Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов Download PDF

Info

Publication number
RU2716793C1
RU2716793C1 RU2018141049A RU2018141049A RU2716793C1 RU 2716793 C1 RU2716793 C1 RU 2716793C1 RU 2018141049 A RU2018141049 A RU 2018141049A RU 2018141049 A RU2018141049 A RU 2018141049A RU 2716793 C1 RU2716793 C1 RU 2716793C1
Authority
RU
Russia
Prior art keywords
filtrate
filter
filtered medium
filtration
stage
Prior art date
Application number
RU2018141049A
Other languages
English (en)
Inventor
Юрий Павлович Зайков
Вадим Анатольевич Ковров
Вячеслав Игоревич Еременко
Александр Николаевич Черепанов
Андрей Николаевич Тарарков
Илья Борисович Половов
Виктор Александрович Иванов
Андрей Салаватович Мухамадеев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2018141049A priority Critical patent/RU2716793C1/ru
Application granted granted Critical
Publication of RU2716793C1 publication Critical patent/RU2716793C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Заявлена группа изобретений, предназначенная для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата), пористых металлических материалов (фильтров) по расплавленной смеси галогенидов щелочных металлов, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Устройство содержит рабочую металлическую камеру (6) с индикаторным электродом (7), где размещают фильтруемую среду (3) и испытываемый пористый металлический материал, а также кварцевую ячейку (5) для фильтрата (1). Ячейку (5) и камеру (6) помещают в металлическую емкость (4) со штуцерами для поддержания инертной атмосферы. Расплавленное состояние фильтруемой среды (3) поддерживается нагревательным элементов (8). Инертная атмосфера создается использованием газового оборудования (9). Способ определения фильтрующих свойств включает три этапа. На первом устанавливают фильтр (2), обеспечивают инертную атмосферу и разогревают фильтруемую среду (3). На втором этапе производят фильтрационный процесс с поддержанием температуры фильтруемой среды (3) и рабочего давления на фильтр (2). Собирают фильтрат (1) и после опустошения резервуара с фильтруемой средой (3) завершают процесс и извлекают емкость с фильтратом (1). На третьем этапе определяют производительность и тонкость фильтрации испытываемых фильтров. Изобретение позволяет определить фильтрующие свойства пористых металлов по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. 2 н. и 4 з.п. ф-лы, 1 ил.

