RU2716673C1 - Способ эксплуатации подземного газохранилища - Google Patents

Способ эксплуатации подземного газохранилища Download PDF

Info

Publication number
RU2716673C1
RU2716673C1 RU2019114595A RU2019114595A RU2716673C1 RU 2716673 C1 RU2716673 C1 RU 2716673C1 RU 2019114595 A RU2019114595 A RU 2019114595A RU 2019114595 A RU2019114595 A RU 2019114595A RU 2716673 C1 RU2716673 C1 RU 2716673C1
Authority
RU
Russia
Prior art keywords
gas
formation
water
wells
underground
Prior art date
Application number
RU2019114595A
Other languages
English (en)
Inventor
Александр Иосифович Пономарев
Ильдар Зафирович Денисламов
Айрат Ильфатович Шаяхметов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет"
Priority to RU2019114595A priority Critical patent/RU2716673C1/ru
Application granted granted Critical
Publication of RU2716673C1 publication Critical patent/RU2716673C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

Изобретение относится к эксплуатации подземных хранилищ природного газа, созданных в водоносном пласте или в истощенных газовых пластах с активной краевой водой. Технический результат – повышение эффективности эксплуатации подземного газохранилища. Предлагается способ, заключающийся в циклическом режиме закачки природного газа через скважины в газосодержащий пласт и отборе газа из этих же скважин с предварительным созданием оторочки для снижения проникновения пластовой воды в газовую часть подземного газохранилища. Закачку газа в начальный период ведут путем закачки в скважины оторочки мелкодисперсной водогазовой смеси. Эту оторочку в последующем продвигают по пласту газом путем закачки в скважины газа. При этом применяют оторочку такой мелкодисперсной водогазовой смеси, что при закачке обеспечивают ее продвижение на отдаленные от нагнетательной скважины зоны пласта с ускоренным ее движением по кровле пласта и выравниванием фронта вытеснения по вертикальному разрезу газохранилища в зоне нагнетательной скважины. При снижении давления при эксплуатации газохранилища обеспечивают в подошвенной зоне пласта такое выделение и такой рост пузырьков в ней, что они блокируют движение воды в вышеотмеченной зоне пласта.

Description

Предлагаемое изобретение относится к эксплуатации подземных хранилищ природного газа (ПХГ), созданных в водоносном пласте и в истощенных газовых пластах с активной краевой водой.
Эксплуатация ПХГ ведется в циклическом режиме - в летний период времени, как правило, ведется закачка газа в подземный природный резервуар, в осенне-зимний период максимального потребления газа промышленными предприятиями и коммунальным хозяйством происходит отбор газа из резервуара. В подземных хранилищах газа, созданных в водоносных пластах и в истощенных газовых пластах с активной краевой водой на определенном расстоянии от скважины по распространению пласта имеется водонасыщенная зона, контур которой при закачке газа перемещается от скважины на периферию, а при отборе газа из скважины, наоборот, стягивается к зоне отбора газа, то есть к скважине. Это приводит к двум негативным явлениям. Во время закачки газа происходит опережающее продвижение газа по наиболее проницаемым каналам и пропласткам пласта, что снижает коэффициент вытеснения воды газом, и, как следствие, уменьшает потенциальные объемы закачки газа при ограниченном максимальном значении давления закачки газа на устье скважин или в призабойной зоне пласта.
При отборе газа из скважин естественным образом снижается пластовое давление, начинается обратное движение к забою скважин не только закачанного газа, но и подошвенных или краевых пластовых вод. По наиболее проницаемым каналам и пропласткам пласта вода доходит до перфорационных отверстий скважины в призабойной зоне пласта и блокирует приток газа в скважину.
Обозначенная проблема существует на большинстве ПХГ, поэтому ее решение является актуальным для успешной и эффективной эксплуатации газохранилищ и магистральных газопроводов.
Известно изобретение «Способ создания и эксплуатации подземных хранилищ газа в истощенных нефтяных и нефтегазоконденсатных месторождениях» (патент РФ №2377172, опубл. 27.12.2009, бюл. 36), по которому для сохранения производительности скважин по отбору газа из пласта в скважину предварительно закачивают смесь деэмульгатора и депрессатора, которые при движении газа по колонне лифтовых труб будут исключать образование водо-нефтяной эмульсии и отложений из асфальтенов, смол и парафинов. По изобретению не решаются вопросы повышения качества фильтрации газа в призабойной зоне пласта и в отдаленных зонах, близких к водонасыщенным участкам.
Известен способ создания подземного хранилища газа в водоносной геологической структуре (патент РФ на изобретение №2588500, опубл. 27.06.2016, бюл. 18), по которому в зоне газоводяного контакта на необходимых гипсометрических отметках искусственным путем создают оторочку в виде изолирующего экрана специального состава.
Недостатком способа является то, что способ требует организации контроля местоположения газоводяного контакта и базируется на применении определенных реагентов и компонентов для создания изолирующего экрана.
Создание такой экранирующей оторочки связано с выведением определенного количества эксплуатационных скважин из обычного режима эксплуатации закачки или отбора природного газа.
Технической задачей изобретения является повышение эффективности эксплуатации подземного газохранилища путем увеличения объемов закачки и отбора природного газа за счет выравнивания фронта вытеснения воды газом и снижения фазовой проницаемости пласта по воде путем снижения скорости движения газа и воды по высокопроницаемым пропласткам и каналам.
Поставленная задача решается тем, что в способе эксплуатации подземного газохранилища, заключающемся в циклическом режиме закачки природного газа через скважины в газодержащий пласт и отборе газа из этих же скважин с предварительным созданием оторочки для снижения проникновения пластовой воды в газовую часть ПХГ, согласно изобретению для ПХГ в водоносном пласте и в истощенных газовых пластах с активной краевой водой закачку газа в начальный период ведут путем закачки в скважины оторочки мелкодисперсной водогазовой смеси (МВГС), которую в последующем продвигают по пласту газом путем закачки в скважины газа, с тем, чтобы в процессе закачки МВГС увеличить коэффициент охвата вытеснения пластовой воды газом, а при снижении давления в пласте в процессе отбора газа снизить вероятность продвижения воды к забою скважин благодаря блокировке высокопроницаемых каналов и пропластков пузырьками газа, выделяющимися из МВГС при снижении давления в пласте.
Закачка МВГС приведет к увеличению полноты вытеснения воды газом и росту коэффициента охвата вытеснения пластовой воды закачиваемым газом в отдаленных от скважины зоны с пониженным давлением благодаря большей газонасыщенности и меньшей фазовой проницаемости пласта по воде в зонах с оторочкой водогазовой смеси.
При снижении давления в пласте в процессе отбора газа из скважин выделяющийся из МВГС газ будет заполнять и блокировать высокопроницаемые пропластки и каналы пласта, тем самым снижать вероятность продвижения воды к забою скважин.
Рассмотрим более подробно механизм реализации предложенного способа эксплуатации ПХГ. Перед закачкой в пласт запланированного объема природного газа в скважины под давлением подают мелкодисперсную водогазовую смесь. Под высоким давлением в нижней части ствола скважины и в призабойной зоне пласта часть газа будет находиться в растворенном в воде состоянии, а часть - в мелкодисперсном с водой состоянии. Такое состояние и вид МВГС объясняется тем известным фактом, что растворимость углеводородных газов в воде примерно в 10 и более раз уступает растворимости углеводородных газов в нефти. Поэтому при одинаково высоких пластовых давлениях большая часть природного газа, состоящего из метана, будет находиться в мелкодисперсном с водой состоянии.
Мелкодисперсный водогазовый состав будет продвигаться на отдаленные от скважины зоны пласта благодаря существующему перепаду давления.