Description

Заявляемая группа изобретений предназначена для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата) пористых металлических материалов (фильтров) по расплавленной смеси галогенидов щелочных металлов, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Устройство и способ могут быть применены для входного контроля (контроля годности и отбраковки) металлических фильтров, используемых в технологических операциях разделения расплавов и содержащихся в них частиц твердой фазы в технологиях переработки отработанного ядерного топлива, а также при проведении научных исследований, касающихся развития таких технологий.
Известен широкий круг методов и устройств, которые могут быть применены в том числе для входного контроля и отбраковки фильтров. Это, например, методы и устройства:
- визуального контроля;
- микроскопии (оптической и электронной);
- бесконтактных оптических измерений (с применением сканеров, триангуляционных и теневых схем измерений);
- неразрушающего контроля (ультразвуковые исследования, рентгеновские исследования, томография) и другие аналогичные.
Эти известные методы и устройства применяются на практике и позволяют отбраковать фильтры по геометрическим размерам, сколам, трещинам, иным нарушениям однородности или целостности рабочей (фильтрующей) поверхности.
Однако ни один из этих известных способов и устройств не позволяет провести непосредственную оценку фильтрующих свойств (в том числе: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата)) пористых фильтров. Отметим, что непосредственная оценка фильтрующих свойств фильтра не может быть выполнена без фильтруемой среды, поскольку известно (Зуборев А.И., Кравцов А.Г. Принципы, методы и средства испытаний полимерных волокнистых фильтров для очистки газовых сред // Технологии техносферной безопасности. - 2014. №. 1. - С. 53), что фильтрующие свойства фильтра зависят не только собственно от характеристик и конфигурации материала фильтра, но и от параметров фильтруемой жидкости и условий процесса фильтрации. Таким образом применение указанных выше известных методов в ряде практических случаев оказывается недостаточным для контроля годности и отбраковки фильтров. Этот недостаток проявляется и при выполнении входного контроля (контроля годности и отбраковки) металлических фильтров, используемых в технологических операциях разделения расплавов и содержащихся в них частиц твердой фазы в технологиях переработки отработанного ядерного топлива, а также при проведении научных исследований, касающихся развития таких технологий.
Известна группа способов и устройств для непосредственного определения фильтрационных свойств фильтров, основанных на сорбционных, дифракционных явлениях, применении методов оптической (видимой) и электронной микроскопии, а также акустических, емкостных эффектах (Начинкин О.И. Полимерные микрофильтры. М.: Химия, 1985. 216 с.). Эти методы и устройства позволяют оценивать качество фильтрации загрязненных твердыми частицами газовых потоков и строятся на оценке изменения соответствующих показателей фильтров (массы, особенностей взаимодействия с электромагнитным и акустическими волнами, взаимодействии с переменным электрическим током).
Однако эти известные способы и устройства были разработаны для определения фильтрационных свойства полимерных фильтров для случаев очистки газовых сред, загрязненных твердыми взвешенными частицами. Они не могут быть применены для определения фильтрационных свойств металлических фильтров в условиях фильтрации расплавов при повышенных температурах.
Известны способ и устройство по ГОСТ Р ЕН779-2007 «Фильтры очистки воздуха общего назначения. Определение эффективности фильтрации». Устройство для испытаний по известному способу состоит из нескольких квадратных секций воздуховодов. Воздуховод известного решения должен быть выполнен из электропроводного материала, должен быть заземлен, иметь гладкие внутренние поверхности и быть достаточно жестким, чтобы сохранять свою форму при воздействии давления в процессе эксплуатации. В начале секции воздуховода известного решения находится смешивающее отверстие, в центре которого расположена форсунка для распыления пыли. После форсунки находится перфорированная пластина, предназначенная для обеспечения однородности распыления пыли. В последней трети этого воздуховода находится пробоотборник для аэрозоля, подаваемого на фильтр. В секции воздуховода устанавливается также измеритель расхода воздуха.
Однако особенностью известных способа и устройства по ГОСТ Р ЕН779-2007 является применимость исключительно для оценки фильтрационных свойств фильтра при очистке загрязненных газовых сред. Известный способ и устройство не могут быть применены для определения фильтрационных свойств металлических фильтров в условиях фильтрации расплавов.
Известны также другие способы и устройства для определения фильтрующих свойств фильтров для очистки газовых сред (например, технические решения по ГОСТ Р ЕН 1822-1-2010 «Высокоэффективные фильтры очистки воздуха ЕРА, НЕРА и ULPA. Классификация, методы испытаний, маркировка), которые также пригодны только для оценки фильтрующих свойств фильтров по газам и не могут быть применены для оценки фильтрующих свойств фильтров по расплавам.
Известны ГОСТ 16887-71 «Разделение жидких неоднородных систем методами фильтрования и центрифугирования. Термины и определения» и ГОСТ 26070-83 «Фильтры и сепараторы для жидкостей. Термины и определения», в которых даются определения фильтров и их фильтрующих свойств при работе с жидкими средами. Однако в этих известных источниках не указаны технические решения - устройства и способы, пригодные для определения фильтрующих свойств фильтров.