Известно, что давление в ПХГ в период закачки газа постепенно понижается от нагнетательной скважины к периферии пласта. На определенном расстоянии от нагнетательной скважины давление в пласте станет значительно ниже давления насыщения воды газом Рнас, это приведет к расширению пузырьков газа и к появлению дополнительного количества пузырьков газа в продвигаемой по пласту газом оторочке МВГС. Опережающее продвижение оторочки по высокопроницаемым каналам и пропласткам на большее удаление от скважины в область более низких пластовых давлений приведет к тому, что фильтрационное сопротивление для оторочки МВГС в высокопроницаемых каналах и пропластках по сравнению с низкопроницаемыми увеличится вследствие снижения фазовой проницаемости и для воды, и для пузырьков газа в высокопроницаемых каналах и пропластках из-за повышенного присутствия второй - газовой компоненты. Это явление приведет, в свою очередь, к продвижению закачиваемого за оторочкой МВГС газа в низкопроницаемые зоны пласта и выравниванию фронта продвижения газа, повышению охвата вытеснения пластовой воды газом. Движение оторочки МВГС и далее газа по пласту по данной схеме обеспечит закачку природного газа в больших объемах и с большими значениями коэффициента вытеснения воды газом, чем при закачке только газа при одном и том же устьевом или забойном давлении.
Процесс отбора газа из скважин приводит к снижению устьевого и забойного давления, вследствие чего давление снижается и по пласту ПХГ. В зоне расположения водогазовой смеси давление на момент закачки газа уже было значительно ниже Рнас, а при дальнейшем снижении давления в период откачки газа размеры пузырьков газа в расформированной оторочке МВГС станут еще большими, блокируя тем самым высокопроницаемые каналы и пропластки и препятствуя продвижению подошвенной или активных краевых вод пласта в сторону скважины. Положительным следствием рассмотренного явления будет то, что продвижение пластовой воды к скважине будет более равномерным без прорывов и обводнения перфорационных отверстий скважины в период отбора газа из хранилища. Это обеспечит выполнение плановых отборов газа из ПХГ при снижении устьевого и забойного давления до установленного уровня.
В отличие от аналога и прототипа для повышения эффективности эксплуатации подземного газохранилища по изобретению предложено в начальный период закачки газа в пласт подавать в скважины вместе с газом обычную воду в мелкодисперсном состоянии в виде МВГС для того, чтобы в различных термобарических условиях эта водогазовая смесь вела себя по-разному. При высоких значениях давления (период закачки газа в пласт) МВГС будет двигаться по пласту как вода с определенным количеством пузырьков газа малых размеров и значительным количеством газа в растворенном в воде состоянии (Рпласта незначительно меньше Рнас), но при снижении давления содержание газа в свободном состоянии станет превалирующим в МВГС (Рпласта значительно меньше Рнас), а пузырьки газа большего количества и размеров будут играть блокирующую роль для движения воды. По мнению авторов, это положение, зафиксированное в формуле изобретения, и является предметом новизны и существенного отличия от ранее известных технологий по повышению эффективности эксплуатации ПХГ.
Заявляемое изобретение должно повысить эффективность закачки природного газа в ПХГ, состоящего из пластов и пропластков с различной абсолютной проницаемостью. Саморегулирование состояния МВГС в зависимости от величины давления в зонах пласта разной удаленности от скважины и является, по мнению авторов, новизной и существенным отличием в режиме эксплуатации ПХГ. Положительный эффект будет проявляться и в ПХГ, состоящем из однородного по проницаемости пласта. В этом случае при закачке газа в водонасыщенный пласт будет наблюдаться его ускоренное движение по кровле пласта в виду плотностной разницы между природным газом и водой. Применение оторочки мелкодисперсной водогазовой смеси в ПХГ такого типа создаст положительный эффект блокировки движения газа по кровле пласта и выравниванию фронта вытеснения пластовой воды газом по вертикальному разрезу хранилища в зоне скважины в период закачки газа. Ввиду однородности пласта по проницаемости закачиваемая оторочка МВГС начнет проникать в пласт достаточно равномерно по высоте пласта от кровли до подошвы, поэтому при обратном процессе - при отборе газа также будет наблюдаться положительный эффект присутствия такой оторочки в пласте. При снижении давления в подошвенной зоне пласта будет иметь место выделение и рост размеров пузырьков газа в МВГС с последующей блокировкой движения воды в подошвенной зоне пласта и предупреждение преждевременного попадания пластовой воды в нижние перфорационные отверстия скважины.
Для подтверждения работоспособности заявляемой технологии приведем данные двух книг по добыче и хранению природного газа.
В первой книге авторов: Степанов Н.Г, Дубина Н.И., Васильев Ю.Н. «Влияние растворенного в пластовых водах газа на обводнение газовых залежей» (- М.: ООО «Недра-Бизнесцентр», 1999. - 124 с.) в таблице 5 на стр. 46 приведены данные по растворимости природного газа в пластовых водах различной минерализации. Из этой таблицы наиболее значимой для изобретения является растворимость газа в воде, то есть газовый фактор при давлениях, сопоставимых с давлениями в ПХГ - это значения давления из таблицы: 9,8 и 19,6 МПа. При увеличении давления в газо-водяной системе в два раза с 9,8 МПа до 19,6 МПа растворимость газа в воде вырастает более чем в 1,5 раза, а именно: с величины 0,609 м33 до 0,934 м33. Обращаем внимание на обратное явление - при снижении давления с 19,6 МПа до 9,8 МПа из каждого кубометра воды выделяется примерно 325 литров свободного газа, которые в пластовых условиях и создают блокирующий эффект для продвижения пластовой воды по направлению к скважине при отборе газа из ПХГ.
Во второй книге авторов Лурье М.В., Дидковская А.С., Варчев Д.В., Яковлева Н.В. «Подземное хранение газа» (учебное пособие для вузов. - М.: Нефть и газ, 2004. - 172 с.) на стр. 132 и 133 сказано, что при закачке газа в пласты подземного газохранилища давление в пласте повысилось до 17,2 МПа, а при последующем отборе газа понизилось до 8,0 МПа.
Приведенная информация по двум источником свидетельствует о том, что в циклическом режиме эксплуатации ПХГ давление в пласте меняется в значительном диапазоне, меняется и газонасыщенность воды, и соответственно, ее способность содержать газ в растворенном состоянии или, наоборот, генерировать свободный газ при снижении давления в пласте при отборе газа из ПХГ.
Таким образом, достижение положительного эффекта от данного способа эксплуатации подземного газохранилища заключается в особенностях насыщения воды природным газом и в использовании этого явления в условиях пласта ПХГ с меняющимся давлением от скважины к периферии и от цикла закачки к циклу отбора газа из природного резервуара.