Наиболее близким к заявляемым способу и устройству являются способ и устройство по ГОСТ Р ИСО 4548-2-2012 «Методы испытаний полнопоточных масляных фильтров двигателей внутреннего сгорания», пригодные для непосредственного определения фильтрующих свойств фильтров и их отбраковки по этим свойствам. Известное по ГОСТ Р ИСО 4548-2-2012 устройство (испытательный стенд) содержит:
- испытываемый (масляный) фильтр;
- резервуар фильтруемой среды (масла);
- измерительный цилиндр - резервуар фильтрата (масла);
- насос для создания трансмембранного давления;
- клапаны для регулирования давления и потоков;
- измерители (расходомер, температурный датчик, манометры для измерения перепада давления на фильтре).
Определение свойств фильтров по известному ГОСТ Р ИСО 4548-2-2012 проводят в три этапа:
- на первом (подготовительном) этапе обеспечивают установку фильтра и подготовку устройства к работе;
- на втором (основном) этапе выполняют собственно фильтрационный процесс, пропуская через испытываемый (масляный) фильтр фильтруемую среду (масло) из резервуара при различных параметрах (температурах, давлениях и потоках масла), регулируемых клапанами и фиксируемых измерителями.
- на третьем (заключительном) этапе анализируя значения параметров, фиксируемые измерителями, делают выводы о свойствах испытуемого фильтра, в т.ч. его производительности.
Однако известные способ и устройство по ГОСТ Р ИСО 4548-2-2012 явно рассчитаны на работу с маслом в качестве фильтруемой среды и не могут быть применены для фильтрации расплавов, в том числе расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. При работе с расплавами по известному способу по ГОСТ Р ИСО 4548-2-2012 может наблюдаться деградация расплавов смеси хлоридов натрия и калия эквимолярного состава из-за их гигроскопичности. Кроме того эти известные способ и устройство по ГОСТ Р ИСО 4548-2-2012 не позволяют определять такие фильтрующие свойства испытуемых фильтров как тонкость (номинальная, абсолютная) фильтрации.
Таким образом общим недостатком всех известных и описанных выше технических решений является их непригодность для определения фильтрующих свойств пористых металлов по расплавленной смеси (расплавов) хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.
Задачей изобретения является получение технического решения, не обладающего недостатками аналогов и прототипа, т.е. пригодного для определения фильтрующих свойств (а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата)) пористых металлических материалов (фильтров) по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.
Технический результат, достигаемый при реализации заявляемых устройства и способа - возможность определения свойств фильтрации (а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата)) пористых металлических материалов (фильтров) в форме цилиндров с боковой рабочей (фильтрующей) поверхностью по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.
Технический результат достигается за счет того, что заявляемое устройство для определения фильтрующих свойств металлических фильтров по расплавленной солевой смеси галогенидов щелочных металлов содержит:
- рабочую металлическую камеру с индикаторным электродом, предназначенную для размещения фильтруемой среды в виде расплава галогенидов щелочных металлов эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов, а также установки в основании камеры испытываемого образца в виде пористого металлического материала;
- кварцевую ячейку для фильтрата;
- причем ячейка и камера помещены в металлическую емкость со штуцерами для поддержания инертной атмосферы внутри устройства;
- нагревательный элемент, для создания и поддержания расплавленного состояния фильтруемой среды и фильтрата;
- газовое оборудование для создания инертной атмосферы внутри устройства.
Технический результат также достигается за счет того, что заявляемый способ для определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов включает:
- первый (подготовительный) этап, на котором устанавливают испытываемый образец фильтра, внутри резервуаров для фильтруемой среды и фильтрата обеспечивают инертную атмосферу, и затем путем разогрева готовят фильтруемую среду в виде смеси галогенидов щелочных металлов эквимолярного состава и мелкодисперсных оксидов до температуры, превышающей температуру плавления хлоридов, но не превышающую температуру плавления оксидов;
- второй (основной) этап, на котором выполняют собственно фильтрационный процесс, пропуская через испытываемый фильтр фильтруемую среду и получая фильтрат, при этом температуру фильтруемой среды поддерживают на уровне, достигнутом на первом этапе, а также обеспечивают рабочее давление на фильтр со стороны фильтруемой жидкости с помощью давления инертной атмосферы и собирают фильтрат в емкость для фильтрата; после опустошения резервуара с фильтруемой жидкостью завершают процесс и извлекают емкость с фильтратом;
- третий (заключительный) этап, на котором определяют производительность и тонкость фильтрации испытываемых фильтров, например, следующим образом:
- для определения номинального расхода фильтрата (производительности фильтра) делят полную массу отобранного на втором этапе фильтрата на полное время его отбора;
- для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата на свободную площадь рабочей поверхности испытываемого образца фильтра;
- для определения номинальной тонкости фильтрации выполняют определение размеров частиц той фракции мелкодисперсных оксидов в полученном на втором этапе фильтрате при заданном коэффициенте отсева (обычно 95%);
- для определения абсолютной тонкости фильтрации выполняют определение максимальных размеров частиц мелкодисперсных оксидов в полученном на втором этапе фильтрате.
Сущность заявляемой группы изобретений поясняется фигурой, на которой изображена схема устройства.
Группа изобретений может быть реализована следующим образом.
Устройство содержит:
- фильтруемую среду (3), представляющую собой при работе установки расплавленную смесь (расплав), например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов;
- испытываемый образец металлического фильтра (2);
- фильтрат (1), представляющий собой прошедшие через испытываемый фильтр (2) компоненты исходной фильтруемой среды (3);
- емкость (4) металлическую со штуцерами для поддержания инертной атмосферы;
- кварцевую ячейку (5) - резервуар, содержащий фильтрат (1);
- рабочую металлическую камеру (6) - резервуар для фильтруемой среды (3), в основании которой выполнено сквозное отверстие для размещения в нем фильтра (2);
- индикаторный электрод (7) для определения уровня фильтруемой среды (3);
- нагревательный элемент (8) в виде, например, термического нагревателя или печи для создания и поддержания расплавленного состояния фильтруемой среды (3) и фильтрата (1);
- газовое оборудование (9) - газовый баллон с инертным газом, совмещенный с редуктором-натекателем и образцовым манометром.
Способ с применением заявляемого устройства может быть реализован в три этапа.
На первом (подготовительном) этапе к рабочей металлической камере (6) приваривают металлический фильтр (2). После в рабочую металлическую камеру ячейку (6) помещают заранее подготовленную смесь солей и оксидов (т.е. шихту будущей фильтруемой среды (3)) и опускают измерительный электрод (7). Далее рабочую камеру (6) помещают над кварцевой ячейкой (5) и располагают в емкости (4) металлической. Рабочую металлическую емкость (6) подключают к газовому оборудованию (9) и напускают в камеру инертный газ, дожидаются когда газ через поры металлического фильтра (2) наполнит и емкость металлическую (4). Затем включают печь (8) и добиваются разогрева содержимого рабочей камеры (6) до температуры, при которой происходит расплавление солей загруженной смеси при сохранении в твердом состоянии мелкодисперсных оксидов. Таким образом внутри рабочей камеры (6) получают жидкую фильтруемую среду (3) - расплав хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.
На втором (основном) этапе поддерживают температуру с помощью печи (8) на уровне, достигнутом на первом этапе и ведут фильтрационный процесс: фильтруемая среда (3) под действием давления инертного газа, задаваемого газовым оборудованием (9), начинает частично протекать через пористую поверхность фильтра (2), образуя на нижней стороне фильтра (2) фильтрат (1), который стекает и накапливается в кварцевой ячейке (5). Фильтрат (1) содержит расплав хлоридов из среды (3), которые без изменений химического состава (соотношения компонентов) проникают через пористую поверхность фильтра (2), и некоторое количество, зависящее от фильтрационных свойств фильтра (2) и размера мелкодисперсных нерасплавленных оксидов (от нуля до полного содержания оксидов в фильтруемом расплаве (3)), твердых мелкодисперсных оксидов из фильтруемой среды (3). При этом с помощью индикаторного электрода (7) следят за уровнем фильтруемой жидкости в рабочей металлической емкости (6). При опустошении рабочей емкости (5) фильтрационный процесс прекращают, отключают печь (8), прекращают подачу инертного газа, вскрывают емкость металлическую (4) и извлекают из нее кварцевую ячейку (5) с фильтратом (1).
На третьем (заключительном) этапе производят анализ полученного фильтрата и определяют фильтрующие свойства пористых металлических материалов (фильтров) по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Для определения номинального расхода фильтрата (производительности фильтра) делят полную массу фильтрата (1), взвешанного на весах, на полное время его извлечения (длительность второго этапа). Для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата (производительности фильтра) на свободную площадь рабочей поверхности фильтра (2). Для определения номинальной и абсолютной тонкости фильтрации производят анализ фильтрата (1) на размер, прошедших через фильтр (2) нерасплавленных мелкодисперсных оксидов из расплава (3). Такой анализ можно выполнять, например, методами гранулометрического анализа, микроскопии и пр. По размеру самых крупных частиц мелкодисперсных оксидов, обнаруженных в пробах, определяют абсолютную тонкость фильтрации (абсолютная тонкость фильтрации измеряется в единицах длины, она численно равна размеру самой крупной частицы мелкодисперсного оксида, обнаруженного в пробе). Номинальную тонкость фильтрации определяют размером частиц той фракции мелкодисперсных оксидов, которую обнаруживают в пробах фильтрата (1) при заданном коэффициенте отсева (обычно 95%).
Таким образом определяют фильтрующие свойства, а именно: тонкости (номинальную и абсолютную) фильтрации и производительность (номинальный и удельный расход фильтрата) пористых металлических материалов (фильтров) по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.