Claims (1)

  1. Способ эксплуатации подземного газохранилища, заключающийся в циклическом режиме закачки природного газа через скважины в газосодержащий пласт и отборе газа из этих же скважин с предварительным созданием оторочки для снижения проникновения пластовой воды в газовую часть подземного газохранилища, отличающийся тем, что закачку газа в начальный период ведут путем закачки в скважины оторочки мелкодисперсной водогазовой смеси, которую в последующем продвигают по пласту газом путем закачки в скважины газа, при этом применяют оторочку такой мелкодисперсной водогазовой смеси, что обеспечивают ее продвижение при закачке на отдаленные от нагнетательной скважины зоны пласта с ускоренным ее движением по кровле пласта и выравниванием фронта вытеснения по вертикальному разрезу газохранилища в зоне нагнетательной скважины, а при снижении давления при эксплуатации газохранилища обеспечивают в подошвенной зоне пласта такое выделение и такой рост пузырьков в ней, что они блокируют движение воды в вышеотмеченной зоне пласта.
RU2019114595A 2019-05-13 2019-05-13 Способ эксплуатации подземного газохранилища RU2716673C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019114595A RU2716673C1 (ru) 2019-05-13 2019-05-13 Способ эксплуатации подземного газохранилища

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019114595A RU2716673C1 (ru) 2019-05-13 2019-05-13 Способ эксплуатации подземного газохранилища

Publications (1)

Publication Number Publication Date
RU2716673C1 true RU2716673C1 (ru) 2020-03-13

Family

ID=69898495

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019114595A RU2716673C1 (ru) 2019-05-13 2019-05-13 Способ эксплуатации подземного газохранилища

Country Status (1)

Country Link
RU (1) RU2716673C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA039143B1 (ru) * 2020-03-27 2021-12-09 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ создания и эксплуатации подземного хранилища природного газа в водоносных пластах