Claims (14)

1. Устройство для определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов, содержащее:
- рабочую металлическую камеру (6) с индикаторным электродом (7), предназначенную для размещения фильтруемой среды (3) в виде расплава галогенидов щелочных металлов эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов, а также установки в основании камеры (6) испытываемого образца (2) в виде пористого металлического материала;
- кварцевую ячейку (5) для фильтрата (1);
- причем ячейка (5) и камера (6) помещены в металлическую емкость (4) со штуцерами для поддержания инертной атмосферы внутри устройства;
- нагревательный элемент (8) для создания и поддержания расплавленного состояния фильтруемой среды (3) и фильтрата (1);
- газовое оборудование (9) для создания инертной атмосферы внутри устройства.
2. Способ для определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов с помощью устройства по п.1, включающий:
- подготовительный этап, на котором устанавливают испытываемый образец фильтра, внутри резервуаров для фильтруемой среды и фильтрата обеспечивают инертную атмосферу и затем готовят фильтруемую среду в виде смеси галогенидов щелочных металлов эквимолярного состава и мелкодисперсных оксидов путем разогрева до температуры, превышающей температуру плавления хлоридов, но не превышающую температуру плавления оксидов;
- основной этап, на котором выполняют собственно фильтрационный процесс, пропуская через испытываемый фильтр фильтруемую среду и получая фильтрат, при этом температуру фильтруемой среды поддерживают на уровне, достигнутом на первом этапе, а также обеспечивают рабочее давление на фильтр со стороны фильтруемой жидкости с помощью давления инертной атмосферы и собирают фильтрат в емкость для фильтрата; после опустошения резервуара с фильтруемой жидкостью завершают процесс и извлекают емкость с фильтратом;
- заключительный этап, на котором определяют производительность и тонкость фильтрации испытываемых фильтров.
3. Способ по п.2, отличающийся тем, что для определения номинального расхода фильтрата делят полную массу отобранного на втором этапе фильтрата на полное время его отбора.
4. Способ по п.2, отличающийся тем, что для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата на свободную площадь рабочей поверхности испытываемого образца фильтра.
5. Способ по п.2, отличающийся тем, что для определения номинальной тонкости фильтрации выполняют определение размеров частиц той фракции мелкодисперсных оксидов в полученном на втором этапе фильтрате при заданном коэффициенте отсева.
6. Способ по п.2, отличающийся тем, что для определения абсолютной тонкости фильтрации выполняют определение максимальных размеров частиц мелкодисперсных оксидов в полученном на втором этапе фильтрате.
RU2018141049A 2018-11-21 2018-11-21 Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов RU2716793C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141049A RU2716793C1 (ru) 2018-11-21 2018-11-21 Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141049A RU2716793C1 (ru) 2018-11-21 2018-11-21 Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов

Publications (1)

Publication Number Publication Date
RU2716793C1 true RU2716793C1 (ru) 2020-03-16

Family

ID=69898800

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141049A RU2716793C1 (ru) 2018-11-21 2018-11-21 Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов

Country Status (1)

Country Link
RU (1) RU2716793C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU682797A1 (ru) * 1977-04-14 1979-08-30 Предприятие П/Я А-1424 Способ определени пористости твердых тел
SU1226177A1 (ru) * 1984-10-31 1986-04-23 Белорусское республиканское научно-производственное объединение порошковой металлургии Устройство дл контрол свойств фильтров из пористых материалов
RU2258213C1 (ru) * 2004-06-11 2005-08-10 Федеральное государственное унитарное предприятие "25 Государственный научно-иследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии)" Установка для испытаний фильтрующих материалов
US6972108B2 (en) * 2003-03-19 2005-12-06 Korea Atomic Energy Research Institute Device for metallizing uranium oxide and recovering uranium
JP2013031835A (ja) * 2011-07-01 2013-02-14 Japan Organo Co Ltd フィルターの評価方法
JP2016197048A (ja) * 2015-04-03 2016-11-24 オルガノ株式会社 フィルタの評価方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU682797A1 (ru) * 1977-04-14 1979-08-30 Предприятие П/Я А-1424 Способ определени пористости твердых тел
SU1226177A1 (ru) * 1984-10-31 1986-04-23 Белорусское республиканское научно-производственное объединение порошковой металлургии Устройство дл контрол свойств фильтров из пористых материалов
US6972108B2 (en) * 2003-03-19 2005-12-06 Korea Atomic Energy Research Institute Device for metallizing uranium oxide and recovering uranium
RU2258213C1 (ru) * 2004-06-11 2005-08-10 Федеральное государственное унитарное предприятие "25 Государственный научно-иследовательский институт Министерства обороны Российской Федерации (по применению топлив, масел, смазок и специальных жидкостей - ГосНИИ по химмотологии)" Установка для испытаний фильтрующих материалов
JP2013031835A (ja) * 2011-07-01 2013-02-14 Japan Organo Co Ltd フィルターの評価方法
JP2016197048A (ja) * 2015-04-03 2016-11-24 オルガノ株式会社 フィルタの評価方法

Similar Documents

Publication Publication Date Title
Jena et al. Advances in pore structure evaluation by porometry
US6923848B2 (en) Collecting apparatus of floating dusts in atmosphere
Doutre et al. Aluminium cleanliness monitoring: methods and applications in process development and quality control
US8136386B2 (en) Determination of pore structure characteristics of filtration cartridges as a function of cartridge length
US4402214A (en) Filter element test method and apparatus
RU2709092C1 (ru) Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов
RU2716793C1 (ru) Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов
CN103127772B (zh) 一种实验室用原油脱除泥砂装置及方法
JPH09506705A (ja) 混合ガスの高速連続分析方法および装置
Umhauer et al. Optical In situ size and concentration measurement of particles dispersed in gases at temperatures up to 1000 C
Doutre The development and application of a rapid method of evaluating molten metal cleanliness
Dittler et al. The influence of conditioning and regeneration on the separation behaviour of rigid surface filters for the separation of particles from gases
RU2642949C1 (ru) Система для определения концентрации механических примесей в товарной и добычной нефти
Belforte et al. Testing of glass fiber coalescing filters
JPH05332966A (ja) 物質の浸出安定度検査方法及び装置
Valleroy et al. Comparison of the specific resistances of cakes formed in filters and centrifuges
Char Filtration of porous particles
Guldner et al. Development of conversion factors for results of early gravimetric dust measurements
US1744415A (en) Gas-analyzing apparatus
Zhou et al. Comparison of general ventilation air filter test standards between America and Europe
Char Porous Particle Filtration
WO2024011288A1 (en) Method of processing dust collected on a dust filter of a continuous dust monitoring device for analysis
JP4006771B2 (ja) 遠心濾過装置の運転管理方法
Belforte et al. Efficiency measures of coalescing filters for pneumatic equipment
ヘパ kTTMe SeeeS SMMSS