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU190272A1 (ru) * 1965-11-06 1966-12-16
US3807181A (en) * 1971-05-29 1974-04-30 Edeleanu Gmbh Underground storage of gas
SU1743130A1 (ru) * 1989-04-14 1994-08-15 Всесоюзный научно-исследовательский институт природных газов Способ эксплуатации подземного газохранилища в истощенном нефтегазоконденсатном пласте
RU2377172C1 (ru) * 2008-07-04 2009-12-27 Открытое акционерное общество "Газпром" Способ создания и эксплуатации подземных хранилищ газа в истощенных нефтяных и нефтегазоконденсатных месторождениях
RU2514339C1 (ru) * 2012-12-11 2014-04-27 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН Способ создания и эксплуатации подземного хранилища газа
RU2588500C1 (ru) * 2015-04-28 2016-06-27 Публичное акционерное общество "ГАЗПРОМ" (ПАО "ГАЗПРОМ") Способ создания подземного хранилища газа в водоносной геологической структуре

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU190272A1 (ru) * 1965-11-06 1966-12-16
US3807181A (en) * 1971-05-29 1974-04-30 Edeleanu Gmbh Underground storage of gas
SU1743130A1 (ru) * 1989-04-14 1994-08-15 Всесоюзный научно-исследовательский институт природных газов Способ эксплуатации подземного газохранилища в истощенном нефтегазоконденсатном пласте
RU2377172C1 (ru) * 2008-07-04 2009-12-27 Открытое акционерное общество "Газпром" Способ создания и эксплуатации подземных хранилищ газа в истощенных нефтяных и нефтегазоконденсатных месторождениях
RU2514339C1 (ru) * 2012-12-11 2014-04-27 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН Способ создания и эксплуатации подземного хранилища газа
RU2588500C1 (ru) * 2015-04-28 2016-06-27 Публичное акционерное общество "ГАЗПРОМ" (ПАО "ГАЗПРОМ") Способ создания подземного хранилища газа в водоносной геологической структуре

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA039143B1 (ru) * 2020-03-27 2021-12-09 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ создания и эксплуатации подземного хранилища природного газа в водоносных пластах

Similar Documents

Publication Publication Date Title
Alagorni et al. An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection
Turta et al. Field foam applications in enhanced oil recovery projects: screening and design aspects
US10579025B2 (en) Hydrocarbon recovery process
US20120325483A1 (en) Combined miscible or near miscible gas and asp flooding for enhanced oil recovery
RU2502863C2 (ru) Способ и система добычи углеводородов из пласта гидрата с использованием продувочного газа
US20140174735A1 (en) Method, system, and composition for producing oil
CN101876241A (zh) 一种提高正韵律厚油层水驱采收率的方法
US10830019B1 (en) Method for enhancing gas recovery of natural gas hydrate reservoir
RU2716673C1 (ru) Способ эксплуатации подземного газохранилища
US9334717B2 (en) Enhanced oil recovery method
Liu et al. Parameter optimization of gas alternative water for CO2 flooding in low permeability hydrocarbon reservoirs
Hassanzadeh et al. A novel foam process with CO2 dissolved surfactant for improved sweep efficiency in EVGSAU field
Zhao et al. Performance improvement of CO2 flooding using production controls in 3D areal heterogeneous models: Experimental and numerical simulations
LING et al. Flood pattern optimization of horizontal well injection
US11613968B2 (en) Methodology to increase CO2 sequestration efficiency in reservoirs
US3292703A (en) Method for oil production and gas injection
Davis et al. Large scale CO2 flood begins along Texas Gulf Coast
Hunt The Joseph Lake-Armena-Camrose Producing Trend, Alberta: Oil and Gas Occurrences
Mihcakan et al. Blending alkaline and polymer solutions together into a single slug improves EOR
Taheriotaghsara et al. Field case studies of gas injection methods
CN110284860A (zh) 块状厚层砂岩油藏注采交互式人造倾角co2驱油方法
US20240183256A1 (en) Sweep Efficiency of Carbon Dioxide Gas Injection
US20240117714A1 (en) Method for increasing crude oil production by co2 storage in aquifer and dumpflooding
RU2515741C1 (ru) Способ разработки нефтяной залежи в карбонатных коллекторах
UA23865U (en) Method for development of steeply pitching oil stratum